Widely applicable information criterion for estimatingthe order in a hidden Markov model
รหัสดีโอไอ
Creator 1. Safaa K. Kadhem
2. Sadeq A. Kadhim
Title Widely applicable information criterion for estimatingthe order in a hidden Markov model
Publisher Research and Development Office,Prince of Songkla University
Publication Year 2021
Journal Title Songklanakarin Journal of Science and Technology (SJST)
Journal Vol. 43
Journal No. 3
Page no. 824-833
Keyword hidden Markov chains models, Markov chain Monte Carlo, integrated posterior predictive density, model selection
URL Website https://rdo.psu.ac.th/sjstweb/
ISSN 0125-3395
Abstract This paper considers the determination of the order of hidden Markov models. Recently, a proposed predictivemeasure, the so-called widely applicable information criterion (WAIC), was derived. This criterion is a convenient alternative tothe cross-validation approach due to its less computation processes and quick evaluation. We studied the properties of thiscriterion applied to hidden Markov models (HMMs) under the Bayesian principle. Such models include serial dependence andoverdispersion of observed data. We investigated this criterion via simulation studies and a real data application. It is shown thatthe introduced criterion performs better with less complicated models, while it tends to over fit some more complicated models.
หน่วยงานเจ้าของบทความวารสาร

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ