Algebraic, order, and analytic properties of Tracy-Singh sums for Hilbert space operators
รหัสดีโอไอ
Creator 1. Arnon Ploymukda
2. Pattrawut Chansangiam
Title Algebraic, order, and analytic properties of Tracy-Singh sums for Hilbert space operators
Publisher Research and Development Office, Prince of Songkla University
Publication Year 2019
Journal Title Songklanakarin Journal of Science and Technology
Journal Vol. 41
Journal No. 4
Page no. 727-733
Keyword operator matrix, tensor product, Tracy-Singh product, Tracy-Singh sum, analytic functions of operators
URL Website http://rdo.psu.ac.th/sjstweb/index.php
ISSN 0125-3395
Abstract We introduce the Tracy-Singh sum for operators on a Hilbert space, generalizing both the Tracy-Singh sum for matrices and the tensor sum for operators. The Tracy-Singh sum is shown to be compatible with algebraic operations and order relations. Then we establish a binomial theorem involving Tracy-Singh sums, and its consequences. We also investigate continuity, convergence, and norm bounds for Tracy-Singh sums. Moreover, we derive operator identities involving Tracy-Singh sums and certain operator functions defined by power series.
หน่วยงานเจ้าของบทความวารสาร

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ