Discriminant methods for high dimensional data
รหัสดีโอไอ
Creator 1. Poompong Kaewumpai
2. Samruam Chongcharoen
Title Discriminant methods for high dimensional data
Publisher Research and Development Office, Prince of Songkla University
Publication Year 2019
Journal Title Songklanakarin Journal of Science and Technology
Journal Vol. 41
Journal No. 2
Page no. 319-331
Keyword discriminant analysis, high dimensional data, classification, inverse of covariance matrix, block diagonal matrix
URL Website http://rdo.psu.ac.th/sjstweb/index.php
ISSN 0125-3395
Abstract The main purpose of discriminant analysis is to enable classification of new observations into one of g classes or populations. Discriminant methods suffer when applied to high dimensional data because the sample covariance matrix is singular. In this study, we propose two new discriminant methods for high dimensional data under the multivariate normal population with a block diagonal covariance matrix structure. As the first method, we approximate the sample covariance matrix as a singular matrix based on the idea of reducing the dimensionality of the observations to get a well-conditioned covariance matrix. As the second method, we use a block diagonal sample covariance matrix instead. The performances of these two methods are compared with some of the existing methods in a simulation study. The results show that both proposed methods outperform other comparative methods in various situations. In addition, the two new proposed methods for discriminant analysis are applied to a real dataset.
หน่วยงานเจ้าของบทความวารสาร

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ