Springback and sidewall curl prediction in U-bending process of AHSSthrough finite element method and artificial neural network approach
รหัสดีโอไอ
Creator 1. Natchanun Angsuseranee
2. Ganwarich Pluphrach
3. Bhadpiroon Watcharasresomroeng
4. Arkhom Songkroh
Title Springback and sidewall curl prediction in U-bending process of AHSSthrough finite element method and artificial neural network approach
Publisher Research and Development Office, Prince of Songkla University
Publication Year 2018
Journal Title Songklanakarin Journal of Science and Technology
Journal Vol. 40
Journal No. 3
Page no. 534
Keyword springback, U-bending, AHSS, FEM, ANN
URL Website http://rdo.psu.ac.th/sjstweb/index.php
ISSN 0125-3395
Abstract Advanced high strength steels (AHSS) have been used extensively in the automotive industry to reduce weight and fuelconsumption. However, increasing the strength of a material leads to the reduction in formability and a high degree ofspringback. Moreover, sidewall curl has been detected from U-bending operations of AHSS which caused problems in theassembly line. The aim of this research is to compare the efficiency of springback and sidewall curl prediction of AHSS gradeSPFC980Y in the U-bending process by the finite element method and artificial neural network approach. Input data for theprediction consisted of punch radius (Rp), die radius (Rd), and blank holder force (Fb). The back propagation neural networkmodel was trained by the springback values from a U-bending die experiment with 27 conditions. Efficiency estimations ofspringback and sidewall curl prediction were considered from the root mean square error (RMSE). The results showed that thefinite element method was more efficient than the artificial neural network approach. The RMSE values from the finite elementmethod for springback and sidewall curl were 0.104 and 0.092, respectively.
หน่วยงานเจ้าของบทความวารสาร

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ