รหัสดีโอไอ | 10.14456/mitij.2024.10 |
---|---|
Creator | นฤพร เต็งไตรรัตน์ |
Title | การแบ่งส่วนภาพปลานิลสองขั้นตอนโดยใช้การเรียนรู้อย่างลึกด้วยเครือข่ายคอนโวลูชันพีระมิดเชิงพื้นที่ |
Contributor | เพชรรัช ปะระไทย และ ชัชวาลย์ ชัยชนะ |
Publisher | มหาวิทยาลัยแม่โจ้ |
Publication Year | 2024 |
Journal Title | วารสารแม่โจ้เทคโนโลยีสารสนเทศและนวัตกรรม |
Journal Vol. | 10 |
Journal No. | 2 |
Page no. | 14 ถึง 31 |
Keyword | การแบ่งส่วนภาพ, การเรียนรู้เชิงลึก YOLO, การเรียนรู้ของเครื่อง, วิสัยทัศน์คอมพิวเตอร์ |
URL Website | https://mitij.mju.ac.th/ |
Website title | วารสารแม่โจ้เทคโนโลยีสารสนเทศและนวัตกรรม |
ISSN | ISSN 3027-7280 (Online) |
Abstract | ปลานิลเป็นปลาที่สำคัญที่สุดในอุตสาหกรรมการเลี้ยงสัตว์น้ำของประเทศไทย งานวิจัยนี้เสนอ วิธีการการสร้างแบบจำลอง Tilapia Image Segmentation ด้วยวิธีการเรียนรู้อย่างลึกด้วยเครือข่ายคอนโวลูชันพีระมิดเชิงพื้นที่โดยใช้ YOLOv8 เพื่อระบุพิกเซลของปลานิลที่ว่ายอยู่ในน้ำขุ่น โดยสร้างชุดรูปภาพปลานิลในน้ำจากกล้องบันทึกภาพใต้น้ำ กระบวนการฝึกฝน Tilapia Image Segmentation แบบ Supervised Deep Transferred Learning การวิเคราะห์โครงสร้างแบบจำลอง YOLOv8 และเปรียบเทียบประสิทธิภาพการแบ่งส่วนภาพปลานิลระหว่างแบบจำลองจากวิธี YOLOv8 และวิธี Mask R-CNN จากผลการทดสอบแสดงให้เห็นว่า แบบจำลองแบ่งกลุ่มพิกเซลปลานิลของวิธี YOLOv8 มีความแม่นยำในการแบ่งส่วนภาพปลานิลในหลากหลายมุมมอง ได้ดีกว่าแบบจำลองที่สร้างด้วยวิธี Mask R-CNN ถึงร้อยละ 6 ของค่าเฉลี่ยความแม่นยำ วิธี YOLOv8 ใช้จำนวนชุดคำสั่งในการฝึกฝนเรียนรู้ของแบบจำลองน้อยกว่าวิธี Mask R-CNN ถึงร้อยละ 54.6 และมีค่าพื้นที่ใต้เส้นโค้ง (Area Under the Curve: AUC) ที่ระดับ 0.988 นอกจากนี้วิธี YOLOv8 สามารถแบ่งพิกเซลของปลานิลจากรูปภาพที่มีความขุ่นของน้ำและความไม่ชัดเจนของตัวปลาได้ โดยไม่มีกระบวนการรปรับปรุงคุณภาพของรูปภาพ |
ดิจิตอลไฟล์ |
Digital File |