Intrusion Alert Framework using Semantic Web and Data Mining Approach
รหัสดีโอไอ
Creator Jatuphum Juanchaiyaphum
Title Intrusion Alert Framework using Semantic Web and Data Mining Approach
Contributor Preecha Noiumkar, Vuttichai Vichaianchai
Publisher Faculty of Informatics, Mahasarakham University
Publication Year 2564
Journal Title Journal of Applied Informatics and Technology
Journal Vol. 3
Journal No. 2
Page no. 63-81
Keyword Intrusion alert analysis, Alert correlation, Ontology, Attack scenarios
URL Website https://ph01.tci-thaijo.org/index.php/jait/
Website title Journal of Applied Informatics and Technology
ISSN 2586-8136
Abstract This research proposes a combination of semantic web and datamining approach to examine alert logs and reconstruct attack scenarios that provide crucial evidences to understand about damaging effects, emerged from the attack scenarios. This method extracts information from low-level alerts using ontological knowledge that the candidate attack scenarios are generated using a relationship between alerts, defined by the applied Cyber kill-chain concept. Afterward, Association rule algorithm is applied to mine frequent attack sequential patterns from candidate attack scenarios. Experiments using the DARPA 2000 LLDOS 1.0 dataset indicated that the proposed approach is effective; it reduces the false alerts and extracts a useful information that can solve the direct problems and cut the analysis time. The comparison of the proposed approach with related alert-correlation approaches showed that the approach is more effective than others in particular completeness and soundness.
Faculty of Informatics

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ