Performance Comparison of UWB-Fingerprinting Positioning with RBF Neural Network and k-Nearest Neighbor in an Indoor Environment
รหัสดีโอไอ
Creator Wipassorn Winitchaikul
Title Performance Comparison of UWB-Fingerprinting Positioning with RBF Neural Network and k-Nearest Neighbor in an Indoor Environment
Contributor Jirapat Sangthong, Kannika Limpisawat, Pichaya Supanakoon, Sathaporn Promwong
Publisher Faculty of Information Science and Technology, Mahanakorn University of Technology
Publication Year 2555
Journal Title Journal of Information Science and Technology
Journal Vol. 3
Journal No. 1
Page no. 16-22
Keyword ultra wideband (UWB), indoor positioning, radial basis function (RBF) neural network, k-nearest-neighbor (k-NN)
URL Website https://tci-thaijo.org/index.php/JIST
Website title Journal of Information Science and Technology
ISSN 2651-1053
Abstract In recent years, an indoor positioning system has been widely used in medical, industrial, public safety and transportation. In addition, its important requirement is high accuracy in dense multipath fading environments. This paper studies on indoor positioning using radial basis function (RBF) neural network and k-nearest-neighbor (k-NN) based on ultra wideband (UWB) signal. The channel transfer function was measured using vector network analyzer (VNA) at the frequency ranging from 3 GHz to 11 GHz. The path losses and the delay times of first three paths were investigated to build the fingerprints and signatures. The accuracy of this work is studied and shown in the term of cumulative distribution function (CDF). From the results, RBF neural network provides better accuracy than k-NN. Thus, RBF neural network is more suitable for an indoor positioning.
คณะวิทยาการและเทคโนโลยีสารสนเทศ มหาวิทยาลัยเทคโนโลยีมหานคร

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ