Autoencoder Applications for Enhancing Spice Classification Performance under Limited Dataset Conditions
รหัสดีโอไอ
Creator Evan Tanuwijaya
Title Autoencoder Applications for Enhancing Spice Classification Performance under Limited Dataset Conditions
Contributor Andreas Lim, Nathanael Suryanto, Joey Wiryawan
Publisher Faculty of Informatics, Mahasarakham University
Publication Year 2569
Journal Title Journal of Applied Informatics and Technology
Journal Vol. 8
Journal No. 1
Page no. 256450
Keyword Autoencoder, Convolution Neural Network, Limited Dataset, Spices
URL Website https://ph01.tci-thaijo.org/index.php/jait
Website title Journal of Applied Informatics and Technology
ISSN 3088-1803
Abstract Indonesia is home to a vast array of spices, known for their health benefitsand essential roles in culinary traditions. However, widespread knowledgeof these spices remains limited. This study explores the use of autoencodertechnology to address the challenges of classifying spices based on theirintricate shapes and colors, especially when faced with the limitations ofa small dataset. By carefully adjusting hyperparameters such as learningrate, optimization function, input size, and epochs, the autoencoder is op-timized to extract distinctive features necessary for accurate classification.A comparison with convolutional neural networks (CNNs) using transferlearning shows that the autoencoder achieves similar accuracy levels, whileconsistently avoiding issues of overfitting or underfitting. With precisionand recall rates nearing 0.97, the autoencoder demonstrates its abilityto compress image data and identify key features, making it an effectivesolution for spice classification in constrained data environments.
Faculty of Informatics

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ