The density-based minority over-sampling framework for class imbalanced problems
รหัสดีโอไอ
Title The density-based minority over-sampling framework for class imbalanced problems
Creator Chumphol Bunkhumpornpat
Contributor Krung Sinapiromsaran, Chidchanok Lursinsap
Publisher Chulalongkorn University
Publication Year 2554
Keyword Data mining, Cluster analysis, Sampling
Abstract A dataset embodies the class imbalanced problem when the target class has a very small number of instances relative to the other classes. A trivial classifier typically fails to predict the positive instances due to its tiny size. In this thesis, the density-based minority over-sampling framework is proposed. It relies on a density-based notion of clusters and is designed to over-sample an arbitrarily shaped cluster discovered by the density-based clustering algorithm. In detail, my framework generates a synthetic instance along the shortest path from each instance in a cluster of a minority class to the pseudo-centroid of this cluster. Consequently, a set of the synthetic instances is dense near the pseudo-centroid and is sparse far from this centroid. Due to the distribution of the set, a classifier faces more emphatically around the core region than it does around the border region. The experimental results show that my framework improves accuracy, F-value (combination term of Precision and Recall), and AUC of a classifier more than SMOTE and Safe-Level-SMOTE.
URL Website cuir.car.chula.ac.th
Chulalongkorn University

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File #1
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ