การศึกษาเพื่อพยากรณ์ลูกค้า NPL สินเชื่อเพื่อที่อยู่อาศัยของธนาคารอาคารสงเคราะห์และจัดกลุ่มการเข้าสู่สภาวะความเสี่ยง
รหัสดีโอไอ
Title การศึกษาเพื่อพยากรณ์ลูกค้า NPL สินเชื่อเพื่อที่อยู่อาศัยของธนาคารอาคารสงเคราะห์และจัดกลุ่มการเข้าสู่สภาวะความเสี่ยง
Creator กันทิมา มีนิล
Publisher University of the Thai Chamber of Commerce
Publication Year 2564
Keyword ธนาคารอาคารสงเคราะห์, หนี้ที่ไม่ก่อให้เกิดรายได้, สินเชื่อที่อยู่อาศัย
Abstract การศึกษาเพื่อพยากรณ์ลูกค้า NPL สินเชื่อเพื่อที่อยู่อาศัยของธนาคารอาคารสงเคราะห์ และจัดกลุ่มการเข้าสู่สภาวะความเสี่ยง วัตถุประสงค์เพื่อศึกษาปัจจัยที่มีผลต่อการเกิดลูกค้า NPL เพื่อศึกษาพฤติกรรมที่มีผลก่อให้เกิดแนวโน้มลูกค้า NPL และแนวทางในการลดความเสี่ยง โดยใช้โมเดลการเรียนรู้ของเครื่อง 3 แบบ (Decision Tree (J48), K-Nearest Neighbor และ Naïve Bayes) เพื่อพยากรณ์ลูกค้า NPL ผลการศึกษา คือ ประสิทธิภาพการพยากรณ์ของโมเดล Decision Tree (J48) ได้ค่ามีความถูกต้องแม่นยำสูงสุดที่ 98.23% โมเดล K – Nearest Neighbor : KNN ได้ค่ามีความถูกต้องแม่นยำ 93.80% โมเดล Naive Bayes ได้ค่ามีความถูกต้องแม่นยำ 90.26% ตามลำดับ เมื่อเปรียบเทียบจากการศึกษาจะพบว่าลูกค้าทุกกลุ่มอาชีพ และมีเงินเดือน 10,000 – 20,000 บาท จะเป็นกลุ่มที่มีความเสี่ยงในด้าน NPL มากที่สุด ถ้าพิจารณาเจาะจงที่อาชีพพนักงานประจำมั่นคง ซึ่งเป็นตัวอย่างข้อมูลที่เป็นกลุ่มใหญ่ที่สุด พบว่าลูกค้ากลุ่มพนักงานธุรกิจเอกชน จดทะเบียน (>2 ปี/พนง.>20 คน) เป็นฐานที่มีความเสี่ยงด้าน NPL สูง และเป็นกลุ่มลูกค้าหลักที่เข้ามาทำสินเชื่อ ในการศึกษาครั้งต่อไป ธนาคารควรจะนำข้อมูลเพิ่มเติมที่ได้มาทำการวิเคราะห์เพื่อลดความเสี่ยงด้าน NPL ที่สูงได้ดีขึ้น ประสิทธิภาพการพยากรณ์แล้ว พบว่าโมเดล Decision Tree (J48) มีประสิทธิภาพการพยากรณ์ดีที่สุด ได้ค่ามีความถูกต้องแม่นยำสูงที่สุด
URL Website https://scholar.utcc.ac.th
Website title UTCC Scholar
The University of the Thai Chamber of Commerce

บรรณานุกรม

EndNote

APA

Chicago

MLA

DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ