Nearring structure of variants of some transformation semigroups
รหัสดีโอไอ
Title Nearring structure of variants of some transformation semigroups
Creator Pongsan Prakitsri
Contributor Sureeporn Chaopraknoi
Publisher Chulalongkorn University
Publication Year 2553
Keyword Near-rings, Semigroups
Abstract A left [right] nearring is a system (N,+,) such that (N,+) is a group, (N,) is a semigroup and the operation left [right] distributes over the operation +. For a semigroup , let S[Superscript 0] be S if S has a zero and S contains more than one element, otherwise, let S[Superscript 0] be the semigroup S with a zero O adjoined. We say that a semigroup S admits a left [right] nearring structure if there exists an operation + on S[Superscript 0] such that (S[Superscript 0], +, ) is a left [right] nearring. For a semigroup S and a =S, define an operation * on S by x*y =xay for all x, y = S. The semigroup (S,*) is called a variant of S and (S,*) is denoted by (S, a). Let X be a set and P(X) be the set of all transformations from subsets of X into X. Hence P(X) is a semigroup under composition. Let V be a vector space over a division ring R and L[Subscript R (V)] be the set of all linear transformations on V. Then L[Subscript R (V)] is a semigroup under composition. Various types of subsemigroups of variants of P(X) and subsemigroups of variants of L[Subscript R (V)] are studied. Main results are determining when these semigroups admit the structure of a left [right] nearring.
URL Website cuir.car.chula.ac.th
Chulalongkorn University

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File #1
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ