Modeling Erythemal Ultraviolet Radiation in Thailand using Artificial Neural Networks (ANN) and Extreme Gradient Boosting (XGBoost)
รหัสดีโอไอ
Creator Sumaman Buntoung
Title Modeling Erythemal Ultraviolet Radiation in Thailand using Artificial Neural Networks (ANN) and Extreme Gradient Boosting (XGBoost)
Contributor Chaninat Srimueang, Somjet Pattarapanitchai, Jarungsang Laksanaboonsong, Serm Janjai
Publisher Faculty of Science, Khon Kaen University
Publication Year 2568
Journal Title KKU Science Journal
Journal Vol. 53
Journal No. 3
Page no. 438-449
Keyword Erythemal Ultraviolet Radiation, Machine Learning, XGBoost, ANN
URL Website https://ph01.tci-thaijo.org/index.php/KKUSciJ
Website title Thai Journal Online (ThaiJO)
ISSN 3027-6667
Abstract This study proposes machine learning models to estimate erythemal ultraviolet (EUV) radiation under all sky conditions using several available atmospheric and meteorological parameters. Data at four ground-based stations in key regions of Thailand namely, Chiang Mai, Ubon Ratchathani, Songkhla, and Nakhon Pathom, were collected from 2019 to 2023. Two well-known machine learning techniques, Artificial Neural Networks (ANN) and Extreme Gradient Boosting (XGBoost), were developed and employed, and their performance was compared. The results show that XGBoost outperformed ANN in terms of accuracy, with the best performance at each site yielding normalized root mean square errors (nRMSE) ranging from 8.56% to 14.32%. This superior performance suggests that XGBoost is more effective for estimating EUV radiation in Thailand and could be further improved for radiation forecasting.
คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ