Knowledge Graphs Aided Entity Relation Networks Using Chinese Quality Supervision News
รหัสดีโอไอ
Creator Jie Leng
Title Knowledge Graphs Aided Entity Relation Networks Using Chinese Quality Supervision News
Contributor Zhihua Yan, Xijin Tang
Publisher Sirindhorn International Institute of Technology, Bangkadi Campus (SIIT-BKD)
Publication Year 2565
Journal Title Journal of Intelligent Informatics and Smart Technology 
Journal Vol. 8
Page no. 1-8
Keyword Open information extraction, Knowledge bases, Relation extraction, Graph neural networks
URL Website https://ph05.tci-thaijo.org/index.php/JIIST
Website title Journal of Intelligent Informatics and Smart Technology 
ISSN 2586-9167
Abstract This paper, with the aid of knowledge bases and graph neural networks, tries a new way to information extraction and correlation analysis in the Chinese open domain. Chinese quality supervision news are taken as the corpus. We categorize event types based on topics generated via LDA. As for entities in texts, their types and relations are recognized through a combination of local and distant knowledge graphs. Those relations that do not exist in the knowledge graphs can be predicted through graph neural networks, with fully connected dependency syntactic trees as inputs. The correlation analysis on entities and events from quality news provides supports for relevant departments of the government, manufacturers, and consumers.
Sirindhorn International Institute of Technology, Bangkadi Campus

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ