Enhanced visual insights and diagnosis of interstitial lung diseases via Mufinet-DCGAN framework
รหัสดีโอไอ
Creator 1. Jayalakshmi Ramachandran Nair
2. Sumathy Pichai Pillai
3. Rajkumar Narayanan
Title Enhanced visual insights and diagnosis of interstitial lung diseases via Mufinet-DCGAN framework
Publisher Faculty of Engineering, Khon Kaen University
Publication Year 2568
Journal Title Engineering and Applied Science Research
Journal Vol. 52
Journal No. 4
Page no. 352-363
Keyword Contrast limited adaptive histogram equalization (CLAHE), Interstitial lung diseases (ILDs), Convolutional neural network (CNN), Deep Learning, MufiNet-DCGAN
URL Website https://ph01.tci-thaijo.org/index.php/easr/index
Website title Engineering and Applied Science Research
ISSN 2539-6161
Abstract Accurate identification and classification of medical images are pivotal in recent medical diagnostics. Despite considerable advancements in deep learning, current methodologies face challenges in capturing nuanced details, particularly from the perspective of interstitial lung diseases (ILDs). Moreover, there is a prominent gap in the investigation of integrating sophisticated image enhancement techniques, such as contrast-limited adaptive histogram equalization (CLAHE), and classification strategies leveraging convolutional neural networks (CNNs). This study proposes a novel methodology that synergistically combines the MufiNet-DCGAN approach to enhance image resolution and refine ILD classification. Through rigorous experimentation, our proposed method achieves commendable accuracy (98.75%), precision (98.01%), recall (98.63%), and F1 score (97.99%). These results underscore the potential of the proposed approach to advance medical diagnostics by furnishing robust tools for precise disease detection.
Engineering and Applied Science Research

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ