ADAPTIVE Q-LEARNING-BASED IOT INTEGRATION FOR SUSTAINABLE URBAN AUTONOMOUS VEHICLE NAVIGATION
รหัสดีโอไอ
Creator Pannee SUANPANG
Title ADAPTIVE Q-LEARNING-BASED IOT INTEGRATION FOR SUSTAINABLE URBAN AUTONOMOUS VEHICLE NAVIGATION
Contributor Pitchaya JAMJUNTR, Chanchai TECHAWATCHARAPAIKUL, Chutiwan BOONARCHATONG, Wattanapon CHUMPHET, Nawanun SRISUKSAI
Publisher Asian Interdisciplinary and Sustainability Review
Publication Year 2568
Journal Title Asian Interdisciplinary and Sustainability Review
Journal Vol. 14
Journal No. 2
Page no. Article 1
Keyword Adaptive Q-Learning, Autonomous Vehicles, Navigation, Internet of Things, Sustainability
URL Website https://so05.tci-thaijo.org/index.php/PSAKUIJIR
Website title https://so05.tci-thaijo.org/index.php/PSAKUIJIR/article/view/279880
ISSN 3027-6535
Abstract This research explores a novel method for integrating Internet of Things (IoT) with adaptive Q-learning (AQL) to enhance urban autonomous vehicle (AV) navigation for improved sustainability. The core of this method is an AQL algorithm that dynamically modifies learning settings in response to real-time traffic conditions, which optimizes decision-making. The effectiveness of the model was evaluated in a detailed simulation environment designed to reflect the complexity of urban settings. This infrastructure included sensors, communication protocols, and cloud-based systems. The simulation results show substantial advances in route optimization, hazard avoidance, and overall vehicle safety. The results show that integrating AQL with IoT improves the performance of self-driving cars and promotes more ecological and smart urban transportation strategies.
Political Science Association of Kasetsart University

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ