One-sided multivariate tests for high-dimensional datafrom two populations with unknown and unequal covariance matrices
รหัสดีโอไอ
Creator 1. Samruam Chongcharoen
2. Pawat Paksaranuwat
3. Manad Khamkong
Title One-sided multivariate tests for high-dimensional datafrom two populations with unknown and unequal covariance matrices
Publisher Research and Development Office, Prince of Songkla University
Publication Year 2565
Journal Title Songklanakarin Journal of Science an Technology (SJST)
Journal Vol. 44
Journal No. 1
Page no. 142-148
Keyword hypothesis testing, twoโ"sample mean vectors, multivariate Behrensโ"fisher problem, high-dimensional data, block diagonal matrix structure
URL Website https://rdo.psu.ac.th/sjst/index.php
ISSN 0125-3395
Abstract In this paper, we propose a new statistic for testing a one-sided hypothesis of mean vectors from two multivariatenormal populations when the covariance matrices are unknown and unequal for high-dimensional data. As we know that thesample covariance matrix is singular for high-dimensional data, the proposed test is based on the idea of keeping as muchinformation as possible from the sample covariance matrices. The performance of the proposed test is assessed in a simulationstudy with varied situations. The simulation results show that the proposed test was satisfactory in attaining nominal significancevalues close to set levels and the attained test power was excellent in every situation considered. Finally, the efficacy of theproposed test is illustrated with an analysis of DNA microarray data.
Songklanakarin Journal of Science and Technology (SJST)

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ