Long short-term memory (LSTM) neural networks for short-termwater level prediction in Mekong river estuaries
รหัสดีโอไอ
Creator 1. Thai Thanh Tran
2. Liem Duy Nguyen
3. Pham Ngoc Hoai
4. Quoc Bao Pham
5. Phan Thi ThanhHuyen
6. Nguyen Phuong Dong
7. Ha Hoang Hieu
8. Nguyen Thu Hien
Title Long short-term memory (LSTM) neural networks for short-termwater level prediction in Mekong river estuaries
Publisher Research and Development Office, Prince of Songkla University
Publication Year 2565
Journal Title Songklanakarin Journal of Science an Technology (SJST)
Journal Vol. 44
Journal No. 4
Page no. 1057-1066
Keyword long short-term memory (LSTM), neural network, water level, Mekong river estuary
URL Website https://rdo.psu.ac.th/sjst/index.php
ISSN 0125-3395
Abstract This study firstly adopts a state-of-the-art deep learning approach based on a Long Short-Term Memory (LSTM) neuralnetwork for predicting the hourly water level of Mekong estuaries in Vietnam. The LSTM models were developed from around8,760 hourly data points within 2018 and were evaluated using the Nash-Sutcliffe efficiency coefficient (NSE), mean absoluteerror (MAE), and root mean square error (RMSE). The results showed that the NSE values for the training and testing steps wereboth above 0.98, which can be regarded as very good performance. Furthermore, the RMSE were between 0.09 and 0.11 m for thetraining and between 0.10 and 0.12 m for the testing, while MAE for the training ranged from 0.07 to 0.08 m and varied from 0.08to 0.10 m for the testing. The LSTM networks appear to enable high precision and robustness in water level time series prediction.The outcomes of this research have crucial implications in river water level predictions, especially from the viewpoint of employingdeep learning algorithms.
Songklanakarin Journal of Science and Technology (SJST)

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ