Optimal hyperparameter tuning of random forestsfor estimating causal treatment effects
รหัสดีโอไอ
Creator 1. Lateef Amusa
2. Delia North
3. Temesgen Zewotir
Title Optimal hyperparameter tuning of random forestsfor estimating causal treatment effects
Publisher Research and Development Office, Prince of Songkla University
Publication Year 2564
Journal Title Songklanakarin Journal of Science and Technology (SJST)
Journal Vol. 43
Journal No. 4
Page no. 1004-1009
Keyword random forest, simulation, observational studies, propensity scores, treatment effect, causal inference
URL Website https://rdo.psu.ac.th/sjstweb/index.php
ISSN 0125-3395
Abstract Recent studies have expanded the focus of machine learning methods like random forests beyond prediction. They havefound utility in the area of causal inference by using it to estimate propensity scores. It has also been established in the literaturethat tuning the hyperparameter values of random forests can improve the estimates of causal treatment effects. We thus addressthe issue of getting the best out of random forest models by proposing to tune the random forest hyperparameters whilemaximizing covariate balance. We consider variants of tuning based on a model fit criterion and compare with tuning to chasecovariate balance. In a simulation study and empirical application in two case studies, we studied the performance of differenttuning implementations, relative to the random forest with default hyperparameters. We find that tuning to chase balance ratherthan model fit when estimating propensity scores induced better balance in the covariates and produced more accurate treatmenteffect estimates.
Songklanakarin Journal of Science and Technology (SJST)

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ