Rough statistical convergence on triple sequence of the Bernstein operator of random variables in probability
รหัสดีโอไอ
Creator 1. Nagarajan Subramanian
2. Ayhan Esi
3. Mustafa Kemal Ozdemir
Title Rough statistical convergence on triple sequence of the Bernstein operator of random variables in probability
Publisher Research and Development Office, Prince of Songkla University
Publication Year 2562
Journal Title Songklanakarin Journal of Science and Technology
Journal Vol. 41
Journal No. 3
Page no. 567-579
Keyword rough statistical convergence, rough strong Ces?ro summable, rough lacunary statistical convergence, rough convergence, rough ?- statistical convergence, rough strong (V,?)- summable, Bernstein polynomials
URL Website http://rdo.psu.ac.th/sjstweb/index.php
ISSN 0125-3395
Abstract This paper aims to improve further on the work of Phu (2001), Aytar (2008), and Ghosal (2013). We propose a new apporach to extend the application area of rough statistical convergence usually used in triple sequence of the Bernstein operator of real numbers to the theory of probability distributions. The introduction of this concept in the probability of Bernstein polynomials of rough statistical convergence, Bernstein polynomials of rough strong Ces?ro summable, Bernstein polynomials of rough lacunary statistical convergence, Bernstein polynomials of rough convergence, Bernstein polynomials of rough statistical convergence, and Bernstein polynomials of rough strong summable to generalize the convergence analysis to accommodate any form of distribution of random variables. Among these six concepts in probability only three convergences are distinct Bernstein polynomials of rough statistical convergence: (1) Bernstein polynomials of rough lacunary statistical convergence, (2) Bernstein polynomials of rough statistical convergence where Bernstein polynomials of rough strong Ces?ro summable is equivalent to Bernstein polynomials of rough statistical convergence, and (3) Bernstein polynomials of rough convergence which is equivalent to Bernstein polynomials of rough lacunary statistical convergence. Bernstein polynomials of rough strong summable is equivalent to Bernstein polynomials of rough statistical convergence. Basic properties and interrelations of these three distinct convergences are investigated and some observations were made in these classes and in this way we demonstrated that rough statistical convergence in probability is the more generalized concept than the usual Bernstein polynomials of rough statistical convergence.
Songklanakarin Journal of Science and Technology (SJST)

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ