Using Markov chains to forecast the proportionof noncommunicable diseases
รหัสดีโอไอ
Creator 1. Vadhana Jayathavaj
2. Pranee Boonya
Title Using Markov chains to forecast the proportionof noncommunicable diseases
Publisher Research and Development Office, Prince of Songkla University
Publication Year 2562
Journal Title Songklanakarin Journal of Science and Technology
Journal Vol. 41
Journal No. 5
Page no. 1124-1130
Keyword Markov chain, noncommunicable diseases, proportion, state, step
URL Website http://rdo.psu.ac.th/sjstweb/index.php
ISSN 0125-3395
Abstract The university personnel annual medical check-up reports of the years 2015-2017 are classified by the 16 categories ofnoncommunicable diseases (NCDs) from the combinations of the 4 criteria: high fasting blood sugar, high blood pressure, hightriglycerides or high cholesterol or high low-density lipoprotein, and the abnormal signs from an electrocardiogram. This studyaims to project the future proportion of NCDS in order to reflect the past and current university health policy. The Markov chainsare the categorical time series prediction model that are applied to identify the probabilities of short-run and long-run events foreach NCD states (category). The estimated state probability of the year 2017 that is derived from the transition matrix of the year2015 to 2016 is close to the real state probability of the year 2017 using the Chi-squared goodness of fit test (p-value < 0.002,degrees of freedom 15). The prediction for the steps of short-run (2018-2019) and long-run (2022 and so on) show that theNCDs with many more combinations will increase about 1% each, while the NCDs with lesser combinations will decrease by 1%each.
Songklanakarin Journal of Science and Technology (SJST)

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ