Development of Epsilon-insensitive smooth support vector regression forpredicting minimum miscibility pressure in CO2 flooding
รหัสดีโอไอ
Creator 1. Shahram Mollaiy-Berneti
2. Mehdi Abedi-Varaki
Title Development of Epsilon-insensitive smooth support vector regression forpredicting minimum miscibility pressure in CO2 flooding
Publisher Research and Development Office, Prince of Songkla University
Publication Year 2561
Journal Title Songklanakarin Journal of Science and Technology
Journal Vol. 40
Journal No. 1
Page no. 53
Keyword CO2 flooding, minimum miscibility pressure, Epsilon-insensitive smooth support vector regression, feed-forward neural network, radial basis function network
URL Website http://rdo.psu.ac.th/sjstweb/index.php
ISSN 0125-3395
Abstract Successful design of a carbon dioxide (CO2) flooding in enhanced oil recovery projects mostly depends on accuratedetermination of CO2-crude oil minimum miscibility pressure (MMP). Due to the high expensive and time-consuming ofexperimental determination of MMP, developing a fast and robust method to predict MMP is necessary. In this study, a newmethod based on ?-insensitive smooth support vector regression (?-SSVR) is introduced to predict MMP for both pure andimpure CO2 gas injection cases. The proposed ?-SSVR is developed using dataset of reservoir temperature, crude oil compositionand composition of injected CO2. To serve better understanding of the proposed, feed-forward neural network and radial basisfunction network applied to denoted dataset. The results show that the suggested ?-SSVR has acceptable reliability androbustness in comparison with two other models. Thus, the proposed method can be considered as an alternative way to monitorthe MMP in miscible flooding process.
Songklanakarin Journal of Science and Technology (SJST)

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ