The Cesaro Lacunary Ideal bounded linear operator of x2- of o-statisticalvector valued defined by a bounded linear operator of interval numbers
รหัสดีโอไอ
Creator 1. Deepmala
2. N. Subramanian
3. Lakshmi Narayan Mishra
Title The Cesaro Lacunary Ideal bounded linear operator of x2- of o-statisticalvector valued defined by a bounded linear operator of interval numbers
Publisher Research and Development Office, Prince of Songkla University
Publication Year 2560
Journal Title Songklanakarin Journal of Science and Technology (SJST)
Journal Vol. 39
Journal No. 4
Page no. 549
Keyword Banach metric,bounded linear operator,ideal,I?convergence,analytic sequence,Museialk-Orlicz function,double sequences,chi sequence,Lambda,Riesz space,strongly,statistical convergent,lacunary refinement
ISSN 0125-3395
Abstract Let ? ?uvmnA be a sequence of bounded linear operators from a separable Banach metric space of ? X , 0? into a Banachmetric space ?Y, 0 . ? Suppose that ? ?? is a countable fundamental set of X and the ideal I ? of subsets ? ?? has property(AP). The sequence ? ?uvmnA is said to be *b I ? convergent if it is pointwise I ? convergent and there exists an index set Ksuch that ? ?? ? / K I and ? ?,uvmn m n KA x? is bounded for any x X ? , the concept of lacunary vector valued of ?2 andthe concept of 11 ? ? lacunary statistical convergent vector valued of ?2 of difference sequences have been introduced. Inaddition, we introduce interval numbers of asymptotically ideal equivalent sequences of vector valued difference byMusielak fuzzy real numbers and established some relations related to this concept.Finally we introduce the notion of interval numbers of Ces?ro Orlicz asymptotically equivalent sequences vectorvalued difference of Musielak Orlicz function and establish their relationship with other classes.
Songklanakarin Journal of Science and Technology (SJST)

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ