

ECONOMICAL ANALYSIS MODEL IN JA<u>TROPHA CURCAS</u> FLANTATION OF RURAL FARMERS IN THAILAND UNDER SHARED BENEFITS BUSINESS WITH INVESTOR

KHUMTHORN NAWALERTPANYA

A Thesis Submitted to the Graduate School of Naresuan University
in Partial Fulfillment of the Requirements
for the Master of Science Degree in Renewable Energy
May 2011
Copyright 2011 by Naresuan University

ECONOMICAL ANALYSIS MODEL IN <u>JATROPHA CURCAS</u> PLANTATION OF RURAL FARMERS IN THAILAND UNDER SHARED BENEFITS BUSINESS WITH INVESTOR

KHUMHTHORN NAWALERTPANYA

A Thesis Submitted to the Graduate School of Naresuan University
in Partial Fulfillment of the Requirements
for the Master of Science Degree in Renewable Energy
May 2011

Copyright 2011 by Naresuan University

This thesis entitled "Economical Analysis Model in *Jatropha Curcas* Plantation of Rural Farmers in Thailand under Shared Benefits Business with Investor" submitted by Khumthorn Nawalertpanya in partial fulfillment of the requirements for the Master of Science Degree in Renewable Energy is hereby approved.

Sirichai Thepa Chair
(Assistant Professor Sirichai Thepa, D.Sc.)
P. Thanard Committee
(Prapita Thanarak, Ph.D.)
Myn lut Committee
(Assistant Professor Nipon Ketjoy, Ph.D.)
Committee
(Sahataya Thongsan, Ph.D.)

Approved

Respectivilial

(Assistant Professor Kanungnit Pupatwibul, Ph.D.)

Dean of the Graduate School

May 2011

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to my advisor Dr. Prapita Thanarak and my co-advisor Assistant Professor Dr. Nipon Ketjoy for the continuous support of my master study and thesis research, for their patience, motivation, enthusiasm, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Assistant Professor Dr. Sirichai Thepa and Dr. Sahataya Thongsan, for their insightful comments, and hard questions.

I thank to Royal Thai Government for scholarship in abroad and also in Thailand. In particular, I am grateful to Kurt and Dan, for providing me important information in Curcus oil and all the stimulating discussions we had together. Also I thank my best friend Steffen Maisch for his cheerful advices and support for so many years.

Last but not the least, I would like to thank my family: my parents for giving birth to me at the first place and my wife who support me spiritually throughout my life.

Khumthorn Nawalertpanya

Title ECONOMICAL ANALYSIS MODEL IN JATROPHA

CURCAS PLANTATION OF RURAL FARMERS IN

THAILAND UNDER SHARED BENEFITS BUSINESS

WITH INVESTOR

Author Khumthorn Nawalertpanya

Advisor Prapita Thanarak, Ph.D.

Co - Advisor Assistant Professor Nipon Ketjoy, Ph.D.

Academic Paper Thesis M.Sc. in Renewable Energy,

Naresuan University, 2010

Keywords Jatropha Curcas Plantation, Jatropha Curcas Crude Oil, Shared

Benefits Business

ABSTRACT

E46910

In last decades, the most concerning problems of world populations are the oil depletion and the global warming. Many countries have been encouraging the projects on using new sources of energy, which is more sustainable and environmental neutral in order to promote the CO₂-Reduction. In recent years, biofuel research has been directed mainly to explore plant-based fuels, which is fatty acid methyl esters (FAME) of seed oils and in some cases, animals fats. As previously documented, FAME can be derived from rapeseed, palm, sunflower, soybean, *Jatropha* seeds and other plants. The biodiesel from various sources of seeds are considering if it is edible or non edible, this is a controversial issue till now.

Jatropha Curcas oil is obtained from the seeds of the succulent plant Jatropha Curcas, which is able to grow under various climatic conditions and can survive long periods of low water availability and droughts. It is considered as being one of the most promising sources for non fossil fuels. Its chemical composition is optimal for biodiesel applications when used as transesterified FAME due to its high combustion enthalpy, low iodine number (low content of unsaturated fatty acids which are air sensitive and their oxidation and polymerization products reduce the quality of the fuel), and optimal viscosity. Very large producers of biodiesel are South-East Asia

and South America, and also parts of the United States; Malaysia and Indonesia being the leading countries with an annual production of 20 million m³ together. Soybean and palm oil, transferred into the methyl esters, are still the main sources for biodiesel, animal fat is also considerably important.

There are still a lot of researches to be done about the optimization of *Jatropha* oil for use as fuel, which includes the evaluation of the optimal growing conditions, the technological processing of the raw seed oil into fuel, and the optimization of the plant itself by selective breeding of high-yield species, and genetic engineering. Even though *Jatropha* can withstand sub-optimal growing conditions and is resistant against plant diseases. It was seen that a high yield of high quality oil can often only be obtained when the growing conditions are suitable.

This analysis focused on the investigation of a new system of *Jatropha* plantation for crude oil production under shared benefits business with investor, which could serve a large scale of *Jatropha* crude oil production in Thailand. The business functions between farmers and investor can be divided in 7 steps. Only 3 steps as plantation, harvesting and delivery to collecting center are managed by farmers, other 4 steps as nursery, transport to factory, crude oil production and shipping to end customers by investor. With agreements to support the farmers by providing them know-how and raw materials such as seedlings, fertilizers or pesticides etc., they both would reach the highest return.

The *Jatropha* plantation models are analyzed by plantation scales of 1-1,000 rai (1 rai equals to 1,600 m²), planting technique of 250 seedlings/rai, various quantity of fertilizer and pesticide, *Jatropha* yielding time of 25 years, various seeds prices and seed yields. All costs and incomes of farmers are considered and economically analyzed with helps of economic tolls as CBR and ROI.

The results shown that, without helps from investor, *Jatropha* plantation in Thailand could be beneficial when plantation scale starts from 5 rai and minimum seeds price at 9 bath/kg, while under shared benefits business at only 6 bath/kg. The shared benefit business makes *Jatropha* cultivation of 20 rai or over by the lowest seeds price of 3 bath/kg also beneficial.

LIST OF CONTENTS

Chapter		Page
I	INTRODUCTION	1
	Rationale for the Study	1
	Purpose of the Study	2
	Scope of the Study	2
	Benefit from the Study	3
11	REVIEW OF RELATED LITERATURE AND RESEARCH	4
	Overview of Jatropha Curcus L.	4
	Uses of Jatropha Curcus L.	8
	Cost benefit analysis	12
	Literature review	14
II	I RESEARCH METHODOLOGY	21
	Cycle of Jatropha Curcas plantation for crude oil production	21
	Farmer section	22
I	RESULTS AND DISCUSSION	24
	Analysis strategy	24
	Cost of seedlings	25
	Cost of fertilizers	27
	Cost of labors	31
	Cost of transport	33
	Benefit by seeds selling	34
	Benefit-Cost-Analysis	36
	Results analysis	37

LIST OF CONTENTS (CONT.)

Chapter	Page
V CONCLUSION AND RECOMMENDATION	46
REFERENCES	52
APPENDIX	54
BIOGRAPHY	135

LIST OF TABLES

Table		Page
1	Pesticidal properties of various seed extracts	10
2	Nutritional analysis of oil seed cakes, and manure (%)	11
3	Number of Jatropha Curcas seedlings in 10 models	25
4	Number of seedlings by various scales	26
5	Total cost of Jatropha Curcas seedlings in 10 models (C ₀)	26
6	Total cost of seedlings of farmers A, B, C, D, E and F	27
7	Recommended technic of fertilization in Jatropha Curcas plantation	28
8	Annual amount of fertilizer in Jatropha Curcas plantation	28
9	Annual use rate of fertilizer in kg/rai	29
10	Annual use rate of fertilizer in bags/rai	29
11	Annual cost of fertilizer in baht/rai	30
12	Annual cost of fertilizer in baht of 10 models (C2)	30
13	Annual cost of fertilizer in baht of farmers A, B, C, D, E and F	31
14	Annual cost of labors in baht of 10 models (C ₁)	32
15	Annual cost of labors in baht of farmers A, B, C, D, E and F	32
16	Annual cost of transport in baht of farmers A, B, C, D, E and F	33
17	Annual cost of transport in baht of 10 models (C ₃)	33
18	Jatropha Curcas annual seeds yield in kg/rai under good care	34
19	Annual income rates of Jatropha Curcas farmer in baht/rai	35
20	Annual incomes models in baht at market price of 3 baht/kg seeds	35
21	Annual incomes in baht at market price of 3 baht/kg seeds	36
22	Yield production in kg/rai by natural disaster in 10%, 20% and 50%	45

LIST OF FIGURES

Figure		Page
1	General aspect of <i>Jatropha Curcas</i> plant and its green seed	4
2	Main distribution area for Jatropha Curcas (green)	6
3	Jatropha Curcas utilization and economic significance	8
4	Biodiesel production cost by M. Johnson and T. Holloway	20
5	The cycle of Jatropha Curcas crude oil production	21
6	An example of benefit-Cost-Analysis chart	37
7	Total costs lines by 1-20 rai with regard of gratis fertilizers	37
8	Total costs lines by 50-1000 rai with regard of gratis fertilizers	38
9	Total costs lines by 1-20 rai without gratis fertilizers	38
10	Total costs lines by 50-1000 rai without gratis fertilizers	39
11	Total costs distribution without gratis fertilizers	39
12	Total costs distribution with gratis fertilizers	40
13	Incomes over 10 years with plantation area of 1-20 rai	41
14	Incomes over 10 years with plantation areas of 50-1000 rai	41
15	Net values over 10 years with plantation area of 50 rai	42
16	Net values over 10 years by 1-1000 rai at low market price	42
17	Net values over 10 years by 1-20 rai at low market price	43
18	Net values over 10 years by 1-20 rai at higher market price	43
19	Annual ROI by 50 rai and 3 baht/kg seeds with gratis fertilizers	44
20	Total incomes by best case and yield reduction cases of 50 rai	45
21	Beneficial chart without shared benefits business with ROI index	46
22	Beneficial chart with shared benefits business with ROI index	47
23	Beneficial chart with shared benefits (no charge of 1 labor)	48
24	Beneficial chart (50 rai) with shared benefits business with ROI index	
	* at no charge of 1 labour and in due consideration of risk analysis	49

ABBREVIATIONS

G = Gram

kg = Kilogram

JCL = Jatropha Curcas Linn

BCR = Benefit Cost Ratio

ROI = Return on Investment

PVB = Present Value of Benefits

PVC = Present Value of Costs

NPV = Net Present Value

B = Benefit or Gain

C = Cost or Expense

i = Discount Rate