

CONCLUSIONS

The following results are all main theorems of this thesis:

- 1. Let S be a Γ -semigroup and $e \in E_{\gamma}(S)$. Then H_e is a subgroup of S_{γ} .
- 2. Let S be a Γ -semigroup. Then the following statements are equivalent:
 - (1) S is completely regular.
 - (2) Each element of S lies in a subgroup of S_{γ} for some $\gamma \in \Gamma$.
 - (3) Every \mathcal{H} -class is a subgroup of S_{δ} for some $\delta \in \Gamma$.
- 3. Let S be a Γ -semigroup and $a \in S$, $\alpha, \beta \in \Gamma$. Then the following statements hold:
- (1) If a is an (α, β) -completely regular element of S, then H_a is a subgroup of S_{α} and S_{β} with the same identity and the same inverse of a.
- (2) If H_a is a subgroup of S_{α} and S_{β} with the same identity, then a is an (α, β) -completely regular element of S.
- (3) a is an (α, β) -completely regular element of S if and only if H_a is a subgroup of S_{α} and S_{β} with the same identity.
- 4. Let S be a Γ -semigroup and $a \in S$. Then the following statements are equivalent:
 - (1) $a \in G_{\Gamma}(S)$.
 - (2) a is an (α, β) -completely regular element of S for some $\alpha, \beta \in \Gamma$.
 - (3) a has a (γ, δ) -inverse x with $a\gamma x = x\delta a$ for some $x \in S, \ \gamma, \delta \in \Gamma$.
 - (4) $a \in \bigcup_{e \in E_{\Gamma}(S)} H_e$.
- 5. Let S be a Γ -semigroup. Then the following two statements hold:
- (1) $G_{\Gamma}(S)$ is the set of all (α, β) -completely regular elements of S for some $\alpha, \beta \in \Gamma$.
 - (2) $G_{\Gamma}(S) = \bigcup_{e \in E_{\Gamma}(S)} H_e$.

- 6. Let S be a Γ -semigroup, $a, b \in S$ and $\alpha, \beta \in \Gamma$. Then the following statements hold:
 - (1) $V_L^{(\alpha,\beta)}(a) \cap V_L^{(\alpha,\beta)}(b) = \emptyset$ or $V_L^{(\alpha,\beta)}(a) = V_L^{(\alpha,\beta)}(b)$.
 - (2) $V_R^{(\alpha,\beta)}(a) \cap V_R^{(\alpha,\beta)}(b) = \emptyset$ or $V_R^{(\alpha,\beta)}(a) = V_R^{(\alpha,\beta)}(b)$.
 - (3) $V_H^{(\alpha,\beta)}(a) \cap V_H^{(\alpha,\beta)}(b) = \emptyset$ or $V_H^{(\alpha,\beta)}(a) = V_H^{(\alpha,\beta)}(b)$.
- 7. Let S be a Γ -semigroup and $a \in S$. Then the following statements are equivalent:
 - (1) a is an (α, β) -completely regular element of S for some $\alpha, \beta \in \Gamma$.
 - (2) a has an $(\mathcal{H}, \gamma, \delta)$ -inverse for some $\gamma, \delta \in \Gamma$.
 - (3) a has an $(\mathcal{L}, \zeta, \eta)$ -inverse for some $\zeta, \eta \in \Gamma$.
 - (4) a has an $(\mathcal{R}, \theta, \vartheta)$ -inverse for some $\theta, \vartheta \in \Gamma$.
- 8. Let S be a Γ -semigroup, $a \in S$ and $\alpha, \beta \in \Gamma$. If a is an (α, β) -completely regular element of S, then the following statements hold:

(1)
$$V_L^{(\alpha,\beta)}(a) = \{f\gamma x \mid f \in E_\alpha(L_a), \gamma \in \{\alpha,\beta\}\}\$$

= $\{q \in S \mid a = a\alpha(q\delta a) = (a\delta a)\alpha q, \ q = (q\delta a)\alpha q = (q\alpha q)\delta a,$
where $\delta \in \{\alpha,\beta\}\},$

(2)
$$V_R^{(\alpha,\beta)}(a) = \{x\gamma f \mid f \in E_\beta(R_a), \gamma \in \{\alpha,\beta\}\}\$$

= $\{r \in S \mid a = (a\zeta r)\beta a = r\beta(a\zeta a), \ r = r\beta(a\zeta r) = a\zeta(r\beta r),\$
where $\zeta \in \{\alpha,\beta\}\},$

(3)
$$V_H^{(\alpha,\beta)}(a) = \{x\}$$

= $\{s \in S \mid a = a\eta s \eta a, s = s \eta a \eta s, a \eta s = s \eta a,$
where $\eta \in \{\alpha, \beta\}\},$

where x is both an inverse of a in H_a of S_{α} and S_{β} .