CHAPTER III

COMPLETELY REGULAR ELEMENTS

IN **GROUPS**

In this chapter we divide in three sections. In the first section we give a definition of a completely regular Γ -semigroup, and we study the relationship between \mathcal{H} -class and completely regular elements. In the second section we establish the set of union of all subgroups of a Γ -semigroup. We also study and extend the properties of completely regular elements which is related to Green's relations and subgroups on semigroups to Γ -semigroups. In the third section we introduce the concept of an inverse Γ -semigroup satisfying the structure of Green's relations \mathcal{L} , \mathcal{R} , \mathcal{H} , and we study the relationship between such inverse and completely regular elements.

3.1 \mathcal{H} -class and Completely Regular Elements in a Γ -semigroup

For this section, we introduce the definition of a completely regular Γ semigroup, which is more general definition of [15], and we shall use repeatedly.

We consider and study the relationship between \mathcal{H} -class and a completely regular
element in a Γ -semigroup, which will be used in the main body for this research.

Definition 3.1.1. Let S be a Γ -semigroup and $\gamma \in \Gamma$. Define * on S by, for all $a, b \in S$, $a * b = a\gamma b$. Then (S, *) is a semigroup. Such semigroup is denoted by $(S_{\gamma}, *)$.

A nonempty subset T of S is called a *subgroup of* S_{γ} if T is a group under the operation *.

Definition 3.1.2. Let S be a Γ -semigroup and $a \in S$. If $a = a\alpha x\beta a$ and $a\alpha x = x\beta a$ for some $x \in S, \alpha, \beta \in \Gamma$, then an element a is called an (α, β) -completely regular element of S.

A Γ -semigroup S will be called *completely regular* if every element of S is an (α, β) -completely regular element for some $\alpha, \beta \in \Gamma$.

We shall give two examples of completely regular Γ -semigroups as follows.

Example 3.1.3. Let
$$S = \{ \begin{bmatrix} a & b & 0 \\ 0 & 0 & 0 \end{bmatrix} \mid a, b \in \mathbb{R} \}$$
 and $\Gamma = \{ \begin{bmatrix} c & 0 \\ d & 0 \\ 0 & 0 \end{bmatrix} \mid c, d \in \mathbb{R} \}.$

We shall show that S is completely regular. It is easy to show that S is a Γ -semigroup under the usual multiplication of matrices. Let $A = \begin{bmatrix} a & b & 0 \\ 0 & 0 & 0 \end{bmatrix} \in S$.

Case
$$a = b = 0$$
. Choose $\alpha = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\beta = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Case
$$a \neq 0$$
 and $b = 0$. We choose $\alpha = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\beta = \begin{bmatrix} \frac{1}{a} & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$.

Case
$$a=0$$
 and $b\neq 0$. Set $\alpha=\begin{bmatrix}0&0\\\frac{1}{b}&0\\0&0\end{bmatrix}$ and $\beta=\begin{bmatrix}0&0\\\frac{1}{b}&0\\0&0\end{bmatrix}$ where $d\in\mathbb{R}$.

Case
$$a \neq 0$$
 and $b \neq 0$. Choose $\alpha = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\beta = \begin{bmatrix} 0 & 0 \\ \frac{1}{b} & 0 \\ 0 & 0 \end{bmatrix}$.

Then $A = A\alpha A\beta A$ and $A\alpha A = A\beta A$. Thus A is (α, β) -completely regular. Hence S is completely regular.

Example 3.1.4. Let
$$S = \{ \begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \end{bmatrix} \}$$
 and $\Gamma = \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \}$.

We shall show that S is completely regular. Clearly, S is a Γ -semigroup. Set

$$\alpha = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\beta = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Consider

$$\begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix},$$

so $\begin{bmatrix} 1 & 0 \end{bmatrix}$ is (α, α) -completely regular. Consider

$$\begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix},$$

we get $\begin{bmatrix} 0 & 1 \end{bmatrix}$ is (β, β) -completely regular.

$$\begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix},$$

we obtain $\begin{bmatrix} 1 & 1 \end{bmatrix}$ is (β, α) -completely regular. Clearly, $\begin{bmatrix} 0 & 0 \end{bmatrix}$ is (α, β) -completely regular. Thus S is completely regular under the usual multiplication of matrices.

Theorem 3.1.5. Let S be a Γ -semigroup and $e \in E_{\gamma}(S)$. Then H_e is a subgroup of S_{γ} .

Proof. Let $a, b \in H_e$. By Theorem 2.1.8 (3), we have

$$b\gamma e = b = e\gamma b$$
 and $a\gamma e = a = e\gamma a$. (3.1.1)

If a = e or b = e, then, by (3.1.1), $a\gamma b = e\gamma b = b$ or $a\gamma b = a\gamma e = a$. This implies that $a\gamma b \in H_e$. Suppose that $a \neq e$ and $b \neq e$. Since $a \mathcal{H} e$ and $b \mathcal{H} e$, there exist $w, x, y, z \in S, \delta, \zeta, \eta, \theta \in \Gamma$ such that

$$e = w\delta a$$
, $e = x\zeta b$, $e = a\eta y$ and $e = b\theta z$.

Since $a\gamma b = e\gamma a\gamma b$ and $e = a\eta y = a\gamma e\eta y = a\gamma b\theta z\eta y$, we have $a\gamma b \in R_e$. Also, from $a\gamma b = a\gamma b\gamma e$ and $e = x\zeta b = x\zeta e\gamma b = x\zeta w\delta a\gamma b$, so $a\gamma b \in L_e$. This implies that $a\gamma b \in H_e$.

Clearly, e is the identity of H_e .

Let $c \in H_e$. By Theorem 2.1.8 (3), we have $c\gamma e = c = e\gamma c$. If c = e, then $c\gamma c = e\gamma e = e$, so c is an inverse of c in H_e . Suppose that $c \neq e$. Since $c \mathcal{H} e$, there exist $u, v \in S, \vartheta, \mu \in \Gamma$ such that $e = u\vartheta c$ and $e = c\mu v$. Then $e = u\vartheta c = u\vartheta e\gamma c$ and $e = c\mu v = c\gamma e\mu v$. We claim that $u\vartheta e = e\mu v$. Now $u\vartheta e = u\vartheta c\mu v = e\mu v$. Hence $u\vartheta e$ is the inverse of e in e. It follows that e is a subgroup of e.

Corollary 3.1.6. Let S be a Γ -semigroup and $e \in E(S)$. Then H_e is a subgroup of S_{γ} for some $\gamma \in \Gamma$.

Proof. It follows directly from Theorem 3.1.5.

Theorem 3.1.7. Let S be a Γ -semigroup. Then the following statements are equivalent:

- (1) S is completely regular.
- (2) Each element of S lies in a subgroup of S_{γ} for some $\gamma \in \Gamma$.
- (3) Every \mathcal{H} -class is a subgroup of S_{δ} for some $\delta \in \Gamma$.

Proof. (1) \Rightarrow (2) Let $a \in S$. Then there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that

$$a = a\alpha x\beta a$$
 and $a\alpha x = x\beta a$.

Set $e = a\alpha x = x\beta a$. Then $a \in L_e \cap R_e = H_e$ and $e \in E_\alpha(S)$. It follows that H_e is a subgroup of S_α by Theorem 3.1.5.

(2) \Rightarrow (3) Let $a \in S$. By assumption, there exists $\gamma \in \Gamma$ such that a is contained in some subgroup T of S_{γ} . Then we have

$$a\gamma e = a = e\gamma a$$
 and $a\gamma x = e = x\gamma a$ for some $x \in T$,

where e is the identity of T. It follows that $a \mathcal{H} e$, and hence $H_a = H_e$. Note that $e \in E_{\gamma}(S)$. By Theorem 3.1.5, H_e is a subgroup of S_{γ} . This implies that H_a is a subgroup of S_{γ} .

(3) \Rightarrow (1) Let $a \in S$. By assumption, H_a is a subgroup of S_{γ} for some $\gamma \in \Gamma$. Then we have

$$a\gamma e = a = e\gamma a$$
 and $a\gamma x = e = x\gamma a$ for some $x \in T$,

where e is the identity of H_a . Thus we have $a = a\gamma e = a\gamma x\gamma a$. It follows that S is completely regular.

Theorem 3.1.8. Let S be a Γ -semigroup and $a \in S$, $\alpha, \beta \in \Gamma$. Then the following statements hold:

- (1) If a is an (α, β) -completely regular element of S, then H_a is a subgroup of S_{α} and S_{β} with the same identity and the same inverse of a.
- (2) If H_a is a subgroup of S_{α} and S_{β} with the same identity, then a is an (α, β) -completely regular element of S.
- (3) a is an (α, β) -completely regular element of S if and only if H_a is a subgroup of S_{α} and S_{β} with the same identity.

Proof. (1) By assumption, there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that

$$a = a\alpha x\beta a$$
 and $a\alpha x = x\beta a$.

Set $e = a\alpha x = x\beta a$. Then $a \in L_e \cap R_e = H_e$ and $e \in E_\alpha(S) \cap E_\beta(S)$. Thus $H_e = H_a$. But H_e is a subgroup of S_α and S_β by Theorem 3.1.5, it follows that H_a is a subgroup of S_α and S_β containing the identity element e. Then we have

$$a\alpha y = e = y\alpha a$$
 and $a\beta z = e = z\beta a$ for some $y, z \in H_a$.

Now,

$$y = y\alpha e = y\alpha a\beta z = e\beta z = z.$$

Therefore H_a is a subgroup of S_{α} and S_{β} with the same identity and the same inverse of a.

The proof of (2) is trivial, and (3) follows directly from (1) and (2).

3.2 The Relationship between Completely Regular Elements, Green's Relations and Subgroups in Γ-semigroups

In this section, we start by study and extend the properties of completely regular elements which is related to Green's relations on semigroups to Γ -semigroups as follows:

Proposition 3.2.1. Let S be a Γ -semigroup and $a \in S$. If a is a regular element of S, then we have

- (1) $R_a = a\Gamma S \cap R_a\Gamma S\Gamma R_a \cap R_a$,
- (2) $L_a = S\Gamma a \cap L_a \Gamma S\Gamma L_a \cap L_a$,
- (3) $H_a = a\Gamma S\Gamma a \cap L_a\Gamma S\Gamma R_a \cap R_a\Gamma S\Gamma L_a \cap H_a$.

Proof. Assume that a is a regular element of S. Then there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a\alpha x\beta a$.

(1) Let $b \in R_a$. Then a = b or there exist $m, n \in S$ and $\gamma, \delta \in \Gamma$ such that $a = b\gamma m$ and $b = a\delta n$. Thus we have the following two cases:

Case 1: a = b. Then

$$b = a\alpha x\beta a = b\alpha x\beta a \in R_a \Gamma S \Gamma R_a \cap a \Gamma S.$$

Hence $R_a \subseteq a\Gamma S \cap R_a\Gamma S\Gamma R_a \cap R_a$.

Case 2: $a = b\gamma m$ and $b = a\delta n$. Consider,

$$b = a\delta n = a\alpha x\beta a\delta n = b\gamma m\alpha x\beta b.$$

It follows that $b \in a\Gamma S \cap R_a\Gamma S\Gamma R_a$. Hence we have (1).

- (2) It is similar to the proof of (1).
- (3) Let $c \in H_a$. Then $c \in L_a \cap R_a$. We consider the following two cases: Case 1: a = c. Then

$$c = a = a\alpha x\beta a = c\alpha x\beta c$$
,

which implies that $c \in a\Gamma S\Gamma a \cap L_a\Gamma S\Gamma R_a \cap R_a\Gamma S\Gamma L_a$.

Case 2: There exist $s, t, u, v \in S$ and $\zeta, \eta, \theta, \vartheta \in \Gamma$ such that $a = s\zeta c, c = t\eta a,$ $a = c\theta u$ and $c = a\vartheta v$. Now

$$c = a\vartheta v = a\alpha x\beta a\vartheta v = a\alpha x\beta c = a\alpha x\beta t\eta a \in a\Gamma S\Gamma a$$

and

$$c = t\eta a = t\eta a\alpha x\beta a = c\alpha x\beta s\zeta c \in L_a\Gamma S\Gamma R_a \cap R_a\Gamma S\Gamma L_a.$$

Hence we have (3).

Proposition 3.2.2. Let S be a Γ -semigroup and $a \in S$. Then a is a regular element of S if and only if $H_a = R_a \Gamma S \Gamma L_a \cap H_a$.

Proof. Necessity. Assume that a is a regular element of S. Then by Proposition 3.2.1, we have $H_a \subseteq R_a \Gamma S \Gamma L_a \cap H_a$. Obviously, $R_a \Gamma S \Gamma L_a \cap H_a \subseteq H_a$. This implies that $H_a = R_a \Gamma S \Gamma L_a \cap H_a$.

Sufficiency. Notice that $a \in H_a$, we get $a \in R_a \Gamma S \Gamma L_a \cap H_a$. Then there exist $x \in R_a$, $y \in S$, $\alpha, \beta \in \Gamma$, $z \in L_a$ such that

$$a = x\alpha y\beta z. \tag{3.2.1}$$

Since $x \in R_a$, we obtain a = x or there exist $q \in S$ and $\gamma \in \Gamma$ such that $x = a\gamma q$. Since $z \in L_a$, we have a = z or there exist $r \in S$ and $\delta \in \Gamma$ such that $z = r\delta a$. Now, we shall show that a is a regular element of S. We consider the following: Case 1: a = x = z. Then we substitute in (3.2.1), we get $a = a\alpha y\beta a$. Hence a is a regular element of S.

Case 2: a = x and $z = r\delta a$. Then by (3.2.1), we have $a = a\alpha(y\beta r)\delta a$. So a is a regular element of S.

Case 3: $x = a\gamma q$ and a = z. Then by (3.2.1), we obtain $a = a\gamma(q\alpha y)\beta a$. Thus a is a regular element of \tilde{S} .

Case 4: $x = a\gamma q$ and $z = r\delta a$. Then by (3.2.1), we have $a = a\gamma (q\alpha y\beta r)\delta a$. Therefore a is a regular element of S. This completes the proof.

Remark 3.2.3. Recall that an element a is an (α, β) -completely regular element of a Γ-semigroup S if $a = a\alpha x\beta a$ and $a\alpha x = x\beta a$ for some $x \in S$, $\alpha, \beta \in \Gamma$. Then

$$a\alpha a = a\alpha a\alpha x\beta a = a\alpha x\beta a\beta a = a\beta a.$$

Proposition 3.2.4. Let S be a Γ -semigroup and $a \in S$, $\alpha, \beta \in \Gamma$. If a is an (α, β) -completely regular element of S, then $a\alpha a \mathcal{L} a \mathcal{R} a\beta a$ and $a\alpha a \mathcal{R} a \mathcal{L} a\beta a$.

Proof. Assume that a is an (α, β) -completely regular element of S. Then there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a\alpha x\beta a$ and $a\alpha x = x\beta a$. From

$$a = a\alpha x\beta a = a\alpha a\alpha x$$
 and $a = a\alpha x\beta a = x\beta a\beta a$,

we deduce that $a\alpha a \mathcal{R} a$ and $a \mathcal{L} a\beta a$, and by Remark 3.2.3, we see that $a\alpha a \mathcal{L} a$ and $a \mathcal{R} a\beta a$.

Proposition 3.2.5. Let S be a Γ -semigroup, $a \in S$ and $\alpha, \beta \in \Gamma$. If a is an (α, β) -completely regular element of S, then we have

- (1) $R_a = a\zeta a\Gamma S \cap R_{a\zeta a}\Gamma S\Gamma R_{a\zeta a} \cap R_{a\zeta a}$
- (2) $L_a = S\Gamma a \zeta a \cap L_{a\zeta a} \Gamma S\Gamma L_{a\zeta a} \cap L_{a\zeta a}$
- (3) $H_a = L_{a\zeta a} \Gamma S \Gamma R_{a\zeta a} \cap R_{a\zeta a} \Gamma S \Gamma L_{a\zeta a} \cap H_{a\zeta a},$ where $\zeta \in \{\alpha, \beta\}.$

Proof. Let $a \in S$ be such that $a = a\alpha x\beta a$ and $a\alpha x = x\beta a$ for some $x \in S$, $\alpha, \beta \in \Gamma$.

(1) Let $b \in R_a$. Then a = b or there exist $q \in S$ and $\gamma, \delta \in \Gamma$ such that $a = b\gamma q$ and $b = a\delta r$. Thus we have the following two cases:

Case 1: a = b. By Remark 3.2.3,

$$b = a = a\alpha x\beta a = a\alpha a\alpha x \in a\alpha a\Gamma S = a\beta a\Gamma S.$$

Hence $R_a \subseteq a\zeta a\Gamma S$, where $\zeta \in \{\alpha, \beta\}$.

Case 2: $a = b\gamma q$ and $b = a\delta r$. By Remark 3.2.3,

$$b=a\delta r=a\alpha x\beta a\delta r=a\alpha a\alpha x\delta r\in a\alpha a\Gamma S\Gamma S\subseteq a\alpha a\Gamma S=a\beta a\Gamma S.$$

Thus $R_a \subseteq a\zeta a\Gamma S$, where $\zeta \in \{\alpha, \beta\}$.

By Proposition 3.2.1, 3.2.4, and two above cases, we conclude that $R_a \subseteq R_{a\gamma a}\Gamma S\Gamma R_{a\zeta a} \cap R_{a\zeta a}$, where $\zeta \in \{\alpha, \beta\}$. Again, by Proposition 3.2.4, we obtain that the converse holds.

Similarly, we can prove that (2) hold, and by using Proposition 3.2.1 and 3.2.4, we obtain (3) holds. \Box

Proposition 3.2.6. Let S be a Γ -semigroup, $a \in S$ and $\alpha, \beta \in \Gamma$. Then a is an (α, β) -completely regular element of S if and only if $H_a = R_{a\alpha a}\Gamma L_{a\beta a} \cap H_{a\zeta a}$ and $a\alpha a = a\beta a$, where $\zeta \in \{\alpha, \beta\}$.

Proof. Necessity. Let $a \in S$ be such that $a = a\alpha x\beta a$ and $a\alpha x = x\beta a$ for some $x \in S$, $\alpha, \beta \in \Gamma$. Let $y \in H_a$. Then a = y or there exist $q, r, s \in S$ and $\gamma, \delta, \zeta \in \Gamma$ such that $y = a\gamma q$, $y = r\delta a$ and $a = s\zeta y$.

Case 1: a = y. Then $y = a\alpha x\beta a$. Obviously, $a\alpha x \in R_a$, so we have $y \in R_a\Gamma L_a$. By Proposition 3.2.4, $y \in R_{a\alpha a}\Gamma L_{a\beta a}$.

Case 2: $y = a\gamma q$, $y = r\delta a$ and $a = s\zeta y$. Then

$$y = a\gamma q = a\alpha x\beta a\gamma q = a\alpha x\beta y = a\alpha x\beta r\delta a. \tag{3.2.2}$$

Since $a = s\zeta y = s\zeta r\delta a$, we get $r\delta a \in L_a$, and obvious that $a\alpha x \in R_a$. Thus by (3.2.2), we obtain $y \in R_a\Gamma L_a$. By Proposition 3.2.4, we have $y \in R_{a\alpha}\Gamma L_{a\beta a}$. Again, we using Proposition 3.2.4, we obtain the converse hold.

Sufficiency. Note that $a \in H_a$. Then $a \in R_{a\alpha a}\Gamma L_{a\beta a}$. Thus there exist $b \in R_{a\alpha a}$, $\gamma \in \Gamma$, $c \in L_{a\beta a}$ such that

$$a = b\gamma c. (3.2.3)$$

Since $b \mathcal{R} a\alpha a$, we get $b=a\alpha a$ or there exist $q \in S$ and $\zeta \in \Gamma$ such that $b=a\alpha a\zeta q$. Since $c \mathcal{L} a\beta a$, we have $c=a\beta a$ or there exist $r \in S$ and $\theta \in \Gamma$ such that $c=r\theta a\beta a$. We shall show that a is an (α,β) -completely regular element of S. Now

Case 1: $b = a\alpha a$ and $c = a\beta a$. Then by (3.2.3), we obtain $a = a\alpha a\gamma a\beta a$. Set

 $x = a\gamma a$. Then $a = a\alpha x\beta a$. By assumption, we have

 $a\alpha x\alpha a\alpha x=a\alpha a\gamma a\alpha a\alpha a\gamma a=a\alpha a\gamma a\beta a\alpha a\gamma a=a\alpha a\gamma a=a\alpha x.$

Thus we have $a\alpha x \in E_{\alpha}(S)$. Now

 $a\alpha x = a\alpha x \alpha a \alpha x$ $= a\alpha a \gamma a \alpha a \alpha a \gamma a$ $= a\alpha a \gamma a \beta a \alpha a \gamma a$ $= a\alpha a \gamma a$ $= a\alpha a \gamma a \alpha a \gamma a \beta a$ $= a\alpha a \gamma a \beta a \gamma a \beta a$ $= a\gamma a \beta a$ $= a\gamma a \beta a$ $= x\beta a.$

Hence a is an (α, β) -completely regular element of S.

Case 2: $b = a\alpha a$ and $c = r\theta a\beta a$. Then by (3.2.3), we have $a = a\alpha a\gamma r\theta a\beta a$. Set $x = a\gamma r\theta a$. Then $a = a\alpha x\beta a$. By assumption, we obtain

$$a\alpha x\alpha a\alpha x = a\alpha a\gamma r\theta a\alpha a\alpha a\gamma r\theta a$$
$$= a\alpha a\gamma r\theta a\beta a\alpha a\gamma r\theta a$$
$$= a\alpha a\gamma r\theta a$$
$$= a\alpha x.$$

It follows that $a\alpha x \in E_{\alpha}(S)$. Consider

 $a\alpha x = a\alpha x \alpha a\alpha x$ $= a\alpha a\gamma r\theta a\alpha a\alpha a\gamma r\theta a$ $= a\alpha a\gamma r\theta a\beta a\alpha a\gamma r\theta a$ $= a\alpha a\gamma r\theta a$ $= a\alpha a\gamma r\theta a\alpha a\gamma r\theta a\beta a$

$$= a\alpha a\gamma r\theta a\beta a\gamma r\theta a\beta a$$
$$= a\gamma r\theta a\beta a$$
$$= x\beta a.$$

This implies that a is an (α, β) -completely regular element of S.

Case 3: $b = a\alpha a\zeta q$ and $c = a\beta a$. Then by (3.2.3), we have $a = a\alpha a\zeta q\gamma a\beta a$. Set $x = a\zeta q\gamma a$. Then $a = a\alpha x\beta a$. By assumption, we have

$$a\alpha x \alpha a \alpha x = a\alpha a \zeta q \gamma a \alpha a \alpha a \zeta q \gamma a$$
$$= a\alpha a \zeta q \gamma a \beta a \alpha a \zeta q \gamma a$$
$$= a\alpha a \zeta q \gamma a = a\alpha x.$$

Hence $a\alpha x \in E_{\alpha}(S)$. Now we consider the following:

$$a\alpha x = a\alpha x \alpha a\alpha x$$

$$= a\alpha a \zeta q \gamma a \alpha a \alpha a \zeta q \gamma a$$

$$= a\alpha a \zeta q \gamma a \beta a \alpha a \zeta q \gamma a$$

$$= a\alpha a \zeta q \gamma a$$

$$= a\alpha a \zeta q \gamma a \alpha a \zeta q \gamma a \beta a$$

$$= a\alpha a \zeta q \gamma a \beta a \zeta q \gamma a \beta a$$

$$= a\zeta q \gamma a \beta a$$

$$= a\zeta q \gamma a \beta a$$

$$= x\beta a.$$

Therefore a is an (α, β) -completely regular element of S.

Case 4: $b = a\alpha a\zeta q$ and $c = r\theta a\beta a$. Then by (3.2.3), we have $a = a\alpha a\zeta q\gamma r\theta a\beta a$. Set $x = a\zeta q\gamma r\theta a$. Then $a = a\alpha x\beta a$. By assumption, we obtain

$$a\alpha x \alpha a \alpha x = a\alpha a \zeta q \gamma r \theta a \alpha a \alpha a \zeta q \gamma r \theta a$$

$$= a\alpha a \zeta q \gamma r \theta a \beta a \alpha a \zeta q \gamma r \theta a$$

$$= a\alpha a \zeta q \gamma r \theta a = a\alpha x.$$

Thus $a\alpha x \in E_{\alpha}(S)$. Now

 $a\alpha x = a\alpha x\alpha a\alpha x$ $= a\alpha a\zeta q\gamma r\theta a\alpha a\alpha a\zeta q\gamma r\theta a$ $= a\alpha a\zeta q\gamma r\theta a\beta a\alpha a\zeta q\gamma r\theta a$ $= a\alpha a\zeta q\gamma r\theta a$ $= a\alpha a\zeta q\gamma r\theta a\alpha a\zeta q\gamma r\theta a\beta a$ $= a\alpha a\zeta q\gamma r\theta a\beta a\zeta q\gamma r\theta a\beta a$ $= a\zeta q\gamma r\theta a\beta a$ $= a\zeta q\gamma r\theta a\beta a$ $= x\beta a.$

This implies that a is an (α, β) -completely regular element of S, so we can conclude that satisfy the requisite conditions.

Proposition 3.2.7. Let S be a Γ -semigroup, $a, b, c \in S$ and $\gamma \in \Gamma$. If a \mathcal{R} b \mathcal{L} c and $a\gamma c \mathcal{H}$ b, then a \mathcal{L} h \mathcal{R} c for some $h \in E_{\gamma}(S)$.

Proof. Assume that $a \mathcal{R} b \mathcal{L} c$ and $a\gamma c \mathcal{H} b$. Then $a\gamma c \in R_a \cap L_c$. Since $a\gamma c \mathcal{R} a$, we have $a\gamma c = a$ or there exist $m \in S$ and $\alpha \in \Gamma$ such that $a = a\gamma c\alpha m$. Since $a\gamma c \mathcal{L} c$, we get $a\gamma c = c$ or there exist $n \in S$ and $\beta \in \Gamma$ such that $c = n\beta a\gamma c$. Thus we consider the following cases:

Case 1: $a = a\gamma c = c$. Set h = a. Then we have done.

Case 2: $a\gamma c = a$ and $c = n\beta a\gamma c$. Set $h = n\beta a$. Then we get

$$a = a\gamma c = a\gamma n\beta a\gamma c = a\gamma n\beta a = a\gamma h,$$

so $a \mathcal{L} h$. Since $c = n\beta a \gamma c = n\beta a = h$, we obtain

$$h = n\beta a = n\beta a\gamma c = h\gamma c = c\gamma c.$$

Therefore $h \mathcal{R} c$. From

$$h = n\beta a = n\beta a\gamma c = n\beta a\gamma n\beta a\gamma c = n\beta a\gamma n\beta a = h\gamma h$$

it follows that $h \in E_{\gamma}(S)$.

Case 3: $a = a\gamma c\alpha m$ and $a\gamma c = c$. Set $h = c\alpha m$. Then

$$c = a\gamma c = a\gamma c\alpha m\gamma c = c\alpha m\gamma c = h\gamma c,$$

so we obtain $h \mathcal{R} c$. Since $a = a\gamma c\alpha m = c\alpha m = h$, we have

$$h = c\alpha m = a\gamma c\alpha m = a\gamma h = a\gamma a.$$

Hence $a \mathcal{L} h$. Now

$$h = c\alpha m = a\gamma c\alpha m = a\gamma c\alpha m\gamma c\alpha m = c\alpha m\gamma c\alpha m = h\gamma h,$$

which implies that $h \in E_{\gamma}(S)$.

Case 4: $a = a\gamma c\alpha m$ and $c = n\beta a\gamma c$. Set $h = c\alpha m$. Then we have

$$h = c\alpha m = n\beta a\gamma c\alpha m = n\beta a.$$

Thus $c = n\beta a\gamma c = h\gamma c$ and $a = a\gamma c\alpha m = a\gamma h$, and hence $a \mathcal{L} h \mathcal{R} c$. From

$$h\gamma h = n\beta a\gamma c\alpha m = c\alpha m = h,$$

It follows that $h \in E_{\gamma}(S)$. This completes the proof.

We establish and consider the set of an union of all subgroups of Γ -semigroup as follows:

Definition 3.2.8. Let S be a Γ -semigroup. Define the set $G_{\Gamma}(S)$ to be the set of union of all subgroups of S_{γ} , for each $\gamma \in \Gamma$; that is

$$G_{\Gamma}(S) = \cup_{\gamma \in \Gamma} \cup_{T \in \mathcal{S}(\gamma)} T$$

where $S(\gamma) = \{T \mid T \text{ is a subgroup of } S_{\gamma}\}.$

Theorem 3.2.9. Let S be a Γ -semigroup and $a \in S$. Then the following statements are equivalent:

- (1) $a \in G_{\Gamma}(S)$.
- (2) a is an (α, β) -completely regular element of S for some $\alpha, \beta \in \Gamma$.
- (3) a has a (γ, δ) -inverse x with $a\gamma x = x\delta a$ for some $x \in S$, $\gamma, \delta \in \Gamma$.
- (4) $a \in \bigcup_{e \in E_{\Gamma}(S)} H_e$.

Proof. (1) \Rightarrow (2) Assume that $a \in G_{\Gamma}(S)$. Then there exists a subgroup T of S_{γ} for some $\gamma \in \Gamma$ such that $a \in T$. Thus a is an (α, β) -completely regular element of S for some $\alpha, \beta \in \Gamma$ by Theorem 3.1.7.

 $(2)\Rightarrow(3)$ Assume that a is an (α,β) -completely regular element of S for some $\alpha,\beta\in\Gamma$, we have H_a is a subgroup of S_α and S_β with the same identity and the same inverse of a by Theorem 3.1.8 (1). Thus

$$a\alpha x = x\alpha a = a\beta x = x\beta a = e$$
 for some $x \in H_a$,

where e is the identity of H_a . From

$$a = a\alpha e = a\alpha x\beta a$$
 and $x = x\beta e = x\beta a\alpha x$,

so we have $x \in V_{\alpha}^{\beta}(a)$.

(3) \Rightarrow (4) Let $x \in S$, γ and $\delta \in \Gamma$ be such that $a = a\gamma x \delta a$, $x = x \delta a \gamma x$ and $a\gamma x = x \delta a$. Set $e = a\gamma x$. Then $e \in E_{\delta}(S)$, and we also have $a \in H_{e}$.

(4) \Rightarrow (1) It follows directly from Theorem 3.1.5 and 3.1.7, respectively. \Box Theorem 3.2.10. Let S be a Γ -semigroup. Then the following two statements hold:

(1) $G_{\Gamma}(S)$ is the set of all (α, β) -completely regular elements of S for some $\alpha, \beta \in \Gamma$.

(2)
$$G_{\Gamma}(S) = \bigcup_{e \in E_{\Gamma}(S)} H_e$$
.

Proof. It follows directly from Theorem 3.1.5 and 3.1.7.

3.3 $(\mathcal{L}, \mathcal{R}, \mathcal{H})$ -inverses in Γ -semigroups

The following three lemmas will be used for the main body of this section. **Lemma 3.3.1.** Let S be a Γ -semigroup and $a, b \in S$, $\alpha, \beta \in \Gamma$. Then H_b contains (α, β) -inverse of a if and only if there exist $e \in E_{\alpha}(S)$, $f \in E_{\beta}(S)$ such that

$$a \mathcal{L} e \mathcal{R} b \mathcal{L} f \mathcal{R} a$$
.

Moreover, an (α, β) -inverse of a in H_b is unique.

Proof. Necessity. Let $x \in V_{\alpha}^{\beta}(a) \cap H_b$. Then $a = a\alpha x\beta a$, $x = x\beta a\alpha x$, $x \in H_b$. Set $e = x\beta a$ and $f = a\alpha x$. Then $e \in E_{\alpha}(S)$ and $f \in E_{\beta}(S)$. Since $a = a\alpha x\beta a = a\alpha e$ and $e = x\beta a$, we have $a \mathcal{L} e$. Since $a = a\alpha x\beta a = f\beta a$ and $f = a\alpha x$. Hence $f \mathcal{R} a$. Since $x \in H_b$, we have $x \mathcal{H} b$. Then a = x or there exist $u, v, w, z \in S, \delta, \gamma, \theta, \lambda \in \Gamma$ such that $x = w\gamma b$, $b = z\delta x$, $x = b\theta u$ and $b = x\lambda v$. Now, we shall show that $e \mathcal{R} b \mathcal{L} f$. If x = b, then $f = a\alpha x = a\alpha b$ and $b = x = x\beta a\alpha x = x\beta f$. Thus $b \mathcal{L} f$. Also, $e = x\beta a = b\beta a$ and $b = x = x\beta a\alpha x = e\alpha x$. Therefore $e \mathcal{R} b$. Suppose that $x = w\gamma b$, $b = z\delta x$, $x = b\theta u$ and $b = x\lambda v$. Since $f = a\alpha x = a\alpha w\gamma b$ and $b = z\delta x \neq z\delta x\beta a\alpha x = z\delta x\beta f$, we have $b \mathcal{L} f$. Since $e = x\beta a = b\theta u\beta a$ and $b = x\lambda v = x\beta a\alpha x\lambda v = e\alpha x\lambda v$, we have $e \mathcal{R} b$. This implies that $a \mathcal{L} e \mathcal{R} b \mathcal{L} f \mathcal{R} a$.

Sufficiency. Let $e \in E_{\alpha}(S)$ and $f \in E_{\beta}(S)$ be such that

$a \mathcal{L} e \mathcal{R} b \mathcal{L} f \mathcal{R} a$.

Thus $a \mathcal{L} e$ and $f \mathcal{R} a$. By Theorem 2.1.8 (1), (2), we have $a = a\alpha e$ and $a = f\beta a$. Since $a \mathcal{L} e$, we have a = e or there exist $s, t \in S, \gamma, \delta \in \Gamma$ such that $a = s\gamma e$ and $e = t\delta a$. Since $f \mathcal{R} a$, we have a = f or there exist $u, v \in S$ and $\zeta, \eta \in \Gamma$ such that $a = f\zeta u$ and $f = a\eta v$. We shall show that there exists a unique (α, β) -inverse of a in H_b . To show that (α, β) -inverse of a exists in H_b , we consider the following cases:

Case 1: a = e = f. Set x = f. Then $a = a\alpha e = a\alpha a = a\alpha f\beta a$ and $f = f\beta f = f\beta a = f\beta a\alpha e = f\beta a\alpha f$. So we have $x \in V_{\alpha}^{\beta}(a)$. By assumption, we have $x \mathcal{R} b \mathcal{L} x$, so $x \in H_b$.

Case 2: a = e and $a \neq f$. Set x = f. Then $a = a\alpha e = a\alpha a = a\alpha f\beta a$ and $f = f\beta f = f\beta a\eta v = f\beta a\alpha e\eta v = f\beta a\alpha a\eta v = f\beta a\alpha f$. Thus $x \in V_{\alpha}^{\beta}(a)$. From $e = a = f\zeta u = x\zeta u$ and $x = f = a\eta v = e\eta v$, we deduce that $x \in R$ e. By assumption, $x \in R$ $e \in R$ e

Case 3: $a \neq e$ and a = f. Set x = e. Then

$$a = a\alpha e = a\alpha t\delta a = a\alpha t\delta f\beta a = a\alpha t\delta a\beta a = a\alpha e\beta a$$

and

$$e = t\delta a = t\delta f\beta a = t\delta f\beta a\alpha e = t\delta a\beta a\alpha e = e\beta a\alpha e.$$

Thus $x \in V_{\alpha}^{\beta}(a)$. Since $f = a = s\gamma e = s\gamma x$ and $x = e = t\delta a = t\delta f$, we have $f \mathcal{L} x$.

By assumption, $x \mathcal{R} b \mathcal{L} f \mathcal{L} x$. It follows that $x \in H_b$.

Case 4: $a \neq e$ and $a \neq f$. Set $x = e\eta v\beta a\alpha t\delta f$. Then

$$a = a\alpha e = f\beta a\alpha e = a\eta v\beta a\alpha t\delta a = a\alpha e\eta v\beta a\alpha t\delta f\beta a = a\alpha x\beta a$$

and

$$x\beta a\alpha x = e\eta v\beta a\alpha t\delta f\beta a\alpha e\eta v\beta a\alpha t\delta f$$

$$= e\eta v\beta a\alpha t\delta f\beta a\eta v\beta a\alpha t\delta f$$

$$= e\eta v\beta a\alpha t\delta a\eta v\beta a\alpha t\delta f$$

$$= e\eta v\beta a\alpha e\eta v\beta a\alpha t\delta f$$

$$= e\eta v\beta a\eta v\beta a\alpha t\delta f$$

$$= e\eta v\beta f\beta a\alpha t\delta f$$

$$= e\eta v\beta a\alpha t\delta f = x.$$

Hence $x \in V_{\alpha}^{\beta}(a)$. We claim that $x \mathcal{L} f$ and $x \mathcal{R} e$. Now

$$f = a\eta v$$

$$= a\alpha x\beta a\eta v$$

$$= a\alpha e\eta v\beta a\alpha t\delta f\beta a\eta v$$

$$= a\alpha e\eta v\beta a\alpha t\delta f\beta f$$

$$= a\alpha e\eta v\beta a\alpha t\delta f$$

$$= a\alpha x$$

and we get $x = e\delta w\beta a\alpha u\gamma f$, so we have $x \mathcal{L} f$. Since

$$e = t\delta a$$

$$= t\delta a \alpha x \beta a$$

$$= t\delta a \alpha e \eta v \beta a \alpha t \delta f \beta a$$

$$= e \alpha e \eta v \beta a \alpha t \delta f \beta a$$

$$= e \eta v \beta a \alpha t \delta f \beta a$$

$$= e \eta v \beta a \alpha t \delta f \beta a$$

$$= x \beta a$$

and $x = e\delta w\beta a\alpha u\gamma f$, we have $x \mathcal{R} e$. By assumption, we have $x \mathcal{R} e \mathcal{R} b \mathcal{L} f \mathcal{L} x$. This implies that $x \in H_b$.

Finally, we prove the uniqueness. Let $m, n \in V_{\alpha}^{\beta}(a) \cap H_b$. Then $a = a\alpha m\beta a$, $m = m\beta a\alpha m$, $a = a\alpha n\beta a$, $n = n\beta a\alpha n$, and $m, n \in H_b$. Thus $m \mathcal{H} b \mathcal{H} n$ and so $m \mathcal{H} n$. Suppose that $m = p\theta n$ and $m = n\theta q$ for some $p, q \in S, \theta, \theta \in \Gamma$. Then $m = p\theta n = p\theta n\beta a\alpha n = m\beta a\alpha n$ and $m = n\theta q = n\beta a\alpha n\theta q = n\beta a\alpha m$. Thus

$$m = m\beta a\alpha m$$

$$= n\beta a\alpha m\beta a\alpha m\beta a\alpha n$$

$$= n\beta a\alpha m\beta a\alpha n$$

$$= n\beta a\alpha n$$

$$= n.$$

Hence the (α, β) -inverse of a in H_b is unique.

Lemma 3.3.2. Let S be a Γ -semigroup, $a, b \in S$ and $\gamma \in \Gamma$. Then $a\gamma b \in R_a \cap L_b$ if and only if $L_a \cap R_b$ is a subgroup of S_{γ} .

Proof. Necessity. Let $\underline{a}\gamma b \in R_a \cap L_b$. Then $a\gamma b \mathcal{R}$ a and $a\gamma b \mathcal{L}$ b. Since $a\gamma b \mathcal{R}$ a, we have $a\gamma b = a$ or there exist $m, n \in S$ and $\zeta, \eta \in \Gamma$ such that

$$a = a\gamma b\zeta m \text{ and } a\gamma b = a\eta n.$$
 (3.3.1)

Since $a\gamma b \ \mathcal{L} b$, we have $a\gamma b = b$ or there exist $o, p \in S$ and $\theta, \vartheta \in \Gamma$ such that

$$b = o\theta a\gamma b$$
 and $a\gamma b = p\vartheta b$. (3.3.2)

We shall now show that $L_a \cap R_b$ is a subgroup of S_{γ} . Consider

Case 1: $a = a\gamma b = b$. Then $a = a\gamma b = a\gamma a$, so $a \in E_{\gamma}(S)$. By Theorem 3.1.5, H_a is a subgroup of S_{γ} and also have $H_a = L_a \cap R_b$. It follows that $L_a \cap R_b$ is a subgroup of S_{γ} .

Case 2: $a\gamma b = a$ and (3.3.2). Then $b = o\theta a\gamma b = o\theta a$. Thus $b = o\theta a\gamma b = b\gamma b$, so $b \in E_{\gamma}(S)$ and also have $a \mathcal{L} b$. It follows that H_b is a subgroup of S_{γ} by Theorem 3.1.5. Since $a \mathcal{L} b$, we have $L_a = L_b$. Hence $H_b = L_b \cap R_b = L_a \cap R_b$. Therefore $L_a \cap R_b$ is a subgroup of S_{γ} .

Case 3: (3.3.2) and $a\gamma b = b$. Then $a = a\gamma b\zeta m = b\zeta m$. Thus $a = a\gamma b\zeta m = a\gamma a$, so $a \in E_{\gamma}(S)$ and also have $a \mathcal{R} b$, it follows that H_a is a subgroup of S_{γ} by Theorem 3.1.5. Since $a \mathcal{R} b$, we have $R_a = R_b$. Hence $H_a = L_a \cap R_a = L_a \cap R_b$. So $L_a \cap R_b$ is a subgroup of S_{γ} .

Case 4: (3.3.1) and (3.3.2). Set $e = b\zeta m$. Then $e = b\zeta m = o\theta a\gamma b\zeta m = o\theta a$. We see that $H_e = L_a \cap R_b$. From $e\gamma e = o\theta a\gamma b\zeta m = b\zeta m = e$, it follows that $e \in E_{\gamma}(S)$. By Theorem 3.1.5, we have H_e is a subgroup of S_{γ} and so $L_a \cap R_b$ is a subgroup of S_{γ} .

Sufficiency. Suppose now that $L_a \cap R_b$ is a subgroup of S_γ . Let e be an identity of $L_a \cap R_b$. Then $e \in L_a \cap R_b$. It follows that $e \mathcal{L} a$ and $e \mathcal{R} b$. Since $e \mathcal{L} a$, we have e = a or there exist $i \in S, \zeta \in \Gamma$ such that $e = i\zeta a$. Since $e \mathcal{R} b$, we get e = b or there exist $j \in S, \eta \in \Gamma$ such that $e = b\eta j$. Note that $e \in E_\gamma(S)$. Again from $e \in L_a \cap R_b$ it follows that $a = a\gamma e$ and $b = e\gamma b$ by Theorem 2.1.8 (1), (2). We consider the following cases:

Case 1: a = e = b. Since $a = a\gamma e = a\gamma e\gamma e = a\gamma b\gamma e$ and $a\gamma b = a\gamma b$, we have $a\gamma b \mathcal{R} a$. Since $a\gamma b = a\gamma b$ and $b = e\gamma b = e\gamma e\gamma b = e\gamma a\gamma b$, we botain $a\gamma b \mathcal{L} b$. Therefore $a\gamma b \in R_a \cap L_b$.

Case 2: e = a and $e = b\eta j$. Since $a = a\gamma e = a\gamma b\eta j$ and $a\gamma b = a\gamma b$, we get

 $a\gamma b \mathcal{R} a$. Since $a\gamma b = a\gamma b$ and $b = e\gamma b = e\gamma e\gamma b = e\gamma a\gamma b$, we have $a\gamma b \mathcal{L} b$. Hence $a\gamma b \in R_a \cap L_b$.

Case 3: $e = i\zeta a$ and e = b. Since $a = a\gamma e = a\gamma e\gamma e = a\gamma b\gamma e$ and $a\gamma b = a\gamma b$, we obtain $a\gamma b \mathcal{R}$ a. Since $a\gamma b = a\gamma b$ and $b = e\gamma b = i\zeta a\gamma b$, we have $a\gamma b \mathcal{L}$ b. Thus $a\gamma b \in R_a \cap L_b$.

Case 4: $e = i\zeta a$ and $e = b\eta j$. Since $a = a\gamma e = a\gamma b\eta j$ and $a\gamma b = a\gamma b$, we get $a\gamma b \mathcal{R} a$. Since $a\gamma b = a\gamma b$ and $b = e\gamma b = i\zeta a\gamma b$, we have $a\gamma b \mathcal{L} b$. It follows that $a\gamma b \in R_a \cap L_b$. This completes the proof.

Lemma 3.3.3. Let S be a Γ -semigroup and $\alpha, \beta, \gamma \in \Gamma$. If $e \in E_{\alpha}(S)$, $f \in E_{\beta}(S)$, $x \in V_{\alpha}^{\beta}(e\gamma f)$, $g = e\gamma f\alpha x\beta e$, and $h = f\alpha x\beta e\gamma f$, then the following two statements hold:

- (1) $g \in E_{\alpha}(S)$ and $h \in E_{\beta}(S)$.
- (2) $g \mathcal{R} e \gamma f = g \gamma h \mathcal{L} h$.

Proof. (1) From hypothesis, we get

$$g\alpha g = e\gamma f\alpha x\beta e\alpha e\gamma f\alpha x\beta e$$
$$= e\gamma f\alpha x\beta e\gamma f\alpha x\beta e$$
$$= e\gamma f\alpha x\beta e$$
$$= g,$$

so we have $g \in E_{\alpha}(S)$.

From

$$h\beta h = f\alpha x \beta e \gamma f \beta f \alpha x \beta e \gamma f$$
$$= f\alpha x \beta e \gamma f \alpha x \beta e \gamma f$$
$$= f\alpha x \beta e \gamma f$$
$$= h,$$

it follows that $h \in E_{\beta}(S)$.

(2) We claim that $g\gamma h = e\gamma f$. Consider

$$e\gamma f = e\gamma f\alpha x\beta e\gamma f = e\gamma f\alpha x\beta e\gamma f\alpha x\beta e\gamma f = g\gamma h. \tag{3.3.3}$$

We get $g = e\gamma f\alpha x\beta e$ and (3.3.3), so we have $g \mathcal{R} e\gamma f$. Consider

$$h = f\alpha x\beta e\gamma f = f\alpha x\beta g\gamma h. \tag{3.3.4}$$

Note that $g\gamma h = g\gamma h$, and we get that (3.3.4), hence $g\gamma h \mathcal{L} h$. This implies that $g \mathcal{R} e\gamma f = g\gamma h \mathcal{L} h$.

We shall give definitions of $(\mathcal{L}, \alpha, \beta)$ -inverse of a, $(\mathcal{R}, \alpha, \beta)$ -inverse of a and $(\mathcal{H}, \alpha, \beta)$ -inverse of a, respectively.

Definition 3.3.4. Let S be a Γ -semigroup, $a, b \in S$ and $\alpha, \beta \in \Gamma$. Then we say that

- (1) b is an $(\mathcal{L}, \alpha, \beta)$ -inverse of a if $b \in V_L^{(\alpha, \beta)}(a) = V_\alpha^\beta(a) \cap L_a$,
- (2) b is an $(\mathcal{R}, \alpha, \beta)$ -inverse of a if $b \in V_R^{(\alpha, \beta)}(a) = V_\alpha^\beta(a) \cap R_a$,
- (3) b is an $(\mathcal{H}, \alpha, \beta)$ -inverse of a if $b \in V_H^{(\alpha,\beta)}(a) = V_\alpha^\beta(a) \cap H_a$.

The following an our main results in this section.

Theorem 3.3.5. Let S be a Γ -semigroup, $a, b \in S$ and $\alpha, \beta \in \Gamma$. Then the following statements hold:

- $(1) \ V_L^{(\alpha,\beta)}(a) \cap V_L^{(\alpha,\beta)}(b) = \emptyset \ or \ V_L^{(\alpha,\beta)}(a) = V_L^{(\alpha,\beta)}(b).$
- $(2)\ V_R^{(\alpha,\beta)}(a)\cap V_R^{(\alpha,\beta)}(b)=\emptyset\ or\ V_R^{(\alpha,\beta)}(a)=V_R^{(\alpha,\beta)}(b).$
- (3) $V_H^{(\alpha,\beta)}(a) \cap V_H^{(\alpha,\beta)}(b) = \emptyset$ or $V_H^{(\alpha,\beta)}(a) = V_H^{(\alpha,\beta)}(b)$.

Proof. (1) Suppose that $V_L^{(\alpha,\beta)}(a) \cap V_L^{(\alpha,\beta)}(b) \neq \emptyset$, and let $c \in V_L^{(\alpha,\beta)}(a) \cap V_L^{(\alpha,\beta)}(b)$, and $d \in V_L^{(\alpha,\beta)}(a)$. Then $c = c\beta a\alpha c$, $a = a\alpha c\beta a$, $c = c\beta b\alpha c$, $b = b\alpha c\beta b$, $d = d\beta a\alpha d$, $a = a\alpha d\beta a$, and $a \mathcal{L} b \mathcal{L} c \mathcal{L} d$. It follows that $a \mathcal{L} b$ and $c \mathcal{L} d$. Thus we consider the following:

If a = b or c = d, then we have

$$d = d\beta a\alpha d = d\beta b\alpha d$$
 and $b = a = a\alpha d\beta a = b\alpha d\beta b$ (3.3.5)

or

$$d = c = c\beta b\alpha c = d\beta b\alpha d$$
 and $b = b\alpha c\beta b = b\alpha d\beta b$. (3.3.6)

Thus by (3.3.5) or (3.3.6), we obtain that $d \in V_{\alpha}^{\beta}(b)$.

Suppose that $a \neq b$ and $c \neq d$. Then there exist $s, t, u, v \in S, \gamma, \delta, \zeta, \eta \in \Gamma$ such that $a = s\gamma b, b = v\eta a, c = u\zeta d$ and $d = t\delta c$. Now

$$d = d\beta a\alpha d$$

$$= d\beta s\gamma b\alpha d$$

$$= d\beta s\gamma b\alpha c\beta b\alpha d$$

$$= d\beta a\alpha c\beta b\alpha d$$

$$= t\delta c\beta a\alpha c\beta b\alpha d$$

$$= t\delta c\beta b\alpha d$$

$$= d\beta b\alpha d$$

and

$$b = b\alpha c\beta b$$

$$= b\alpha u\zeta d\beta b$$

$$= b\alpha u\zeta d\beta a\alpha d\beta b$$

$$= b\alpha c\beta a\alpha d\beta b$$

$$= v\eta a\alpha c\beta a\alpha d\beta b$$

$$= v\eta a\alpha d\beta b$$

$$= b\alpha d\beta b.$$

Hence $d \in V_{\alpha}^{\beta}(b)$. Therefore $V_{L}^{(\alpha,\beta)}(a) \subseteq V_{L}^{(\alpha,\beta)}(b)$. In the same way, we can prove that $V_{L}^{(\alpha,\beta)}(b) \subseteq V_{L}^{(\alpha,\beta)}(a)$. It follows that $V_{L}^{(\alpha,\beta)}(a) = V_{L}^{(\alpha,\beta)}(b)$.

The next theorem provides the existence of any kind of these inverses for an element of S.

Theorem 3.3.6. Let S be a Γ -semigroup and $a \in S$. Then the following statements are equivalent:

- (1) a is an (α, β) -completely regular element of S for some $\alpha, \beta \in \Gamma$.
- (2) a has an $(\mathcal{H}, \gamma, \delta)$ -inverse for some $\gamma, \delta \in \Gamma$.
- (3) a has an $(\mathcal{L}, \zeta, \eta)$ -inverse for some $\zeta, \eta \in \Gamma$.
- (4) a has an $(\mathcal{R}, \theta, \vartheta)$ -inverse for some $\theta, \vartheta \in \Gamma$.

Proof. Obviously, (2) implies (3) and (2) implies (4).

 $(3)\Rightarrow(1)$ Let $x\in S$, $\zeta,\eta\in\Gamma$ be such that $x\in V_L^{(\zeta,\eta)}(a)$. Then $a=a\zeta x\eta a$, $x=x\eta a\zeta x$ and $x\in L_a$. Set $e=a\zeta x$. Then we have $e\in E_\eta(S)$. By Theorem 3.1.5, we have H_e is a subgroup of S_η . Since $a\ \mathcal{L}\ x$, we have a=x or there exist $u,v\in S$ and $\lambda,\mu\in\Gamma$ such that $a=u\lambda x$ and $x=v\mu a$. Thus we consider the following two cases:

Case 1: a = x. Then it is easy to see that $a \in H_e$. By Theorem 3.1.7, we have a is an (α, β) -completely regular element of S for some $\alpha, \beta \in \Gamma$.

Case 2: $a \neq x$. Then $a = u\lambda x = u\lambda x\eta a\zeta x = u\lambda x\eta e$ and $e = a\zeta x = a\zeta v\mu a$. It follows that $a \mathcal{L} e$. Clearly, $a \mathcal{R} e$. Therefore $e \mathcal{H} a$, and so $a \in H_e$. By Theorem 3.1.7, we obtain that a is an (α, β) -completely regular element of S for some $\alpha, \beta \in \Gamma$. Similarly, we can prove that (4) implies (1) hold.

(1) \Rightarrow (2) Assume that a is an (α, β) -completely regular element of S for some $\alpha, \beta \in \Gamma$. Then by Theorem 3.1.8 (1), we obtain H_a is a subgroup of S_{α} and S_{β} with the same identity and the same inverse of a. Thus

$$a\alpha x = x\alpha a = a\beta x = x\beta a = e$$
 for some $x \in H_a$,

where e is the identity of H_a . From

$$a = a\alpha e = a\alpha x\beta a$$
 and $x = x\beta e = x\beta a\alpha x$,

so we have
$$x \in V_H^{(\alpha,\beta)}(a) \cap H_a$$
.

Corollary 3.3.7. Let S be a Γ -semigroup, $a \in S$ and $\alpha, \beta \in \Gamma$. If a is an (α, β) -completely regular element of S, then the following statements hold:

- (1) a has an $(\mathcal{H}, \alpha, \beta)$ -inverse.
- (2) a has an $(\mathcal{L}, \alpha, \beta)$ -inverse.
- (3) a has an $(\mathcal{R}, \alpha, \beta)$ -inverse.

Proof. In the proof of Theorem 3.3.6 ((1) \Rightarrow (2)), we have (1). As a consequence, we obtain (2) and (3) hold.

As a consequence fix elements α, β in Γ , we have the existence of any kind of these (α, β) -inverses for an element a of S if a is an (α, β) -completely regular element of S. For an element of S, the next theorem provides the sets of all such inverses.

Theorem 3.3.8. Let S be a Γ -semigroup, $a \in S$ and $\alpha, \beta \in \Gamma$. If a is an (α, β) -completely regular element of S, then the following statements hold:

(1)
$$V_L^{(\alpha,\beta)}(a) = \{f\gamma x \mid f \in E_{\alpha}(L_a), \gamma \in \{\alpha,\beta\}\}\$$

= $\{q \in S \mid a = a\alpha(q\delta a) = (a\delta a)\alpha q, \ q = (q\delta a)\alpha q = (q\alpha q)\delta a,$
where $\delta \in \{\alpha,\beta\}\},$

(2)
$$V_R^{(\alpha,\beta)}(a) = \{x\gamma f \mid f \in E_\beta(R_a), \gamma \in \{\alpha,\beta\}\}\$$

= $\{r \in S \mid a = (a\zeta r)\beta a = r\beta(a\zeta a), r = r\beta(a\zeta r) = a\zeta(r\beta r),\$
where $\zeta \in \{\alpha,\beta\}\},$

(3)
$$V_H^{(\alpha,\beta)}(a) = \{x\}$$

= $\{s \in S \mid a = a\eta s \eta a, s = s \eta a \eta s, a \eta s = s \eta a, where \eta \in \{\alpha, \beta\}\},$

where x is both an inverse of a in H_a of S_{α} and S_{β} .

Proof. Let a be an (α, β) -completely regular element. Then by Theorem 3.1.8 (1), we have H_a is a subgroup of S_{α} and S_{β} with the same identity e and the same

inverse x of a. Thus we obtain

$$a\alpha x = x\alpha a = a\beta x = x\beta a = e.$$

(1) Let $y \in V_L^{(\alpha,\beta)}(a)$. Then $a = a\alpha y\beta a$, $y = y\beta a\alpha a$ and $y \in L_a$. Set $f = y\beta a$. Then $a \mathcal{L} f$ and $y \mathcal{R} f$. It follows that $L_a = L_f$ and $R_y = R_f$, respectively. Note that $f \in E_\alpha(S)$. We claim that $H_a = L_f \cap R_x$. Since $a \mathcal{R} x$, we have $R_a = R_x$. Hence $L_f \cap R_x = L_a \cap R_a = H_a$ is a subgroup of S_α and S_β . By Lemma 3.3.2, $f\alpha x$, $f\beta x \in R_f \cap L_x$. We claim that $H_y = R_f \cap L_x$. Since $y \mathcal{L} a \mathcal{L} x$, we have $y \mathcal{L} x$ and so $L_y = L_x$. So we get $H_y = R_y \cap L_y = R_f \cap L_x$. Therefore $f\alpha x$, $f\beta x \in H_y$. Now

$$f\beta x\beta a\alpha f\beta x=f\beta x\beta a\beta x=f\beta e\beta x=f\beta x$$

and

$$a\alpha f\beta x\beta a = a\beta x\beta a = e\beta a = a.$$

Hence $f\beta x \in V_{\alpha}^{\beta}(a) \cap H_{y}$. In the same way we have $f\alpha x \in V_{\alpha}^{\beta}(a) \cap H_{y}$. It follows that $y, f\gamma x \in V_{\alpha}^{\beta}(a) \cap H_{y}$, where $\gamma \in \{\alpha, \beta\}$. Since $a \mathcal{L} f \mathcal{R} y \mathcal{L} e \mathcal{R} a$, we get $|V_{\alpha}^{\beta}(a)| = 1$ by Lemma 3.3.1. Thus $y = f\gamma x$.

Let $q = f\gamma x$, where $f \in E_{\alpha}(L_a)$, $\gamma \in \{\alpha, \beta\}$, and x is both an inverse of a in H_a of S_{α} and S_{β} . We consider the following:

$$q\beta a\alpha q = f\gamma x\beta a\alpha f\gamma x = f\gamma x\beta a\gamma x = f\gamma e\gamma x = f\gamma x = q$$

and

$$a\alpha q\beta a = a\alpha f\gamma x\beta a = a\gamma x\beta a = a\gamma e = a.$$

Hence $q \in V_{\alpha}^{\beta}(a)$. And then

$$a\gamma a\alpha q = a\gamma a\alpha f\gamma x = a\gamma a\gamma x = a\gamma e = a$$

and

$$q\alpha q\gamma a = f\gamma x\alpha f\gamma x\gamma a = f\gamma x\alpha f\gamma e = f\gamma x\gamma e = f\gamma x = q.$$

Obviously, $\{q \in S \mid a = a\alpha(q\delta a) = (a\delta a)\alpha q, q = (q\delta a)\alpha q = (q\alpha q)\delta a$, where $\delta \in \{\alpha, \beta\}\} \subseteq V_L^{(\alpha, \beta)}(a)$, so we can conclude that it satisfies the requisite conditions.

(2) Let $y \in V_R^{(\alpha,\beta)}(a)$. Then $a = a\alpha y\beta a$, $y = y\beta a\alpha a$ and $y \in R_a$. Set $f = a\alpha y$. Then $a \mathcal{R} f$ and $y \mathcal{L} f$. It follows that $R_a = R_f$ and $L_y = L_f$, respectively. Note that $f \in E_{\beta}(S)$. We claim that $H_a = L_x \cap R_f$. Since $a \mathcal{L} x$, we have $L_a = L_x$. Hence $L_x \cap R_f = L_a \cap R_a = H_a$ is a subgroup of S_α and S_β . By Lemma (3.3.2), $x\alpha f, x\beta f \in R_x \cap L_f$. We claim that $H_y = R_x \cap L_f$. Since $y \mathcal{R} a \mathcal{R} x$, we have $y \mathcal{R} x$ and so $R_y = R_x$. So we have $H_y = R_y \cap L_y = R_x \cap L_f$. Therefore $x\alpha f_{\xi} x\beta f \in H_y$. Now

$$x\beta f\beta a\alpha x\beta f = x\beta a\alpha x\beta f = e\alpha x\beta f = x\beta f$$

and

$$a\alpha x\beta f\beta a = a\alpha x\beta a = a\alpha e = a.$$

Hence $x\beta f \in V_{\alpha}^{\beta}(a) \cap H_{y}$. In the same way we have $x\alpha f \in V_{\alpha}^{\beta}(a) \cap H_{y}$. It follows that $y, x\gamma f \in V_{\alpha}^{\beta}(a) \cap H_{y}$, where $\gamma \in \{\alpha, \beta\}$. Since $a \mathcal{L} e \mathcal{R} y \mathcal{L} f \mathcal{R} a$, we have $|V_{\alpha}^{\beta}(a)| = 1$ by Lemma 3.3.1. Thus $y = x\gamma f$.

Let $r = x\gamma f$, where $f \in E_{\beta}(R_a)$, $\gamma \in \{\alpha, \beta\}$, and x is both an inverse of a in H_a of S_{α} and S_{β} . We consider the following:

$$r\beta a\alpha r = x\gamma f\beta a\alpha x\gamma f = x\gamma a\alpha x\gamma f = x\gamma e\gamma f = x\gamma f = r$$

and

$$a\alpha r\beta a = a\alpha x\gamma f\beta a = a\alpha x\gamma a = a\alpha e = a.$$

Hence $r \in V_{\alpha}^{\beta}(a)$. And

$$r\beta a\gamma a=x\gamma f\beta a\gamma a=x\gamma a\gamma a=e\gamma a=a$$

and

$$a\gamma r\beta r = a\gamma x\gamma f\beta x\gamma f = a\gamma x\gamma x\gamma f = e\gamma x\gamma f = x\gamma f = r.$$

Obviously, $\{r \in S \mid a = (a\zeta r)\beta a = r\beta(a\zeta a), r = r\beta(a\zeta r) = a\zeta(r\beta r), where \zeta \in \{\alpha,\beta\}\} \subseteq V_R^{(\alpha,\beta)}(a)$, so we can conclude that it satisfies the requisite conditions.

It is easy to see that the final condition holds.

Corollary 3.3.9. Let S be a Γ -semigroup and $\alpha, \beta \in \Gamma$. If $e \in E_{\alpha}(S) \cap E_{\beta}(S)$, then $V_L^{(\alpha,\beta)}(e) = E_{\alpha}(L_e)$ and $V_R^{(\alpha,\beta)}(e) = E_{\beta}(R_e)$.

Proof. Let $e \in E_{\alpha}(S) \cap E_{\beta}(S)$. Consider

Let $q \in V_L^{(\alpha,\beta)}(e)$. Then $e = e\alpha q\beta e$, $q = q\beta e\alpha q$ and $e \mathcal{L} q$. By Theorem 2.1.8 (1), $q = q\beta e$. Thus we have $q = q\beta e\alpha q = q\alpha q$ and so $q \in E_{\alpha}(S)$. Therefore $q \in E_{\alpha}(L_a)$. Conversely, let $r \in E_{\alpha}(L_e)$. By Theorem 2.1.8 (1), we have

$$r = r\alpha r$$
, $r = r\beta e$ and $e = e\alpha r$.

From $r = r\beta e = r\beta e\alpha r$ and $e = e\alpha r = e\alpha r\beta e$, so we have $r \in V_{\alpha}^{\beta}(e)$. By hypothesis, $r \in L_e$, and hence $r \in V_L^{(\alpha,\beta)}(e)$. Therefore $V_L^{(\alpha,\beta)}(e) = E_{\alpha}(L_e)$.

Finally, let $s \in V_R^{(\alpha,\beta)}(e)$. Then $e = e\alpha s\beta e$, $s = s\beta e\alpha s$, and $e \mathcal{R} s$. By Theorem 2.1.8(2), $s = e\alpha s$. Thus $s = s\beta e\alpha s = s\beta s$. It follows that $s \in E_{\beta}(S)$. Therefore $s \in E_{\beta}(R_e)$. Conversely, let $t \in E_{\beta}(R_e)$. By Theorem 2.1.8 (2), we have

$$t = t\beta t$$
, $t = e\alpha t$ and $e = t\beta e$.

Since $t = e\alpha t = t\beta e\alpha t$ and $e = t\beta e = e\alpha t\beta e$, we have $t \in V_{\alpha}^{\beta}(e)$. By hypothesis, $t \in R_e$, so we have $t \in V_R^{(\alpha,\beta)}(e)$. This implies that $V_e^{(\alpha,\beta)}(e) = E_{\beta}(R_e)$.