CHAPTER I11

COMPLETELY REGULAR ELEMENTS

IN I'SEMIGROUPS

In this chapter we divide in three sections. In the first section we give a
definition of a completely regular I'-semigroup, and we study the relationship be-
tween H-class and completely regular elements. In the second section we establish
the set of union ?f all subgroups of a I'-semigroup. We also study and extend the
properties of completely regular elements which is related to Green’s relations and
subgroups on semigroups to I-semigroups. In the third section we introduce the
concept of an inverse I'-semigroup satisfying the structure of Green’s relations L,
R, H, and we study the relationship between such inverse and completely regular

elements.

3.1 H-class and Completely Regular Elements in a I'-semigroup

For this section, we introduce the definition of a completely regular I'-
semigroup, which is more general definition of [15], and we shall use repeatedly.
We consider and study the relationship between H-class and a completely regular

element in a I'-semigroup, which will be used in the main body for this research.

Definition 3.1.1. Let S be a I'-semigroup and v € I'. Define * on S by, for all
a,b € S, axb= ayb. Then (S,x*) is a semigroup. Such semigroup is denoted by
(S‘Y, *) !

A nonempty subset T" of S is called a subgroup of S, if T is a group under

the operation *.



Definition 3.1.2. Let S be a I'-semigroup and a € S. If a = aazfa and aax =
zfBa for some z € S,a,B8 € I, then an element a is called an (o, 3)-completely

reqular element of S.

A T-semigroup S will be called completely regular if every element of S is

an (a, #)-completely regular element for some o, 3 € I'.

We shall give two examples of completely regular I'-semigroups as follows.

c 0
Example 3.1.3..Let S = { il |a,beR}and T ={|d 0] |c,d € R}.
0 00O
00
We shall show that S is completely regular. It is easy to show that S is a I'-
semigroup under the usual multiplication of matrices. Let A = Z Z 2 € S.
00 00
Casea=b=0. Choosea= |0 0| and 8= |0 0]-
00 00
1 g 1 g
Casea#0and b=0. Wechoosea= [0 0| and 8= |1 0].
00 00
00 00
Casea=0and b #0. Set a = % 0| and g = % 0] whered € R .
00 00
0 00
Casea#0and b#0. Choosea= [0 0| and B = % 0
00 00

Then A = AcdABA and AaA = ABA. Thus A is (a,

~

-completely regular. Hence

S is completely regular.



Exampie 3.1.4. Let S={[1 o], [0 1].[o o], [t 1]}andr={ (1)] , m }.

We shall show that S is completely regular. Clearly, S is a [-semigroup. Set

i 0
a = and 8 = . Consider
0 1

o] =f1 o] [ o] Pl o g 1hﬂ=ho”1b0}

SO [1 0] is (a,a;—éompletel)-/ ;egular. Consider ~
o 1 =[os] "o 1] ['| o tJanafo 1] fo 1] =]o 1] |°| [o 1.

1

we get [0 1] is (0, B)-completely regular.

pq=qup4;pqmpqﬁpq=pqyp¢

we obtain [1 1] is (83, a)-completely regular. Clearly, [() 0] is (a, B)-completely

regular. Thus S is completely regular under the usual multiplication of matrices.
Theorem 3.1.5. Let S be a I'-semigroup and e € E,(S). Then H, is a subgroup

of S,.

Proof. Let a,b € H,. By Theorem 2.1.8 (3), we have
bye=b=eyband aye=a = e’-ya. (3.1.1)

If a = e or b = e, then, by (3.1.1), ayb = eyb = b or ayb = aye = a. This implies
that ayb € H.. Suppose that a # e and b # e. Since a H e and b H e, there exist
w,T,y,2 € S5,6,(,n,0 € I such that

e = wéa, e = (b, e = any and e = bfz.

Since ayb = eyayb and e = any = ayeny = ayblzny, we have ayb € R.. Also, from
ayb = aybye and e = (b = xz(eyb = x{wdayb, so ayb € L.. This implies that
ayb € H,.



Clearly, e is the identity of H,.

Let c € H.. By Theorem 2.1.8 (3), we have cye = ¢ = eye. If ¢ = e, then
cyc = eye = e, so c is an inverse of ¢ in H,. Suppose that ¢ # e. Since ¢ H e, there
exist u,v € S,9,u € I' such that e = udc and e = cuv. Then e = udc = udeyc
and e = cpuv = cyepv. We claim that ude = epv. Now ude = udcuv = epv. Hence

ude is the inverse of ¢ in H,. It follows that H, is a subgroup of 8. O

Corollary 3.1.6. Let S be a I'-semigroup and e € E(S). Then H, is a subgroup
of S, for some vy €.

9
\

Proof. 1t follows directly from Theorem 3.1.5. O

Theorem 3.1.7. Let S be a I'-semigroup. Then the following statements are equiv-
alent:

(1) S is completely regular.

(2) Each element of S lies in a subgroup of S., for some v € T.

(3) Every H-class is a subgroup of S5 for some § € .

Proof. (1)=>(2) Let a € S. Then there exist z € S and «, 3 € T such that
a = aazfa and aax = zfa.

Set e = aax = zfa. Thena € L.NR. = H, and e € E.(S). It follows that H, is
a subgroup of S, by Theorem 3.1.5.
(2)=(3) Let a € S. By assumption, there exists v € I' such that a is

contained in some subgroup 7" of S,. Then we have
aye = a = eya and ayx = e = z-ya for some z € T,

where e is the identity of 7. It follows that a H e, and hence H, = H,. Note that
e € E,(S). By Theorem 3.1.5, H, is a subgroup of S,. This implies that H, is a

subgroup of S,.



(3)=(1) Let a € S. By assumption, H, is a subgroup of S., for some v € T

Then we have
aye = a = eya and ayr = e = zya for some z € T,

where e is the identity of H,. Thus we have a = aye = ayzya. It follows that S is

completely regular. O

Theorem 3.1.8. Let S be a '-semigroup and a € S, o, € . Then the following
statements hold:

(1) Ifa is.an (a, B)-completely regular element of S, then H, is a subgroup
of S and Sp with the same identity and the same inverse of a.

(2) If H, is a subgroup of S, and Sz with the same identity, then a is an
(o, B)-completely regular element of S.

(3) a is an (a, B)-completely regular element of S if and only if H, is a
subgroup of S, and S with the same identity.

Proof. (1) By assumption, there exist z € S and «, 8 € T such that
a = aazfa and aox = zrfa.

Set € = aax = zfa. Then a € L.N R, = H, and e € E,(S) N Ep(S). Thus
H, = H,. But H, is a subgroup of S, and Sz by Theorem 3.1.5, it follows that H,

is a subgroup of S, and Sz containing the identity element e. Then we have
aay = e = yaa and affz = e = zfa for some y, z € H,.
Now,
Yy = yae = yaafz = efz = z.

Therefore H, is a subéroup of S, and Sp with the same identity and the same

inverse of a.

The proof of (2) is trivial, and (3) follows directly from (1) and (2). a
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3.2 The Relationship between Completely Regular Elements, Green’s

Relations and Subgroups in I'-semigroups

In this section, we start by study and extend the properties of com-
pletely regular elements which is related to Green’s relations on semigroups to

[-semigroups as follows:

Proposition 3.2.1. Let S be a I'-semigroup and a € S. If a is a reqular element
of S, then we have

(1) Ry =al'SN R, I'STR, N R,,

(2) L; = STa VLT ST Lty

(3) Hy, =al'STan L,I'STR, N R,I'STL, N H,.

Proof. Assume that a is a regular element of S. Then there exist z € S and
a, 8 € I such that a = aazfa.

(1) Let b € R,. Then a = b or there exist m,n € S and 7,8 € T such that
a = bym and b = adén. Thus we have the following two cases:

Case 1: a =b. Then
b = aazfa = baxfa € R,I'STR, Nal'S.

Hence R, C aI'SN R,I'STR, N R,.

Case 2: a = bym and b = adn. Consider,
b = adn = aazxfadn = bymaz3b.

It follows that b € aI'S N R,I'STR,. Hence we have (1).

(2) It is similar to the proof of (1).

(3) Let c € H,. Then ¢ € L, N R,. We consider the following two cases:
Case 1: a = c. Then

¢ =a = aazxfa = cazfc,

which implies that ¢ € al'STaN L,I'STR, N R,I'STL,.
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Case 2: There exist s,t,u,v € S and (,n,0,9 € I such that a = s(c, ¢ = tna,

a = cfu and ¢ = av. Now
¢ = avv = aazfadv = aazfc = aazfina € al'STa
and
¢ = tna = tnaazfa = cazxfBs(c € L,L'STR, N R,I'STL,.
Hence we have (3). O

Proposition‘ 3.2.2. Let S be a [-semigroup and a € S. Then a is a regular
element of S if and only if H, = R,I'STL, N H,.

Proof. Necessity. Assume that a is a regular element of S. Then by Proposition
3.2.1, we have H, C R, I'ST'L,N H,. Obviously, R,['STL,NH, C H,. This implies
that H, = R,I'STL, N H,.

Sufficiency. Notice that a € H,, we get a € R,I’'STL, N H,. Then there
existz € R,,y€ S, a,8 €T, z € L, such that

a = zoyfz. (3.2.1)

Since z € R,, we obtain a = z or there exist ¢ € S and v € T such that = a~q.
Since z € L,, we have a = z or there exist r € S and § € T such that z = rda.
Now, we shall show that a is a regular element of S. We consider the following:
Case 1: a = ¢ = z. Then we substitute in (3.2.1), we get a = aayBa. Hence a is
a regular element of S.

Case 2: a = z and z = rda. Then by (3.2.1), we have a = aa(yfr)da. So a is a
regular element of S.

Case 3: z = ayq and a = z. Then by (3.2.1), we obtain a = ay(qay)Ba. Thus a
is a regular element of S.

Case 4: z = ayq and z = réa. Then by (3.2.1), we have a = ay(qayfr)da.

Therefore a is a regular element of S. This completes the proof. O
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Remark 3.2.3. Recall that an element a is an (a, 3)-completely regular element

of a I-semigroup S if a = aazfa and aaz = zBa for some z € S, a, 8 € I. Then
aaa = aaaazfa = aazfBafa = afa.

Proposition 3.2.4. Let S be a I'-semigroup and a € S, a,8 € T. Ifa is an

(o, B)-completely reqular element of S, then aca £ a R afBa and aca R a L afa.

Proof. Assume that a is an (a, 3)-completely regular element of S. Then there

exist z € S and a, 3 € T such that a = aazBa and aaz = zfa. From
]

\

a = aazfa = aaaazx and a = aazfBa = zfafa,

we deduce that aca R a and a £ afa, and by Remark 3.2.3, we see that aaa £ a
and a R afa. O

Proposition 3.2.5. Let S be a I'-semigroup, a € S and o, € T. If a is an
(a, B)-completely regular element of S, then we have

(1) Ry = alal’'S N W dll Moz, 1 Raga,

(2) Lo = STaCa N LacoI'ST Ly¢a N Bacas

(3) Ha = La¢al'ST Raca N Ra¢al'ST Lugq N Hoga,
where ¢ € {a, 5}.

Proof. Let a € S be such that a = aazfa and aaz = zfBa forsomez € S, a,8 € I
(1) Let b € R,. Then a = b or there exist ¢ € S and 7,8 € I such that
a = byq and b = adr. Thus we have the following two cases:

Case 1: a = b. By Remark 3.2.3,
b=a = aazfa = aaaazx € aaal'S = afBal'S.

Hence R, C aal'S, where ¢ € {a, 8}.
Case 2: a = byq and b = adér. By Remark 3.2.3,

b = aér = aazfadr = acaazdr € aaal'ST'S C aaal'S = afBalS.
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Thus R, C aCal'S, where ¢ € {a, 8}.
By Proposition 3.2.1, 3.2.4, and two above cases, we conclude that R, C
Royo'ST Ro¢q N Roca, Where ¢ € {a,F}. Again, by Proposition 3.2.4, we obtain
that the converse holds.
Similarly, we can prove that (2) hold, and by using Proposition 3.2.1 and
3.2.4, we obtain (3) holds. O

Proposition 3.2.6. Let S be a I'-semigroup, a € S and o, € T'. Then a is an
(o, B)-completely regular element of S if and only if Hy, = Raaal'Laga N Haca and

aaa = afa, where ¢ € {a,B}.

Proof. Necessity. Let a € S be such that a = aazfBa and aax = zBa for some
z€S, a,fel. Let y € H,. Then a = y or there exist q,r,s € S and v,6,( €T
such that y = avq, y = rda and a = s(y.

Case 1: a = y. Then y = aazfa. Obviously, aax € R,, so we have y € R,I'L,.
By Proposition 3.2.4, y € Raal Laga-

Case 2: y = ayq, y = rda and a = sCy. Then
Yy = ayq = aazfayq = aazxfy = aazfria. (3:2.2)

Since a = sCy = sCréa, we get rda € L,, and obvious that aaz € R,. Thus
by (3.2.2), we obtain y € R,I'L,. By Proposition 3.2.4, we have y € Roael'Laga-
Again, we using Proposition 3.2.4, we obtain the converse hold.

Sufficiency. Note that a € H,. Then a € Rgaal'Logs. Thus there exist

b € Raaa, ¥ €T, ¢ € Lyp, such that
a = byc. (3.2.3)

Since b R aaa, we get b = aaa or there exist ¢ € S and ¢ € T such that b = aaa(q.
Since ¢ L af3a, we have ¢ = afa or there exist r € S and 6 € I such that ¢ = rfafa.

We shall show that a is an (a, 8)-completely regular element of S. Now

Case 1: b = aaa Fmd—-e,&ﬁa—.——Theﬁ—by—é&%B)g we obtain a = aaayafa. Set
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z = aya. Then a = aazBa. By assumption, we have
aazraaar = aaayaaaocaye = aaayafaqaya = aaaya = aQr.
Thus we have aaz € E,(S). Now

aaT = aaraaQT
= aaayaxaoaya
= aaayafacaya
= aaaya
= aaavyaaayafa
= aaavyafBayafa
= avafa

= zfa.

Hence a is an (a, 3)-completely regular element of S.

Case 2: b = aaa and ¢ = rfafa. Then by (3.2.3), we have a = aaayrfafa.

z = ayrfa. Then a = aaxfBa. By assumption, we obtain

aazaaar = aaayrfacacayrfa
= aaayrfafacayrfa
= aaayrfa

= GO,
It follows that aaz € E4(S). Consider

aaxr = aaraaQs
= aaayrfacaaayrfa
= aaayrfafacayrfa
= aaayrfa

= aaayrfaaayrbfafa

14

Set
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= aaayrfafayrfafa
= ayrfafa

= zfa.

This implies that a is an («, 8)-completely regular element of S.
Case 3: b = aaa(q and c = afa. Then by (3.2.3), we have a = aaalqyafBa. Set

z = a(qya. Then a = aazfa. By assumption, we have

aazaaar = axalqyacacalqya

= aaa(qyafaaalqya

= aaalqya = aax.
Hence aax € E,(S). Now we consider the following:

aar = aaraaonx
= aaalqyaaaaalqya
= aaaqyafaaalqya
= aaalqya
= aaalqyaaalqyafa
= aaa(qyaBalqyaBa
= a(qvyaPa

= zfa.

Therefore a is an (a, 3)-completely regular element of S.
Case 4: b = aca(q and ¢ = rfafa. Then by (3.2.3), we have a = aaaqyrfafa.

Set = a(qyrfa. Then a = aazBa. By assumption, we obtain

- aazasazr = aaalqyrfacacalqyrba
= aaalqyrfafaaalqyrfa

= aaa(qyrfa = aaz.



16

Thus aax € E,(S). Now

aaT = aaTaaoT
= aaalqyrfaaaaalqyrfa
= aaalqyrfafacalqyrfa
= aaalqyrfa
= aaalqyrfacalqyrfafa
= aaalqyrfafalqyrbafa
. = alqyrfafa
= 2w

This implies that a is an (o, 3)-completely regular element of S, so we can conclude

that satisfy the requisite conditions. O
Proposition 3.2.7. Let S be a I'-semigroup, a,b,c€ S andy €. IfaR b L c

and ayc H b, then a L h R ¢ for some h € E,(S).

Proof. Assume that a R b £ ¢ and ayc H b. Then ayc € R, N L,. Since ayc R a,
we have ayc = a or there exist m € S and o € T such that a = aycam. Since
avyc L ¢, we get ayc = c or there exist n € S and § € I" such that ¢ = nfayc. Thus
we consider the following cases:

Case 1: a = ayc = c. Set h = a. Then we have done.

Case 2: ayc = a and ¢ = nfayc. Set h = nfa. Then we get
a = a7yc = aynfayc = aynfa = avyh,
so a L h. Since ¢ = nfayc =An,3a = h, we obtain
h =npfa = nfayc = hyc= cyc.
Therefore h R c. From

h = nBa = nBayc = nBaynBayc = nBaynfa = hvyh,
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it follows that h € E,(S).
Case 3: a = aycam and ayc = c. Set h = cam. Then
¢ = ayc = aycamyc = camyc = hyc,
so we obtain A R c. Since a = aycam = cam = h, we have
h = cam = aycam = ayh = aya.
Hence a £ h. Now

h = cam = aycam = aycamycam = camycam = hyh,
3

which implies that h € E.(S).

Case 4: a = aycam and ¢ = nfayc. Set h = cam. Then we have
h = cam = nfaycam = nfa.

Thus ¢ = nfBayc = hyc and a = aycam = avyh, and hence a L h R c. From
hyh = nBaycam = cam = h,

It follows that h € E,(S). This completes the proof. O

We establish and consider the set of an union of all subgroups of I'-semigroup

as follows:

Definition 3.2.8. Let S be a I'-semigroup. Define the set Gr(S) to be the set of
union of all subgroups of S,, for each vy € T" ; that is

Gr(S) = Uyer Ures(n T,
where S(v) = {T | T is a subgroup of S,}.

Theorem 3.2.9. Let S be a I'-semigroup and a € S. Then the following statements
are equivalent:

(1) a € Gr(S).

(2) a is an («a, ,é)-completely reqular element of S for some o, B € T.

(3) a has a (v, 8)-inverse T with ayz = xda for somex € S, 7,6 €T

(4) a € Ueepc(s) He-



18

Proof. (1)=>(2) Assume that a € Gr(S). Then there exists a subgroup T of S., for
some 7y € I' such that @ € T. Thus a is an (o, 3)-completely regular element of .S
for some a, 3 € I' by Theorem 3.1.7.

(2)=(3) Assume that a is an (a, #)-completely regular element of S for some
o, € I', we have H, is a subgroup of S, and Sz with the same identity and the

same inverse of a by Theorem 3.1.8 (1). Thus
aax = zaa = afxr = zfa = e for some r € H,,

where e is the identity of H,. From

L
\

a = aace = aazxfa and = zfe = rfaaz,

so we have z € VP(a).

(3)=>(4) Let z € S, and 6 € I be such that a = ayzda, z = zdayz and
ayx = zda. Set e = ayz. Then e € F§(S), and we also have a € H,.

(4)=(1) It follows directly from Theorem 3.1.5 and 3.1.7, respectively. O

Theorem 3.2.10. Let S be a I'-semigroup. Then the following two statements
hold:

(1) Gr(S) is the set of all (a, B)-completely regular elements of S for some
a,B €.

(2) Gr(S) = UeeEp(S) H,.

Proof. 1t follows directly from Theorem 3.1.5 and 3.1.7. O

3.3 (L,R,H)-inverses in I'-semigroups
The following three lemmas will be used for the main body of this section.

Lemma 3.3.1. Let S be a I'-semigroup and a,b € S, o, € I'. Then H, contains
(o, B)-inverse of a if and only if there exist e € E,(S), f € Eg(S) such that

aLeRLL fRa

Moreover, an (o, B3)-inverse of a in Hy is unique.
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Proof. Necessity. Let x € V5(a) N Hy. Then a = aazfBa, x = zfaaz, € Hy. Set
e = zfa and f = aaz. Then e € E,(S) and f € Eg(S). Since a = aazfa = aae
and e = zfa, we have a L e. Since a = aazfBa = fBa and f = aax. Hence f R a.
Since z € H,, we have z H b. Then a = z or there exist u,v,w,z € S,9,7,0,A € T
such that £ = wvyb, b = 20z, £ = blu and b = zAv. Now, we shall show that
eROL f. If x = b, then f = aax = aab and b = x = zfaaxr = zBf. Thus
b L f. Also, e = zfa = bfa and b = £ = zlfaazx = eax. Therefore e R b.
Suppose that £ = wyb, b = 20z, £ = bu and b = zAv. Since f = aax = aawyb
and b = 20z & z?xﬂaax = 20z f, we have b L f. Since e = zfa = blufa and
b = z v = zfaax v = eaxdv, we have e R b. This impliesthata Le R b L f R a.
Sufficiency. Let e € E,(S) and f € Eg(S) be such that

alLeRbL fRa.

Thus a £ e and f R a. By Theorem 2.1.8 (1), (2), we have a = ace and a = ffa.
Since a L e, we have a = e or there exist s,t € S,v,0 € I such that a = sye and
e = tda. Since f R a, we have a = f or there exist u,v € S and (,n € I" such that
a = fCu and f = anv. We shall show that there exists a unique (, 3)-inverse of
a in Hy. To show that (a, 8)-inverse of a exists in Hj, we consider the following
cases:

Case 1: a =e = f. Set £ = f. Then a = ace = aaa = aaffBa and f =
fBf = fBa = fBaae = fBacaf. So we have z € V5(a). By assumption, we have
TRbL x,s0x € H,.

Case 2: a=eand a # f. Set = f. Then a = aae = aaa = aaffa and
f = fBf = fBanv = fBacenu = fPaaanu = fLaaf. Thus z € VB(a). From
e =a = fCu=zCuand z = f = anu = env, we deduce that z R e. By
assumption, £ R e R b L z. This implies that = € H,.

Case 3: a#eand a = f. Set z = e. Then
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a = aae = aatda = aatd ffa = aatdafa = aaefa
and
e =tda = té fBa = td f faae = tdaface = eface.

Thus z € VP(a). Since f = a = sye = syz and = = e = téa = té f, we have f L .
By assumption, £ R b L fL z. It follows that = € Hp.
Case 4: a # ¢ and a # f. Set z = envBaatdf. Then

\

a = aae = fflaae = anvPaatia = aaenuBaatd fBa = aaxfa

and

zfBaax = enuPBaatd fBacenvBaatd f
= envfBaatd f fanuBaatd f
= envBaatdanvPBaatd f
= envBaaenuvfaatd f
= enuBanuBaatd f
= enuBfLaatd f

= enufaatdf = .
Hence z € V#(a). We claim that z £ f and z R e. Now

f=anv
= aazxfanu
= aaenufaaté f Banu
- = aaenuBaatd fBf
= aaenvfaatd f

= aax
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and we get T = edwBaauyf, so we have z £ f. Since

e = tha
= tdaazfa
= tdaaenuBaaté f Ba
= eaenvfBaatd fBa

envBaatd f Ba

= zfa

3
and z = eéwﬂa&u'yf, we have x R e. By assumption, we havet Re Rb L f L z.

This implies that x € H,.

Finally, we prove the uniqueness. Let m,n € V#(a)NH,. Then a = aamfa,
m = mfBaam, a = aanfa, n = nfaan, and m,n € H,. Thus m H b H n and so
m H n. Suppose that m = pfn and m = ndq for some p,q € S,0,9 € I'. Then

m = pfn = pInfaan = mPaan and m = ndq = nfaan’dq = nBaam. Thus

m = mfBaam
= nBaamBaoamBaan
= nfBaamfBaan
= nfaan

= 1,
Hence the (a, §)-inverse of a in Hj is unique. a

Lemma 3.3.2. Let S be a I'-semigroup, a,b € S andy € I'. Then ayb € R, N Ly
if and only if L, N\ Ry is a subgroup of Sy

Proof. Necessity. Let ayb € R, N Ly. Then ayb R a and ayb L b. Since aydb R a,

we have ayb = a or there exist m,n € S and (,n € I such that

a = ayb{m and ayb = ann. (3.3:1)
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Since ayb L b, we have ayb = b or there exist o,p € S and 0,9 € I" such that
b = ofavyb and ayb = pib. (3.3.2)

We shall now show that L, N Ry is a subgroup of S,. Consider

Case 1: a = ayb = b. Then a = avb = avya, so a € E,(S). By Theorem 3.1.5,
H, is a subgroup of S, and also have H, = L, N R;. It follows that L, N Ry is a
subgroup of S,,.

Case 2: ayb = a and (3.3.2). Then b = ofayb = 0ofa. Thus b = ofayb = byb, so
b € E,(S) and‘alsa have a £ b. It follows that H, is a subgroup of S, by Theorem
3.1.5. Since a L b, we have L, = L,. Hence H, = L, N R, = L, N Ry. Therefore
L, N Ry is a subgroup of S,,.

Case 3: (3.3.2) and ayb = b. Then a = ayb(m = b{m. Thus a = ayb{m = aya, so
a € E,(S) and also have a R b, it follows that H, is a subgroup of S, by Theorem
3.1.5. Since a R b, we have R, = Ry. Hence Hy, = L,N R, = L,N Ry. So L,N R,
is a subgroup of S,.

Case 4: (3.3.1) and (3.3.2). Set e = b{m. Then e = b{m = ofayb{m = ofa. We
see that H. = L,N R;. From eye = ofayb{m = b{m = e, it follows that e € E,(S).
By Theorem 3.1.5, we have H, is a subgroup of S, and so L, N R, is a subgroup of
S,.

Sufficiency. Suppose now that L, N R, is a subgroup of S,. Let e be an
identity of L, N R,‘,. Then e € L, N R,. It follows that e £ a and e R b. Since e L a,
we have e = a or there exist i € S,( € T such that e = ia. Since e R b, we get
e = b or there exist j € S,n € I' such that e = bnj. Note that e € E,(S). Again
from e € L, N R, it follows that a = aye and b = eyb by Theorem 2.1.8 (1), (2).
We consider the following cases:

Case 1: a = e = b. Since a = aye = ayeye = avybye and ayb = ayb, we have
ayb R a. Since ayb = ;7b and b = eyb = eyeyb = eyayb, we botain avyb L b.
Therefore ayb € R, N Ly,

Case 2: e = a and e = bpj. Since a = aye = aybnj and ayb = ayb, we get
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avb R a. .Since ayb = ayb and b = eyb = eyeyb = eyayb, we have ayb L b. Hence
ayb € R, N L.

Case 3: e = i(a and e = b. Since a = aye = ayeye = aybye and ayb = ayb, we
obtain ayb R a. Since ayb = ayb and b = eyb = iCayb, we have ayb L b. Thus
ayb € R, N Ly.

Case 4: e = iCa and e = bnj. Since a = aye = aybnj and ayb = ayb, we get
ayb R a. Since ayb = ayb and b = eyb = iCavyb, we have ayb L b. It follows that
ayb € R, N Ly. This completes the proof. a

3

Lemma 3.3.3. Let S be a [-semigroup and o, B,y € . Ife € E.(S), f €
Es(S), = € VP(evf), g = eyfazPBe, and h = fazPeyf, then the following two
statements hold:

(1) g € E4(S) and h € Eg(S).

(2) g R evf =gvh L h.

Proof. (1) From hypothesis, we get

gag = ey faxPBeaey faxfe
= eyfaxBeyfaxfe
= eyfazxfe
=9,

so we have g € E,(S).

From
hBh = faxzBeyfBfazPBeyf
= fazfBeyfazfeyf
= foxBeyf

=h,

it follows that h € Eg(S).
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(2) We claim that gyh = eyf. Consider

evf = evfazferf = eyfoxfeyfazBeyf = gyh. (3.3.3)

We get g = eyfazfBe and (3.3.3), so we have g R eyf. Consider

h = fazBevyf = fazBgyh. (3.34)

Note that gyh = gvh, and we get that (3.3.4), hence gyh £ h. This implies that
gRevyf=gyh L h. O

We shall give definitions of (L, a, 3)-inverse of a, (R, a, 3)-inverse of a and

(H, a, B)-inverse of a, respectively.

Definition 3.3.4. Let S be a I'-semigroup, a,b € S and «,3 € I'. Then we say
that

(1) bis an (L, a, B)-inverse of a if b € V*(a) = VB(a) N Lq,

(2) bis an (R, a, B)-inverse of a if b € V,ga’ﬂ)(a) =VA(a)NR,,

(3) bis an (H, o, B)-inverse of a if b € V,(,o"ﬁ)(a) = VB(a) N H,.

The following an our main results in this section.

Theorem 3.3.5. Let S be a I'-semigroup, a,b € S and o, 3 € T'. Then the following
statements hold:

(1) Vi (a) n VP (0) = 0 or V™ (a) = VP (b).

2) Vi*(a) n VP (0) = 0 or VP (a) = VP (b).

(3) V(@) nVEA (b)) = 0 or VS (a) = VP ().

Proof. (1) Suppose that V> (a) N VP (b) +# 0, and let ¢ € V{**(a) N V> (1),
and d € VL(a,ﬂ) (a). Then ¢ = cfBaac, a = aacfBa, ¢ = cfbac, b = bacBb, d = dBaad,
a =aadfBa,and a L b L ¢ L d. It follows that a £ b and ¢ £ d. Thus we consider

the following:

If a = b or ¢ = d, then we have

d = dBaad = dfBbad and b = a = aadBa = badSb (3.3.9)
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or
d = ¢ = cfbac = dBbad and b = bacBb = bad[3b. (3.3.6)

Thus by (3.3.5) or (3.3.6), we obtain that d € V/A(b).
Suppose that a # b and ¢ # d. Then there exist s,t,u,v € S,v,6,(,n € T’

such that a = syb, b = vna, ¢ = u(d and d = téc. Now

d = dBaad
= dfsybad
= dfBsybacBbad
= dfaacBbad
= técBaacBbad
= tdcBbad

= dfbad
and

b = bacBb
= bauldpb
= bau(dfBaadBb
= bacBaadBb
= vnaacfaadBb
= vnaadfBb

= badfb.

Hence d € VA(b). Therefore V,Ea’ﬁ ) (a) C VL(O"/j )(b). In the same way, we can prove
that V) (b) € V{*P(a). It follows that V{*?(a) = V/*#)(b).

Similarly, we can prove that (2) and (3) hold. O



26

The next theorem provides the existence of any kind of these inverses for

an element of S.

Theorem 3.3.6. Let S be a I'-semigroup and a € S. Then the following statements
are equivalent:

(1) a is an (a, B)-completely regular element of S for some o, 3 € I'.

(2) a has an (H,~,d)-inverse for some v,6 € T.

(3) a has an (L, ,n)-inverse for some ¢,n € T.

(4) a has an (R, 0,9)-inverse for some 6,9 € I'.

9
\

Proof. Obviously, (2) implies (3) and (2) implies (4).

(3)=(1) Let z € S, ¢,n € I be such that z € V[EC"’)(a). Then a = azna,
z = rnalz and = € L,. Set e = a{z. Then we have e € E,(S). By Theorem 3.1.5,
we have H, is a subgroup of S,. Since a £ z, we have a = z or there exist u,v € §
and A, u € I" such that @ = uAzr and z = vua. Thus we consider the following two
cases:
Case 1: a = z. Then it is easy to see that a € H,. By Theorem 3.1.7, we have a
is an (a, §)-completely regular element of S for some «, 3 € T.
Case 2: a # z. Then a = ulz = ulznalz = ulzrne and e = alz = alvua.
It follows that a £ e. Clearly, a R e. Therefore e H a, and so a € H,. By
Theorem 3.1.7, we obtain that a is an (a, 3)-completely regular element of S for
some a, 3 € I'. Similarly, we can prove that (4) implies (1) hold.

(1)=(2) Assume that a is an (a, #)-completely regular element of S for some
a,B € I'. Then by Theorem 3.1.8 (1), we obtain H, is a subgroup of S, and Sj

with the same identity and the same inverse of a. Thus
aaxr = zaa = affx = zfa = e for some z € H,,
where e is the identity of H,. From
a = aae = aazxfa and z = zfe = zfaax,

so we have z € V) (a) N H,. a
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Corollar.y 3.3.7. Let S be a I'-semigroup, a € S and o, 8 € T. If a is an (a, B)-
completely reqular element of S, then the following statements hold:

(1) a has an (H, a, B)-inverse.

(2) a has an (L, a, B)-inverse.

(3) a has an (R, a, B)-inverse.

Proof. In the proof of Theorem 3.3.6 ((1) = (2)), we have (1). As a consequence,
we obtain (2) and (3) hold. a

3
\

As a consequence fix elements a, 3 in I', we have the existence of any kind
of these (a,3)-inverses for an element a of S if a is an (a, §)-completely regular
element of S. For an element of S, the next theorem provides the sets of all such

inverses.

Theorem 3.3.8. Let S be a I'-semigroup, a € S and o, € T'. If a is an (o, f)-
completely reqular element of S, then the following statements hold:
(1) Vi*(@) = {fyz | f € Ea(La),7 € {0 8}
= {g € S | a = aa(qba) = (ada)ag, ¢ = (¢6a)ag = (9aq)da,
where 6 € {a, B}},
(2) V(@) = {27f | f € Eg(Ra),v € {o, B}}
={r €S| a=(alr)Ba =rp(ala), r = rB(alr) = al(rPr),
where ¢ € {a, A},
(3) Vi (a) = {z}
= {s € S| a=ansna, s=snans, ans = sna,
where n € {a, B}},

where x is both an inverse of a in H, of S, and Sp.

Proof. Let a be an (a, 3)-completely regular element. Then by Theorem 3.1.8 (1),

we have H, is a subgroup of S, and Sz with the same identity e and the same
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inverse z of a. Thus we obtain
aax = rzaa = afr = zfa = e.

(1) Let y € VL(a’ﬁ)(a). Then a = aayBa, y = yBaaa and y € L,. Set
f = yBa. Then a L f and y R f. It follows that L, = Ly and R, = Ry,
respectively. Note that f € E,(S). We claim that H, = Ly N R,. Since a R z, we
have R, = R,. Hence Ly N R, = L, N R, = H, is a subgroup of S, and Ss. By
Lemma 3.3.2, faz, fBx € RyNL,. We claim that Hy, = RyNL,. Sincey L a L z,
we have y £ x and 50 L, = L,. So we get H, = R,N L, = Ry N L,. Therefore
faz, fBz € H,. Now

fBzBaafBz = fPrLafz = fPefr = fPx
and
aafBzrfa = afzfa = efa = a.

Hence ffBz € V2(a) N H, . In the same way we have fax € V#(a) N H,. It follows
that y, fyz € Vf(a) N H,, where v € {a,8}. Sincea L f Ry L e R a, we get
|VB(a)| =1 by Lemma 3.3.1. Thus y = fyz.

Let ¢ = fyz, where f € E,(L,), v € {a, 3}, and z is both an inverse of a

in H, of S, and S3. We consider the following:
qfaag = »fvwﬂaafvw = fryzBayz = frevz = frz =¢
and
aaqfa = aqf'ymﬂa = ayzfa = aye = a.
Hence g € V#(a). And then
ayaag = ayaafyr = ayayr = aye = a
and

qaqya = fyzafyrya = fyzafye = fyzye = fyr =q.
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Obviously, {g € S | a = aa(gda) = (ada)aq, q = (¢géa)aq = (qaq)da, where
0 €{a,f}} C V,Ea’ﬂ ) (a), so we can conclude that it satisfies the requisite conditions.

(2) Let y € Vlga’ﬁ)(a). Then a = aayfa, y = yBaca and y € R,. Set
f =aay. Thena R f and y £ f. It follows that R, = Ry and L, = Ly,
respectively. Note that f € Eg(S). We claim that H, = L, N R;. Since a L z,
we have L, = L,. Hence L, N Ry = L, N R, = H, is a subgroup of S, and Sg.
By Lemma (3.3.2), zaf,z8f € R, N Ly. We claim that H, = R, N Ly. Since
yRaRz, wehave y R x and so Ry = R,. So we have H, = R,NL, = R, N Ly.
Therefore zafix( { € H,. Now

zffPaczBf = zfaazff = eaxBf = zBf
and
aazf ffa = aaxfa = aae = a.

Hence z3f € V2(a) N H, . In the same way we have zaf € V2(a) N H,. It follows
that y, zvyf € VA(a) N H,, where v € {a,3}. Since a L e R y L f R a, we have
|VA(a)| = 1 by Lemma 3.3.1. Thus y = zvf.

Let r = zvf, where f € Eg(R,), 7 € {a,}, and z is both an inverse of a

in H, of S, and Sz. We consider the following:
rBaar = zyflaczyf = zyaczxyf = xyeyf =xzyf =7
and
aarfa = aazyffBa = aarya = aae = a.
Hence 7 € V#(a). And
rﬁa;ya = zyfPlaya = xyaya = eya = a

and

ayrPBr = ayzyfBxyf = ayzyzyf = eyxyf =zvf =1



30

Obviously, {r € S | a = (alr)Ba = rB(ala), r = rB(alr) = al(rPr), where €
{a,8}} C V,({a‘ﬂ )(a), so we can conclude that it satisfies the requisite conditions.

It is easy to see that the final condition holds. a

Corollary 3.3.9. Let S be a I'-semigroup and o, € T'. If e € E,(S) N Eg(S),
then V*P(e) = Eo(L.) and Vi) (e) = Eg(R.).

Proof. Let e € E,(S) N Eg(S). Consider

Let q € V[Ea’ﬂ )(e). Then e = eaqfe, ¢ = gBeaq and e L q. By Theorem
218 (1), q = q‘be. ‘Thus we have q = gBeaq = qaq and so q¢ € E4(S). Therefore
q € E,(L,). Conversely, let 7 € E,(L.). By Theorem 2.1.8 (1), we have

r=rar, r =rfe and e = ear.

From r = rfe = rfear and e = ear = earfe, so we have r € VF(e). By
hypothesis, r € L., and hence r € V,fa’ﬂ ) (e). Therefore V,fa’ﬂ ) (e) = Eu(Le)-
Finally, let s € V,ga’ﬂ)(e). Then e = easfe, s = sfeas, and e R s. By
Theorem 2.1.8(2), s = eas . Thus s = sfeas = sfs. It follows that s € Eg(S).
Therefore s € Eg(R.). Conversely, let t € Eg(R.). By Theorem 2.1.8 (2), we have

t =1t0t, t = eat and e = tfe.

Since t = eat = tBeat and e = tBe = eatfe, we have t € V(e). By hypothesis,
t € R., so we have t € V*”(e). This implies that Vi*A)(e) = Eg(R.). O





