ในงานวิจัยนี้ ใค้ทำการปลูกผลึกบิสมัทเจอร์เมเนต ($\mathrm{Bi}_2\mathrm{GeO}_3$) ซึ่งเป็นสารเฟอร์โรอิเล็กทริก ใร้สารตะกั่วชนิดใหม่ลงในแก้วระบบ $\mathrm{BiO}_{1.5}\text{-GeO}_2\text{-BO}_{1.5}$ ในอัตราส่วนเท่ากับ $0.59\mathrm{BiO}_{1.5}$: $0.23\mathrm{GeO}_2:0.18\mathrm{BO}_{1.5}$ โดยทำการเตรียมด้วยวิธีการหลอมแบบคั้งเดิมใน 2 รูปแบบ คือ วิธีการหลอมโดยใช้ถ้วยแพลทินัม ตามลำคับ จากนั้นจึงนำแก้วที่ได้ไปทำการวิเคราะห์ทางความร้อนด้วยเทคนิค DTA เพื่อหาเงื่อนไขที่เหมาะสมในการปลูกผลึก $\mathrm{Bi}_2\mathrm{GeO}_5$ จากผลการตรวจสอบ พบว่า อุณหภูมิที่เหมาะสมต่อการตกผลึกของแก้วที่หลอมด้วยถ้วยอะลูมินา และแพลทินัม คือ $545^{\circ}\mathrm{C}$ และ $475^{\circ}\mathrm{C}$ ตามลำดับ จากนั้นจึงนำชิ้นงานที่ผ่านการตกผลึกที่อุณหภูมิ ดังกล่าวไปทำการวิเคราะห์เฟสองค์ประกอบที่เกิดขึ้นด้วยเทคนิค XRD และตรวจสอบสมบัติทาง กายภาพ สมบัติทางไฟฟ้า ตลอดจนโครงสร้างจุลภาค ตามลำดับ จากการทดลอง พบว่า แก้วเซรามิก $\mathrm{Bi}_2\mathrm{GeO}_5$ ที่เตรียมได้จากการหลอมด้วยถ้วยหลอมแพลทินัมมีสมบัติทางไฟฟ้าที่สูงกว่าแก้วเซรามิก ที่เตรียมด้วยถ้วยหลอมอะลูมินา โดยมีค่าคงที่ใดอิเล็กทริก ค่าการสูญเสียไดอิเล็กทริก และค่าสภาพ นำไฟฟ้าเท่ากับ $73.9914\ 0.0063$ และ 0.0698 S/m ตามลำดับ

Abstract

204214

In this research, the fabrication of glass ceramics containing lead free Bi₂GeO₅ crystals has been carried out. The Bi₂GeO₅ crystals has orthorhombic structures were precipitated in the BiO_{1.5}-GeO₂-BO_{1.5} glass system. The study is focusing on the region of 59 mol% BiO_{1.5}: 23 mol% GeO₂: 18 mol% BO_{1.5}. The glasses were prepared by conventional melt-quenching method. The composition of glasses was melted separately in an Al₂O₃ and Pt crucible in an air atmosphere. The resulting glasses were analyzed by using Differential thermal analysis (DTA) for determining the crystallization temperature (T_X). After that, the glasses were heat treated at their T_X. The as-received glass ceramics from melted in Al₂O₃ and Pt crucible were investigated in terms of phase composition by X-ray diffraction (XRD). Physical properties, electrical properties and their morphologies of Bi₂GeO₅ glass ceramic from different crucibles were also carried out. It was found that Bi₂GeO₅ glass ceramics from melted in Pt crucible have electrical properties more than that of the Bi₂GeO₅ glass ceramics from melted in Al₂O₃ crucible. Dielectric constant, dielectric loss and conductivity values of the glass ceramics were 73.9914, 0.0063 and 0.0698 S/m, respectively.