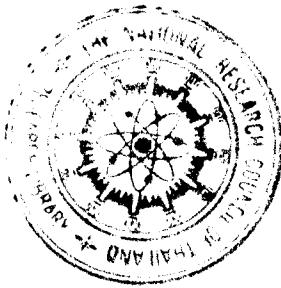


E46989

DEVELOPMENT OF FIBROIN/ALOE GEL EXTRACT FILM FOR APPLICATION IN WOUND HEALING


PAICHIT INPANYA

A Thesis Submitted to the Graduate School of Naresuan University
in Partial Fulfillment of the Requirements
for the Master of Science Degree
in Pharmacology and Biomolecular Sciences (International Program)
May 2011
Copyright 2011 by Naresuan University

b00246670

**DEVELOPMENT OF FIBROIN/ALOE GEL EXTRACT FILM FOR
APPLICATION IN WOUND HEALING**

PAICHIT INPANYA

A Thesis Submitted to the Graduate School of Naresuan University

in Partial Fulfillment of the Requirements

for the Master of Science Degree

in Pharmacology and Biomolecular Sciences (International Program)

May 2011

Copyright 2011 by Naresuan University

This thesis entitled "Development of Fibroin/Aloe Gel Extract Film for Application in Wound Healing" submitted by Paichit Inpanya in partial fulfillment of the requirements for the Master of Science Degree in Pharmacology and Biomolecular Sciences (International Program) is hereby approved.

..... *Nanteetip Limpeanchob*Chair

(Assistant Professor Nanteetip Limpeanchob, Ph.D.)

..... *Jarupa Viyoch*Committee

(Associate Professor Jarupa Viyoch, Ph.D.)

..... *Anan Ounaroon*Committee

(Assistant Professor Anan Ounaroon, Ph.D.)

..... *Sorada Kanokpanont*Committee

(Assistant Professor Sorada Kanokpanont, Ph.D.)

Approved

..... *K. Kanungnit Pupatwibul*

(Assistant Professor Kanungnit Pupatwibul, Ph.D.)

Dean of the Graduate School

May 2011

ACKNOWLEDGEMENT

Firstly, I would like to acknowledge the Thailand Research Fund (TRF), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education and Faculty of Pharmaceutical Sciences, Naresuan University for the financial support of this study.

I would like to express my appreciation and very grateful thanks to my advisor, Associate Professor Dr. Jarupa Viyoch for her valuable guidance and support during my graduate study. She has provided a great opportunity and continuous heartening encouragement throughout my master degree study.

Special thanks go to Head of Pharmacology and Biomolecular Sciences program, Assistant Professor Dr. Nanteetip Limpeanchob for her guidance and encouragement for my master degree study.

I would like to extend my thanks to an educator of Faculty of Pharmaceutical Sciences, Miss Jutamas Kampeerapong, for her guidance.

I would like to thanks all staffs and friends in Faculty of Pharmaceutical Sciences for their help.

Lastly, I would like to give my thanks to my family for their endless love, support and care. They have listened and encouraged throughout my life. I would like to thanks the others, who inspired me but are not named in this acknowledgement.

Paichit Inpanya

Title	DEVELOPMENT OF FIBROIN/ALOE GEL EXTRACT FILM FOR APPLICATION IN WOUND HEALING
Author	Paichit Inpanya
Advisor	Associate Professor Jarupa Viyoch, Ph.D.
Co-Advisor	Assistant Professor Anan Ounaroon, Ph.D.
Academic Paper	Thesis M.Sc. in Pharmacology and Biomolecular Sciences (International Program), Naresuan University, 2010
Keywords	Fibroin, Aloe gel, extract Film, Wound healing

ABSTRACT

E46989

The purpose of the present study was to develop the fibroin film containing aloe gel extract for application in wound healing. Silk fibroin degummed fibers were firstly prepared by dissolving them in calcium chloride solution. The fibroin solution was subsequently lyophilized. DC protein assay kit indicated the protein content in an amount of 94% w/w for the fibroin extract. Additionally, the chemical properties of lyophilized fibroin extract were characterized by SDS-PAGE and FTIR. SDS-PAGE analysis showed the specific band of light chain at approximately 40 kDa, which indicated that the extraction procedure was performed correctly. FTIR spectra of the isolated fibroins showed the silk I structure, which indicates its property for the water-soluble state and easily converts to β -sheet structure. For aloe gel extraction, protein containing in aloe gel solution initially precipitated with $(\text{NH}_4)_2\text{SO}_4$ until achieve 35% saturation [of $(\text{NH}_4)_2\text{SO}_4$] at 4 °C. The remaining fraction of aloe gel solution was then precipitated until $(\text{NH}_4)_2\text{SO}_4$ reaching to 55% saturation at 4 °C. SDS-PAGE and FTIR were used to characterize the chemical properties of lyophilized aloe gel extracts obtaining from both 35% and 55% saturation of $(\text{NH}_4)_2\text{SO}_4$. The amount of protein contents were 6.8 and 4.8% w/w for 35% $(\text{NH}_4)_2\text{SO}_4$ and 55% $(\text{NH}_4)_2\text{SO}_4$ protein fractions, respectively. SDS-PAGE of isolated aloe gel extracts provided the bands of molecular weight of glycoprotein at approximately 22, 24, and 35 kDa.

The lyophilized fibroin and aloe gel extracts were dissolved in lactic acid (pH 3.8-4.0) prior to prepare the developed film by casting technique. The fibroins were

blended either with aloe gel extracted from 35% or 55% saturation of $(\text{NH}_4)_2\text{SO}_4$. The developed films were prepared into three formulations including 1) fibroin 2% w/v (F2%), 2) fibroin 1.95% w/v blended with 0.05% w/v of aloe gel extract with 35% $(\text{NH}_4)_2\text{SO}_4$ (F1.95%/A35), and 3) fibroin 1.95% w/v blended with 0.05% w/v of aloe gel extract with 55% $(\text{NH}_4)_2\text{SO}_4$ (F1.95%/A55). All formulations of the developed films were studied for the protein content, SDS-PAGE, physicochemical properties, stability properties, and biological studies. Tensile strength values of all developed films were in range of 21-23 MPa. Moreover, the water uptake and swelling ratios of the developed films provided in range of 37-43% and 0.6-0.8 times of their dry weights, respectively. These films showed the retain ability that is important for application in wound healing. The biological studies of developed films were carried out on the human primary skin fibroblasts. Cell viability, cell adhesion, and cell migration on the developed films are quantified by XTT assay. The biological functions of the fibroblasts on the developed film were investigated by determination of the expression of α -SMA and bFGF by immunocytochemistry. The obtained results showed that all developed films were non-toxic to human primary fibroblasts and acted as a good promoting matrix for cell growth.

Streptozotocin induced-diabetic rats were used as animal model to investigate the potential of the developed film on wound healing capability. All developed films were sterilized by ultraviolet light exposure under laminar cabinet for 16 hrs before application to the wound healing on the induced-diabetic rats. Diabetic rat with non-treatment, a small dented wound was still appeared indicating that epithelialization was not well completed. Interestingly, the wounds were completely healed at day 21 after treatment with all developed films. Histology study at day 21 indicated that the dermis layer of diabetic animals treated with the developed film especially F1.95%/A35 film had an increase of collagen content. The fibers showed similar fibrillar arrangement as seen in the normal rat. In additional, the fibroblast cells were regular arrangement and loosely distribution. It provided indications that it could recover the wound nearly to normal skin. Taken together, this study reveals the potential of the blended fibroin/aloe gel extract film for application in would healing.

LIST OF CONTENTS

Chapter	Page
I INTRODUCTION.....	1
The rational for the study.....	1
The objectives of the study.....	3
The expected output of the study.....	4
The expected outcome of the study.....	4
 II REVIEWS OF RELATED LITERATURE AND RESEARCH.....	 5
Silk.....	5
Fibroin.....	6
Sericin.....	8
<i>Aloe vera</i>	9
Wound healing.....	14
Wound healing processes.....	15
Normal wound or acute wound healing.....	18
Delayed wound or chronic wound healing.....	19
Fibroblast and myofibroblast in wound healing.....	21
Biomaterials and skin tissue engineering.....	22
 III RESEARCH METHODOLOGY.....	 25
Materials.....	25
Animal.....	27
Cell culture.....	27
Instruments.....	27
Methodology.....	29
Development of the blended fibroin/aloe gel extracts film.....	29
Isolation of the silk fibroin from silkworm cocoon.....	29

LIST OF CONTENTS (CONT.)

Chapter		Page
	Protein determination and characterization of the isolated fibroin.....	29
	Protein determination of the isolated fibroin.....	29
	SDS-PAGE for determination of the pattern of protein molecular weight.....	30
	Fourier transformed infrared spectroscopy (FTIR) analysis of the isolated fibroin.....	30
	Isolation of the aloe gel.....	30
	Protein determination and characterization of the isolated aloe gel extract.....	31
	Protein determination of the aloe gel extract.....	31
	SDS-PAGE for determination of the pattern of protein molecular weight.....	31
	Fourier transformed infrared spectroscopy (FTIR) analysis of the aloe gel extract.....	31
	Preparation of the blended fibroin/aloe gel extracts film.....	31
	Evaluation the physicochemical properties of the developed films.....	32
	Protein determination of the developed films.....	32
	Investigation of the surface and cross-section morphologies of the developed films.....	33
	Mechanical properties of the developed films.....	33
	Swelling properties of the developed films.....	33
	Stability properties of the developed films.....	34
	The effects of the developed films on the biological functions of human dermal fibroblasts.....	34
	Cell culture.....	34

LIST OF CONTENTS (CONT.)

Chapter		Page
	Sterilization of the developed films.....	34
	Cell viability test.....	34
	Cell adhesion test.....	35
	Cell migration test.....	35
	Morphology of cell attached on the developed films.....	35
	Biological function of fibroblast cell on the developed films.....	36
	The determination of the efficiency of the developed films for wound healing in streptozotocin-induced diabetic rats.....	36
	Experimental animals.....	37
	The diabetes induction in animals.....	37
	Wound creation.....	37
	Treatment.....	37
	Wound evaluation.....	37
	Statistical analysis.....	38
IV	RESULTS AND DISCUSSION.....	39
	Development of the blended fibroin/aloe gel extract films.....	39
	Isolation of the silk fibroin from silkworm cocoon.....	39
	Protein determination and characterization of the isolated fibroin.....	40
	Protein determination of the isolated fibroin.....	40
	SDS-PAGE for determination of the pattern of protein molecular weight.....	40
	Fourier transformed infrared spectroscopy (FTIR) analysis of the isolated fibroin.....	41
	Isolation of the aloe gel.....	42

LIST OF CONTENTS (CONT.)

Chapter	Page
Protein determination and characterization of the isolated aloe gel extract.....	43
Protein determination of the aloe gel extract.....	43
SDS-PAGE for determination of the pattern of protein molecular weight.....	43
Fourier transformed infrared spectroscopy (FTIR) analysis of the aloe gel extract.....	45
Characteristics of the blended fibroin/aloe gel extract film.	47
The physicochemical properties of the developed films.....	48
Protein content of the developed films.....	48
The surface and cross-section morphologies of the developed films.....	49
Mechanical properties.....	51
Swelling properties.....	52
Stability properties.....	53
The effects of the developed films on the biological functions of human primary fibroblasts.....	65
Cell culture.....	65
Sterilization of the developed films.....	65
Cell viability.....	66
Cell adhesion.....	71
Cell migration.....	72
Morphology of cell attached on the developed film.....	75
Biological functions of fibroblast cell on the developed film.....	77
The determination of efficiency of the developed film for wound healing in streptozotocin-induced diabetic rats.....	79

LIST OF CONTENTS (CONT.)

Chapter		Page
	Wound evaluations.....	79
	Histology study.....	81
V CONCLUSIONS.....		84
REFERENCES.....		86
APPENDIX.....		100
BIOGRAPHY.....		149

LIST OF TABLES

Table	Page
1 Components of silk from <i>Bombyx mori</i>	5
2 Cell and tissue application of silk fibroin scaffolds.....	8
3 Summary of the chemical composition of <i>A. vera</i> leaf pulp and exudates	11
4 Pharmacological activities of <i>A. vera</i> components.....	12
5 Mechanisms of action of <i>A. vera</i>	13
6 Important difference between acute and chronic wounds.....	20
7 Formulation of the developed films prepared from blending the fibroin with aloe gel extracts.....	32
8 Wavenumbers (cm ⁻¹) and chemical structure of the IR bands of the isolated fibroin and references fibroin.....	41
9 Wavenumbers (cm ⁻¹) and chemical structure of the IR bands of the isolated aloe gel extracts and reference.....	47
10 Absorbance at 750 nm of Bovine Albumin Serum's standard for fibroin.....	101
11 Absorbance at 750 nm of fibroin and protein content.....	102
12 Absorbance at 750 nm of Bovine Albumin Serum's standard for aloe gel extract.....	104
13 Absorbance at 750 nm of aloe gel extract and protein content.....	105
14 Absorbance at 750 nm of Bovine Albumin Serum's standard for developed film.....	107
15 Protein content in 1.0 milligram of the developed films.....	109
16 Tensile strength and elongation at break (%) of the developed films.....	110
17 Swelling properties of the freshly prepared developed films.....	111
18 Protein content of the F2% film at 4°C (N=3).....	113
19 Protein content of the F2% film at room temperature (N=3).....	114
20 Protein content of the F2% film at 45°C (N=3).....	115
21 Protein content of the F1.95%/A35 at 4°C (N=3).....	116
22 Protein content of the F1.95%/A35 at room temperature (N=3).....	117

LIST OF TABLES (CONT.)

Table	Page
23 Protein content of the F1.95%/A35 at 45°C (N=3).....	118
24 Protein content of the F1.95%/A55 at 4°C (N=3).....	119
25 Protein content of the F1.95%/A55 at room temperature (N=3).....	120
26 Protein content of the F1.95%/A55 at 45°C (N=3).....	121
27 Tensile strength and elongation at break (%) of the F2% film at 4°C (N=3).....	123
28 Tensile strength and elongation at break (%) of the F2% film at room temperature (N=3).....	124
29 Tensile strength and elongation at break (%) of the F2% film at 45°C (N=3).....	125
30 Tensile strength and elongation at break (%) of the F1.95%/A35 at 4°C (N=3).....	126
31 Tensile strength and elongation at break (%) of the F1.95%/A35 at room temperature (N=3).....	127
32 Tensile strength and elongation at break (%) of the F1.95%/A35 at 45°C (N=3).....	128
33 Tensile strength and elongation at break (%) of the F1.95%/A55 at 4°C (N=3).....	129
34 Tensile strength and % elongation at break of the F1.95%/A55 at room temperature (N=3).....	130
35 Tensile strength and % elongation at break of the F1.95%/A55 at 45°C (N=3).....	131
36 Swelling ratio and water uptake ability of F2% film at 4°C (N=3).....	132
37 Swelling ratio and water uptake ability of F2% film at room temperature (N=3).....	133
38 Swelling ratio and water uptake ability of F2% film at 45°C (N=3)....	134
39 Swelling ratio and water uptake ability of F1.95%/A35 film at 4°C (N=3).....	135

LIST OF TABLES (CONT.)

Table	Page
40 Swelling ratio and water uptake ability of F1.95%/A35 film at room temperature (N=3).....	136
41 Swelling ratio and water uptake ability of F1.95%/A35 film at 45°C (N=3).....	137
42 Swelling ratio and water uptake ability of F1.95%/A55 film at 4°C (N=3).....	138
43 Swelling ratio and water uptake ability of F1.95%/A55 film at room temperature (N=3).....	139
44 Swelling ratio and water uptake ability of F1.95%/A55 film at 45°C (N=3).....	140
45 Viability of human primary fibroblasts (passage 7) at duration of time.	142
46 Adhesions of human primary fibroblasts (Passage 7) at duration of time.....	144
47 Absorbance at 490 nm and percentage of cell migrated of human primary fibroblasts (Passage 7).....	145
48 Wound sizes of normal rats and diabetic rats without treatment and treated with developed films at duration of time.....	147

LIST OF FIGURES

Figure	Page
1 Diagrammatic representation of attributes of fibroin.....	7
2 Diagrammatic representation of attributes of sericin.....	9
3 A schematic representation of skin.....	15
4 Major cells and their effects on normal wound healing.....	19
5 Raw material (silkworm cocoons) (A), and lyophilized fibroin extract (B).....	39
6 SDS-PAGE of protein marker and the isolated fibroin.....	40
7 FTIR spectra of the reference fibroin from previous study and the isolated fibroin.....	42
8 Fresh leaves of <i>A. vera</i> (A), and lyophilized aloe gel extract (B).....	43
9 SDS-PAGE of protein marker and aloe gel extract with 35% ammonium sulfate precipitated fraction and with 55% ammonium sulfate precipitated fraction.....	45
10 IR spectra of the isolated aloe gel extract with 35% ammonium sulfate precipitated and with 55% ammonium sulfate precipitated.....	46
11 The developed films prepared from the blending between fibroin and aloe gel extract. A = the developed film containing 2% w/v fibroin (F2%), B = the developed film containing 1.95% w/v fibroin blended with 0.05% w/v aloe gel extract with 35% $(\text{NH}_4)_2\text{SO}_4$ precipitated (F1.95%/A35), and C = the developed film containing 1.95% w/v fibroin blended with 0.05% w/v aloe gel extract with 55% $(\text{NH}_4)_2\text{SO}_4$ precipitated (F1.95%/A55).....	48
12 Protein content in 1.0 milligram of the developed films. The values are given as mean \pm SD ($N=3$).....	49

LIST OF FIGURES (CONT.)

Figure	Page
13 The surface and cross-section morphologies of the developed films at 2KX magnification. Figure A, C, and E were surface morphology of the F2% film, F1.95%/A35 film, and F1.95%/A55 film, respectively. Figure B, D, and F were side view morphology of the F2% film, F1.95%/A35 film and F1.95%/A55 film, respectively.....	50
14 Tensile strength values of the developed films. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from F2% film at $p<0.05$	51
15 Percentage of elongation at break of the developed films. The values are given as mean \pm SD ($N=3$).....	52
16 Swelling ratios of the developed films. The values are given as mean \pm SD ($N=3$).....	52
17 Percentage of water uptake of the developed films. The values are given as mean \pm SD ($N=3$).....	53
18 The developed film showed the retainability property when immersed in water for 24 hrs.....	53
19 Protein content in 1.0 milligram of the developed films at 4°C. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	54

LIST OF FIGURES (CONT.)

Figure	Page
20 Protein content in 1.0 milligram of the developed films at room temperature. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	54
21 Protein content in 1.0 milligram of the developed films at 45°C. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	55
22 Tensile strength values of the developed films at 4°C. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	56
23 Tensile strength values of the developed films at room temperature. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	56

LIST OF FIGURES (CONT.)

Figure	Page
24 Tensile strength values of the developed films at 45°C. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	57
25 Elongation at break (%) of the developed films at 4°C. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	57
26 Elongation at break (%) of the developed films at room temperature. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	58
27 Elongation at break (%) of the developed films at 45°C. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	58

LIST OF FIGURES (CONT.)

Figure	Page
28 Swelling ratios of the developed films at 4°C The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	59
29 Swelling ratios of the developed films at room temperature. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	60
30 Swelling ratios of the developed films at 45°C. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	60
31 Water uptakes ability (%) of the developed films at 4°C. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	61

LIST OF FIGURES (CONT.)

Figure	Page
32 Water uptakes ability (%) of the developed films at room temperature. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	62
33 Water uptakes ability (%) of the developed films at 45°C. The values are given as mean \pm SD ($N=3$). * Statistically significant difference from freshly prepared F2% film, † statistically significant difference from freshly prepared F1.95%/A35 film, and § statistically significant difference from freshly prepared F1.95%/A55 film ($p<0.05$).....	62
34 Protein pattern of F2% film at 60 days.....	63
35 Protein pattern of F1.95%/A35 film at 60 days.....	64
36 Protein pattern of F1.95%/A55 film at 60 days.....	64
37 Morphology of human primary skin fibroblasts at passage 0 (A) and passage 7 (B) culture on tissue culture flask.....	65
38 Viability of human primary fibroblasts (Passage 7) at duration of time. Data are present as absorbance value at 490 nm (mean \pm SD, $N=3$).....	66
39 Viability of human primary fibroblasts (Passage 7) at duration of time. Data are present in percentage (mean \pm SD, $N=3$).....	67
40 Cell morphology at duration of time on the developed film (20X magnification).....	68
41 Adhesion of human primary fibroblasts (Passage 7) at duration of time. Data are present as absorbance value at 490 nm (mean \pm SD, $N=3$)..	71

LIST OF FIGURES (CONT.)

Figure	Page
42 Adhesion of human primary fibroblasts (Passage 7) at duration of time. Data are present in percentage (mean \pm SD, $N=3$).....	71
43 Cell adhered on the plastic culture well and developed films at 3 hrs after seeding (magnification of 20X). A = cell adhered on plastic culture well, B = cell adhered on the F2% film, C = cell adhered on F1.95%/A35 film, D = cell adhered on F1.95%/A55 film.....	72
44 Percentage of cell migration at 3 days after adding Mitomycin C. The values are given as mean \pm SD ($N=3$).....	73
45 Cell migrated from plastic culture well to the developed film at 10X magnification (3 days after treated with Mitomycin C).....	74
46 Human primary fibroblasts adhered on the plastic culture plate and developed films were observed by SEM. Figure A, B, C, and D were the cells attached on control plastic culture, F2% film, F1.95%/A35 film, and F1.95%/A55 film at day 3 (1KX magnification), respectively. Figure E, F, G, and H were the cells attached on control plastic culture, F2% film, F1.95%/A35 film, and F1.95%/A55 film at day 7 (250X magnification), respectively..	76
47 Immunocytofluorescence for α -SMA and bFGF of human primary fibroblasts (Passage 7) on plastic well culture and developed films at day 7. Figure A, B, C and D were α -SMA on the control, F2%, F1.95%/A35 and F1.95%/A55 film, respectively. Figure E, F, G and H were bFGF on the control, F2%, F1.95%/A35 and F1.95%/A55 film, respectively (20X magnification).....	78
48 Wound skins of normal rat and streptozotocin-induced diabetic rat without treatment, treated with the F2% film, F1.95/A35% film, and F1.95/A55% film at duration of time.....	80

LIST OF FIGURES (CONT.)

Figure	Page
49 Area (mm ²) of rat wounds at 0, 7 and 14 days after topical treated with F2%, F1.95%/A35 and F1.95%/A55 film compared with diabetic rat without treatment. The values are mean \pm SD for 3 different observations. * Statistically significant difference from diabetic wounds ($p<0.05$).....	81
50 Histology of wounds stained with hematoxylin-eosin (H&E), on day 21 after wounding. Figure A = normal rat/non treatment, B = induced diabetic rat/non-treatment, C = induced diabetic rat/treated with F2% film, D = induced diabetic rat/treated with F1.95%/A35 film, and E = induced diabetic rat/treated with F1.95%/A55 film, at 10X magnification. Figure F = normal rat/non-treatment, G = induced diabetic rat/non-treatment, H = induced diabetic rat/treated with F2% film, I = induced diabetic rat/treated with F1.95%/A35 film, and J = induced diabetic rat/treated with F1.95%/A55 film, at 40X magnification.....	83
51 Calibration curve of Bovine Albumin Serum's standard for fibroin.....	102
52 Calibration curve of Bovine Albumin Serum's standard for aloe gel extract.....	105
53 Calibration curve of Bovine Albumin Serum's standard for the developed film.....	108

ABBREVIATIONS

2-D	=	two dimensional
3-D	=	three dimensional
α	=	alpha
β	=	beta
γ	=	gamma
μm	=	micrometer
μl	=	microliter
bFGF	=	basic fibroblast growth factor
$^{\circ}\text{C}$	=	degree Celsius
CH_3COO	=	acetyl
cm^{-1}	=	inverse centimeter
cm^2	=	square centimeter
Cont.	=	continued
CO_2	=	carbon dioxide
COOH	=	carboxyl
Da	=	dalton
dl	=	deciliter
DMEM	=	Dulbecco's Modified Eagle Medium
DNA	=	Deoxyribonucleic acid
ECM	=	extracellular matrix
EDTA	=	ethylenediaminetetraacetic acid
EGF	=	epidermal growth factor
FBS	=	fetal bovine serum
FITC	=	fluorescein isothiocyanate
FTIR	=	Fourier transform infrared spectroscopy
g	=	gram
GAG	=	glycosaminoglycan
H-chain	=	heavy-chain
hr	=	hour(s)

ABBREVIATIONS (CONT.)

IGF	=	insulin like growth factor
IgG	=	immunoglobulin G
IR	=	infrared spectroscope
KBr	=	potassium bromide
kDa	=	kilodalton
kg	=	kilogram
KGF	=	keratinocyte growth factor
l	=	liter
L-chain	=	light-chain
M	=	molar
mg	=	milligram
min	=	minute
ml	=	milliliter
mm	=	millimeter
mm ²	=	square millimeter
mM	=	millimolar
MPa	=	megapascal
MTT	=	thiazolyl blue tetrazolium bromide or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
MWCO	=	molecular weight cut-off
N	=	newton
(NH ₄) ₂ SO ₄	=	ammonium sulfate
nm	=	nanometer
NO	=	nitric oxide
OH	=	hydroxyl
PBS	=	phosphate buffer saline
PBST	=	phosphate buffer saline containing 0.1% Triton-X 100
PDGF	=	platelet-derived growth factor
PDGF	=	platelet-derived growth factor

ABBREVIATIONS (CONT.)

pH	=	power of hydrogen ion concentration
RGD	=	Arginine-Glycine-Aspartic acid
rpm	=	round per minute
SD	=	standard deviation
SDS-PAGE	=	sodium dodecyl sulphate-polyacrylamide gel electrophoresis
sec	=	second(s)
SEM	=	Scanning Electron Microscope
SM	=	smooth muscle
SMA	=	smooth muscle actin
TGF	=	transforming growth factor
TNF	=	tumor necrosis factor
UV	=	ultraviolet
VEGF	=	vascular endothelial growth factor
V	=	volt
v/v	=	volume by volume
w/v	=	weight by volume
w/w	=	weight by weight
XTT	=	sodium 3'[-1-(phenylaminocarbonyl)-3,4-tatrazolium]-bis (4-methoxy-6-nitro) benzene sulfonic acid hydrate