

REFERENCES

- [1] John A. Anna Selvan. (1999). **Zno for thin film solar cells**. Doctoral dissertation, Ph.D., Neuchatel University, Switzerland.
- [2] Deo Prasad and Mark Snow. (2005). **Designing with solar power**. Australia: University of New South Wales.
- [3] PV Industry Handbook. (2008). Malaysia building integrated photovoltaic project –MBIP. Malaysia: Pusat Tenega Malaysia-PTM.
- [4] Round table discussion on thin-film PV technology. (2008). Malaysia: Pusat Tenega Malaysia-PTM.
- [5] Solar TCO for thin-film PV product brochure. (n.d.). Retrieved August 21, 2010, from www.ppg.com
- [6] Solar energy glass product brochure. (2010). Japan: n.p.
- [7] Glass association of north america. (n.d.). Retrieved December 18, 2008, from www.glasswebsite.com
- [8] Glass on web float glass process. (n.d.). Retrieved October 30, 2008, from www.glassonweb.com
- [9] Praezision Glas and Optik. (n.d.). **ITO-glass, ITO-coating on high quality glass** substrate. Retrieved November 2, 2010, from www.pgo-online.com
- [10] Xinyan Technology Ltd. (n.d.). **Indium-Tin-Oxide (ITO) glasses product brochure**. Retrieved November 2, 2010, from www.xinyan.hk
- [11] Riveros, R. Romero, E. and Gordillo, G. (2006). Synthesis and characterization of highly transparent and conductive snO₂:f and in₂O₃:sn thin-films deposited by spray pyrolysis. Brazilian Journal of Physics, 36(3), 1042-1045.
- [12] Anna Selvan John and NanoPV Technologies Llc. (2006). Transparent conducting tin doped indium oxide coating system for a-si thin film photovoltaic panel manufacturing facility. Bangkok: n.p.

- [13] Material development corporation, automatic mapping four point probe system. (n.d.). Retrieved December 16, 2008, from www.mdc4cv.com
- [14] Andrew P. Schuetze, Wayne Lewis, Chris Brown and Wilhelmus J. Geerts.
 (2004). A laboratory on four-point probe technique. American Journal of Physics, 72(2), 149-153.
- [15] Multi-wavelength Ellipsometers. (n.d.). **Gaertner scientific corporation**. Retrieved March 27, 2009, from www.gaertnerscientific.com
- [16] Nibondh Chetsiri. (2008). In-house TCO glass production cost calculation with APCVD and PVD methods for bangkok solar. N.P.: n.p.

APPENDIX A PRODUCTION COST ESTIMATION OF THE IN-HOUSE TCO GLASS

1. Assumptions and parameters

1.1	Cost of In-house TCO glass coating line	THB 87,500,000
1.2	Calculated depreciation (straight-line method) 5 years	
1.3	Total TCO glass production capacity	150,000 pcs per year
1.4	Number of working days	313 days per year
1.5	Number of working hours	24 hours per day
1.6	Number of direct labor	3 persons
1.7	Cost of direct labor inc. over-time	THB 15,000/month
1.8	Electric power requirement	200 kW
1.9	Electricity cost	THB 3.50 per kWh
1.10	Cost of SiO ₂ and ITO targets	THB 8,000,000 per year
1.11	Cost of process gases (N2 and Ar)	THB 1,200,000 per year
1.12	Cost of maintenance and services	THB 600,000 per year
1.13	Production overhead	10 percent

2. Cost Estimation

- 2.1 Cost of 3.2 mm soda-lime glass = THB 100 per piece
- 2.2 Cost of depreciation of the equipment = 87,500,000 /5years = THB 17,500,000 per year or equals to 17,500,000/150,000 = THB 116.67 per piece
- 2.3 Cost of direct labor = 3shifts x 3persons x 15,000 THB/month x 12months = THB 1,620,000 per year or equals to 1,620,000/150,000 = THB 10.80 per piece
- 2.4 Cost of electricity = 200kW x313days x24hours x3.50THB/kWh = THB 5,258,400 per year or equals to 5,258,400/150,000 = THB 35.08 per piece
- 2.5 Cost of metallic targets = THB 8,000,000 per year or equals to 8,000,000/150,000 = THB 53.33 per piece
- 2.6 Cost of process gases = THB 1,200,000 per year or equals to 1,200,000/150,000 = THB 8.00 per piece
- 2.7 Cost of maintenance and services = THB 600,000 per year or equals to 600,000/150,000 = THB 4.00 per piece

3. Total production cost per piece

3.1 Total production cost without overhead = THB 100+116.67+10.80 +35.08+53.33+8.00+4.00 = THB 327.86 per piece

- 3.2 Cost contribution from production overhead = THB 327.88 x 10% = THB 32.78 per piece
- 3.3 Total production cost of in-house TCO glass = THB 327.86 + THB 32.79 = THB 360.64

APPENDIX B EVALUATION OF ITO FILM PROPERTIES

- 1. Measuring Equipment
 - 1.1 Sheet resistivity with four-point probe
 - 1.2 Optical transmission with Gaertner ellipsometer
- 2. Location of Measurement Points on the TCO glass

For distribution calculation of the film properties 9-15 points per substrate to be measured as illustrated below.

Measurement method	Distance z mm from the coating edge
Spectrophotometer	20 mm
Mechanical profilometer	20 mm
Four-point probe	20 mm

3. Calculation of Distribution

Following formulas are applied for the calculation of the distribution of sheet resistance and thickness.

3.1 Calculation of Distribution for one Carrier Holder.

$$U = \pm \frac{X_{\text{max}} - X_{\text{min}}}{2\overline{X}} \cdot 100 \quad [\%]$$

- = deviation of measured values (%)
- X_{\max} = maximum value
- X_{\min} = minimum value
- \bar{X} = arithmetical average value of all X-values

3.2 Calculation of Distribution from Carrier to Carrier (Reproducibility).

$$R = \pm \frac{\overline{X}_{\text{max}} - \overline{X}_{\text{min}}}{2\overline{X}} \cdot 100 \quad [\%]$$

R = reproducibility from carrier to carrier (%)

 $\overline{X}_{\mbox{\tiny max}}\mbox{=}\mbox{maximum arithmetical average value}$

 $ar{X}_{\min}$ = minimum arithmetical average value

 \overline{X} = arithmetical average value of all X-values The calculation of \overline{X} of a carrier is:

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

 \overline{X} = arithmetical average value of all X-values

= sum of X-values measured on a carrier

n= number of values measured on the carrier

BIOGRAPHY

Name -Surname

Nibondh Chetsiri

Date of Birth

September 15, 1950

Address

131 Pattankarn 61 Road, Praves District, Bangkok 10250

Work Place

NanoPV (Asia) Ltd./Solar PV (Thailand) Co.,Ltd.

Position

Regional Director/Executive Director

Work Experiences

2007-present Regional Director, NanoPV (Asia) Ltd.

Subsidiary of NanoPV Technologies Inc., NJ, USA

Executive Director and Project Director for

Solar PV (Thailand) Co.,Ltd.

2003-2006

Vice President - Bangkok Solar Co.Ltd.

2002-2003

Project Advisor - Chiangmai Solid Waste Management

Project

Educational Background

1988

M.S. (Business Administration), Chulalongkorn University

1974

B.S. (Electrical Engineering), Chulalongkorn University

