ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ

น้อกำหนดหางเลล่ยเวหนอะเอกอักษณ์หายในเลกุลของในอินหนิลน้ำ

restan gyvency

วิทยานิธยธ์นั้นส่วนหนึ่งของการศึกษาทายพลักฐมาปริญญาเกล้บคาสมายหาบั้นพิม ธาบาวิชาเกล้บเวท กาลวิชาเกล้บเวทยอยเกล้บหาวิทยาลับ นิการศึกษา 2553 ฉิบสิทธิ์นองดูสาลงกรณ์นหาวิทยาลับ

ข้อกำหนดทางเภสัชเวทและเอกลักษณ์ทางโมเลกุลของใบอินทนิลน้ำ

นาย วรธัช ฐิติกรพงศ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2553 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

PHARMACOGNOSTIC SPECIFICATION AND MOLECULAR AUTHENTICATION OF *LAGERSTROEMIA SPECIOSA* LEAVES

Mr. Woratouch Thitikornpong

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Pharmacy Program in Pharmacognosy
Department of Pharmacognosy and Pharmaceutical Botany
Faculty of Pharmaceutical Sciences
Chulalongkorn University
Academic Year 2010
Copyright of Chulalongkorn University

Thesis Title	Pharmacognostic specification and molecular authentication of		
	Lagerstroemia speciosa leaves		
Ву	Mr. Woratouch Thitikornpong		
Field of Study Pharmacognosy			
Thesis Advisor	Assistant Professor Suchada Sukrong, Ph.D.		
Thesis Co-Advisor	Associate Professor Thatree Padungcharoen, M.Sc. in Pharm.		
Accepted b	y the Faculty of Pharmaceutical Sciences, Chulalongkorn		
University in Partial Fulfil	llment of the Requirements for the Master's Degree		
	Dean of the Faculty of Pharmaceutical Sciences Professor Pinthip Pongpech, Ph.D.)		
	Celebrit Chairman ittisak Likhitwitayawuid, Ph.D.)		
	ofessor Suchada Sukrong, Ph.D.)		
	The Hady character Thesis Co-Advisor rofessor Thatree Phadungcharoen, M.Sc. in Pharm)		
(Associate P	rofessor Nijsiri Ruangrungsi, Ph.D.)		
	External Examiner reonsap, Ph.D.)		

วรธัช ฐิติกรพงศ์ : ข้อกำหนดทางเภสัชเวทและเอกลักษณ์ทางโมเลกุลของใบ อินทนิลน้ำ. (PHARMACOGNOSTIC SPECIFICATION AND MOLECULAR AUTHENTICATION OF *LAGERSTROEMIA SPECIOSA* LEAVES) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ. ร.ต.อ. หญิง คร. สุชาคา สุขหร่อง, อ. ที่ปรึกษาวิทยานิพนธ์ร่วม: รศ. ธาตรี ผคุงเจริญ, 131 หน้า.

E47219

อินทนิลน้ำ (Lagerstroemia speciosa L. Pers.) จัดอยู่ในวงศ์ Lythraceae ใช้ใบ ชงคื่มเป็นยาแก้เบาหวาน สารสำคัญในใบได้แก่โคโรโซลิค แอซิค ซึ่งเป็นสารในกลุ่ม ใทรเทอร์พีน การวิจัยนี้เป็นการศึกษาถึงคุณสมบัติทางเภสัชเวทของใบอินทนิลน้ำที่เก็บจาก แหล่งปลูกและร้านขายยาแผนโบราณจำนวน 17 ตัวอย่าง และจัดทำมาตรฐานตามข้อกำหนด ของตำรามาตรฐานยาสมุนไพรไทย จากการศึกษาลักษณะทางกายวิภาคและเนื้อเยื่อวิทยา พบ ปากใบชนิดอะนอโมไซติกและผลึกแคลเซียมออกซาเลตรูปดอกกุหลาบสะสมในชั้นพาเรงคิมา ค่าเฉลี่ยของปริมาณน้ำหนักที่หายไปเมื่อทำให้แห้ง ความขึ้น เถ้ารวม เถ้าที่ไม่ละลายในกรค มี ค่าร้อยละ 8.2141, 7.8593, 7.4725 และ 1.2176 โดยน้ำหนักแห้งตามลำดับ ขณะที่ค่าปริมาณสิ่ง สกัดในเอทานอล สิ่งสกัดในน้ำ และสิ่งสกัดในไดคลอโรมีเทนมีค่าอยู่ที่ร้อยละ 9.0280, 2.9442 และ 13.1895 โดยน้ำหนักแห้งตามลำดับ นอกจากนี้ยังได้ศึกษาลักษณะทางโครมาโท กราฟิโดยแสดงกระสวนขององค์ประกอบทางเคมีบนรงคเลขผิวบางของสารสกัดเมทานอล และศึกษาเชิงปริมาณวิเคราะห์โดยการตรวจสอบปริมาณสารสำคัญโคโรโซลิค แอซิคโดย เทคนิคไฮเพอร์ฟอร์แมนซ์ลีควิคโครมาโทกราฟิ

การวิจัยนี้ยังได้วิเคราะห์ลายพิมพ์ดีเอ็นเอของสมุนไพรอินทนิลน้ำและพืชสกุล ใกล้เคียงได้แก่ อินทนิลบก ตะแบกนา เสลาใบใหญ่ โดยใช้เทคนิค Amplified Fragment Length Polymorphism ผลการศึกษาพบแถบดีเอ็นเอที่เป็นเอกลักษณ์ของสมุนไพร อินทนิลน้ำ ข้อมูลทั้งหมดจากงานวิจัยนี้สามารถนำไปใช้พิสูจน์เอกลักษณ์สมุนไพรอินทนิลน้ำ เพื่อให้เกิดประสิทธิผลและความปลอดภัยต่อผู้ใช้สมุนไพร

ภาควิชา <u>เภสัชเวทและเภสัชพฤกษศาสตร์</u>	ลายมือชื่อ	นิสิต	M	pourous	•••••	
สาขาวิชา เภสัชเวท	ลายมือชื่อ	อ.ที่ปรึก	มาวิทย _์	ั เนิพนส์หลัก	The_	
ปีการศึกษา <u>2553</u>	ลายมือชื่อ	อ.ที่ปรึก	ษาวิทย	านิพนธ์ร่วม.	Hatree That cha	_

5176583633 : MAJOR PHARMACOGNOSY

KEYWORDS: LAGERSTROEMIA SPECIOSA / LYTHRACEAE / PHARMACOGNOSTIC SPECIFICATION / DNA FINGERPRINT / AFLP WORATOUCH THITIKORNPONG: PHARMACOGNOSTIC SPECIFICATION AND MOLECULAR AUTHENTICATION OF LAGERSTROEMIA SPECIOSA LEAVES. THESIS ADVISOR: ASST. PROF. SUCHADA SUKRONG, Ph.D., THESIS CO-ADVISOR: ASSOC. PROF. THATREE PHADUNGCHAROEN, M.Sc. in Pharm., 131 pp.

Lagerstroemia speciosa L. Pers. (Lythraceae) leaf is used as infusion tea for antidiabetes. Corosolic acid, a triterpene compound, was found in this leaf. In this study, seventeen dried leaves of L. speciosa were collected from natural sources and traditional drugstores for pharmacognostic specifications and setting up the standardization according to Thai Herbal Pharmacopoeia. Anatomical and histological characteristics were the presence of anomocytic stomata and parenchyma containing rosette aggregate crystals of calcium oxalate. The mean contents of loss on drying, moisture content, ash content, acid-insoluble ash were 8.2141, 7.8593, 7.4725, 1.2176% of dry weight respectively. Whereas the ethanol extractive value, water extractive value and dichloromethane extractive value were 9.0280, 13.1895, and 2.9442% w/w, respectively. In addition, chromatographic pattern was investigated. Thin layer chromatographic patterns of methanolic extract were demonstrated. The quantitative analysis by high performance liquid chromatography method using corosolic acid as a marker was also reported.

Moreover, this study gave detailed analysis of the DNA fingerprinting of Lagerstroemia. L. speciosa and closely related species, L. macrocarpa, L. floribunda and L. loudinii using the AFLP technique. A species-specific band of L. speciosa was found. All of these results provide highly useful information for the authentication of L. speciosa leaves. It will contribute to effectiveness and safety prior to use.

Department: Pharmacognosy and

Pharmaceutical botany

Field of Study: Pharmacognosy

Academic Year: 2010

Student's Signature Woratouch Mithkompony
Advisor's Signature Sull sily
Co-Advisor's Signature the Madychan

ACKNOWLEDGEMENTS

The success of this thesis has been attributed to the extensive support and assistance from his advisor, Assistant Professor Dr. Suchada Sukrong, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University. The author would like to declare the deepest sense of thankfulness for her meaningful guidance and invaluable advices in every stage of the preparations for his thesis and support in publication and presentation concerning this study in several conferences. He thanks her also for providing him an opportunity to grow as a good student.

His deepest gratitude and appreciation is also expressed to Assoc. Prof. Thatree Phadungcharoen, his thesis co-advisor, for her great help, guidance, valuable suggestions, and kindness in collecting specimens.

His gratitude is sincerely grateful to the thesis committee for their important and constructive suggestions and crucial reviews of his thesis.

A large debt of his gratitude is owed to Dr. Thitaporn Phumchai, Rubber Research Institute of Thailand, Miss Intira Jarupeng, Mrs. Prapai Mojarin, Dr. Natthaporn Rujikachorn, Plant Genetic Conservation Project Under The Royal Initiation of H.R.H. Princess Maha chakri Sirindhorn, Mrs. Apinya Vetchapongsa, Vetchapong Drugstore, and his friends at the Department of Pharmacognosy and Pharmaceutical Botany, who kindly offer their assistance, encouragement and helpful comments throughout his research.

The author would like to express grateful thanks to the Museum of Natural Medicines, Chulalongkorn University for allowing the use of microscope and a digital camera, the Pharmaceutical Research Central Laboratory Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University for providing High Performance Liquid Chromatography (HPLC) equipment, and the Chulalongkorn University Drug & Health products Innovation Promotion Center (CU.D.HIP), Faculty of Pharmaceutical Sciences, Chulalongkorn University, for providing Sequi-Gen GT Nucleic acid Electrophoresis cell and PCR instruments throughout the research study.

For the financial support, he is grateful to the Thailand Research Fund for a Master Research Grant (TRF-MAG Window I) and the Chulalongkorn Graduate School for a Thesis Grant.

CONTENTS

	Page
ABSTRACT (Thai)	iv
ABSTRACT (English)	
ACKNOWLEDGEMENTS	
CONTENTS	
LIST OF TABLES	
LIST OF FIGURES	
ABBREVIATIONS	
CHAPTER	
I INTRODUCTION	1
II LITERATURE REVIEWS	4
2.1 Botanical data of Lagerstroemia speciosa L. Pers	4
2.2 The chemical constituents and the biological activities	8
2.3 Quality control methods for medicinal plants materials	11
2.3.1 Macroscopic examination	11
2.3.2 Inspection by microscopy	12
2.3.3 Constant values of leaves	14
2.3.3.1 Determination of stomatal index and stomatal number	14
2.3.3.2 Palisade ratio examination	17
2.3.3.3 Inspection of Vein-islet number	17
2.3.3.4 Investigation of Veinlet termination number	17
2.3.4 Thin layer chromatography (TLC)	18
2.3.5 Phytochemical screening	19
2.3.6 Determination of physicochemical values	20
2.3.6.1 Loss on drying	20
2.3.6.2 Moisture content	20
2.3.6.3 Ash content	21

	Page
CHAPTER	
2.3.6.4 Extractive value	. 21
2.4 DNA Fingerprinting	. 22
III PHARMACOGNOSTIC SPECIFICATION	. 28
3.1 Materials and methods	. 29
3.1.1 Macroscopic and microscopic characterizations of	
L. speciosa leaves	. 29
3.1.2 Microscopic determination of constant numbers of leaf	32
3.1.3 Thin-layer chromatographic patterns of leaves extract	34
3.1.4 Phytochemical screening	35
3.1.5 Physicochemical determination	37
3.1.5.1 Loss on drying	37
3.1.5.2 Total ash	37
3.1.5.3 Acid insoluble ash	37
3.1.5.4 Extractive value	38
3.1.5.5 Determination of water	38
3.1.6 Quantitative analysis of corosolic acid by HPLC method	39
3.2 Results	41
3.2.1 Organoleptic and microscopic investigations of	
L. speciosa leaves	41
3.2.2 The constant number of leaf	46
3.2.3 TLC analysis	46
3.2.4 Preliminary phytochemical test	46
3.2.5 Physico-chemical parameter	46
3.2.6 Corosolic acid contents in <i>L. speciosa</i> leaves	55
3.3 Discussion	59

	Page
CHAPTER	
IV AMPLIFIED FRAGMENT LENGTH POLYMORPHISM (AFLP)	63
4.1 Plant materials	63
4.2 Methods	65
4.2.1 Genomic DNA extraction	65
4.2.2 AFLPs Procedures	65
4.2.2.1 Digestion of genomic DNA	65
4.2.2.2 Ligation of genomic DNA	66
4.2.2.3 Pre-selective amplification	67
4.2.2.4 Selective amplification	68
4.2.3 Detection of AFLPs bands using denaturing polyacrylamide	
gel electrophoresis	70
4.2.4 Data analysis	70
4.3 Results	71
4.3.1 AFLP analysis	71
4.3.2 Genetic relationship	80
4.4 Discussion_	81
V CONCLUSION	83
REFERENCES	85
APPENDICES	93
APPENDIX A	94
APPENDIX B	104
APPENDIX C	121
VITA	131

LIST OF TABLES

Table		Page
2.1	The list of Lagerstroemia species in Thailand	5
2.2	The chemical constituents of L. speciosa leaves and its	
	biological activity	8
3.1	The fresh samples of L. speciosa used in this study	29
3.2	Intanin nam which were purchased from traditional drugstores	30
3.3	The constant values of L. speciosa leaves	48
3.4	R _f values of components in methanol extract of the leaves of	
	L. speciosa leaves. Chloroform and acetone (4:1) was used as	
	solvent system	50
3.5	R _f values of components in methanol extract of the leaves of	
	L. speciosa leaves. Chloroform and methanol (95:5) was used as	
	solvent system	52
3.6	Chemical test of powdered L. speciosa leaves	53
3.7	Physicochemical values (% w/w) in 17 samples of L. speciosa leaves	54
3.8	Corosolic acid content (% w/w) in seventeen L. speciosa leaves	58
3.9	The constant number of L. speciosa leaves	59
3.10	General specification of L. speciosa leaves	61
4.1	Plant materials for AFLPs evaluation	64
4.2	Reaction mixture for digesting genomic DNA with	
	restriction enzymes	65
4.3	Sequences of adapters and primers used for AFLPs analysis	66
4.4	Reaction mixture for nucleotide adapter ligation	67
4.5	Reaction mixture for pre-amplification reaction	67
4.6	Reaction mixture for selective amplification reaction	69
4.7	Primer combination, the number of AFLP bands, size range and the	
	percentage of polymorphic bands resulted from AFLP analyses of	
	this study	71

LIST OF FIGURES

Figure		Page
2.1	Lagerstroemia speciosa (L.) Pers.	6
2.2	Twig of Lagerstroemia speciosa, inflorescence and fruit	7
2.3	The chemical structure of corosolic acid	10
2.4	Micrometer	13
2.5	Epidermis in surface view illustrating patterns formed guard cells	
	and surrounding cells	16
2.6	The process of Amplified Fragment Length Polymorphism (AFLP)	
	technique	25
3.1	Compound microscope Zeiss model Axiostar attached with	
	digital camera Sony Cyber-shot DSC-S85	31
3.2	Azeotropic distillation method	40
3.3	Epidermal cell of L. speciosa leaf	42
3.4	Transvese section of midrib of L. speciosa leaves	43
3.5	Transverse section of lamina of L. speciosa leaves	43
3.6	Powdered drug of the leaf of L. speciosa	45
3.7	Vein-islet and veinlet termination of the L. speciosa leaves	47
3.8	Four upper contiguous epidermal cells with underlying	
	palisade cells of L. speciosa leaves	47
3.9	TLC patterns of methanolic extracts of L. speciosa leaves	
	using chloroform and acetone (4:1) as solvent system	49
3.10	TLC patterns of methanolic extracts of L. speciosa leaves	
	using chloroform and methanol (95:5) as solvent system	51
3.11	HPLC/DAD chromatograms detected at 204 nm of corosolic acid,	
	crude methanolic extract of L. speciosa leaves, and crude	
	methanolic extract spiked with standard acid.	56
3.12	Standard curve of corosolic acid, peak area at 204 nm	57
4.1	AFLP profile generated by primer combination of	
	ER3AAC, MS3CAG	72

LIST OF FIGURES

Figure		Page
4.2	AFLP profile generated by primer combination of	
	ER3AAC, MS3CAT	73
4.3	AFLP profile generated by primer combination of	
	ER3AAC, MS3CTT	74
4.4	AFLP profile generated by primer combination of	
	ER3AAG, MS3CTG	75
4.5	AFLP profile generated by primer combination of	
	ER3ACC, MS3CAC	76
4.6	AFLP profile generated by primer combination of	
	ER3ACC, MS3CAT	77
4.7	AFLP profile generated by primer combination of	
	ER3ACC, MS3CTA	78
4.8	AFLP profile generated by primer combination of	
	ER3ACC, MS3CTT	79
4.9	UPGMA dendrogram based on Jaccard's similarity coefficient	
	among Lagerstroemia and Lawsonia inermis accessions	80

ABBREVIATIONS

°C = degree Celsius

 $\mu g = microgram$

μl = microliter

 $\mu M = micromolar$

 $\mu m = micrometer$

A, T, G, C = nucleotides containing the base adenine,

thymine, guanine and cytosine, respectively.

AFLP = Amplified Fragment Length Polymorphism

AP-PCR = Arbitrarily Primed-PCR

ARMS = amplification refractory mutation system

AUC = area under curve

bp = base pair

BP = British Pharmacopoeia

CAPS = Cleaved Amplified Polymorphic Sequence

cm = centimeter

DALP = Direct Amplification of Length Polymorphism

DAMD = Directed Amplification of Minisatellite-region

ddNTPs = dideoxynucleotide triphosphates (ddATP,

ddTTP, ddGTP, ddCTP)

DNA = deoxyribonucleic acid

dNTPs = deoxynucleotide triphosphates (dATP, dTTP,

dGTP, dCTP)

EP = Europe Pharmacopoeia

h = hour

HPLC = High Performance Liquid Chromatography

kb = kilobase

L = liter

M = mole

mg = milligram

 $MgCl_2$ = Magnesium chloride

min = minute

ml = milliliter

mm = millimeter

mM = millimole

 mm^2 = square millimeter

ng = nanogram

nm = nanometer

PCR = Polymerase Chain Reaction

PCR-RFLP = Polymerase chain reaction- Restriction Fragment

Length Polymorphism

ppm = part per million

 r^2 = correlation coefficient

RFLP = Restriction Fragment Length Polymorphism

RP-PCR = Random Primed-Polymerase Chain Reaction

RT = retention time

SCAR = Sequence Characterized Amplified Regions

SD = standard deviation

sec = second

THP = Thai Herbal Pharmacopoeia

TLC = Thin-Layer Chromatography

USP = United State Pharmacopoeia

UV = ultraviolet light

V = volt

v = volume

w = weight

W = watt

WHO = World Health Organization