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APPENDIX A

General Information for Well Model

Table A1 Water Influx Parameters for Oil Layers

Water Influx for Each Oil Layers
T e (e a0 | o Rl | el N,
System (ft) (degrees) y (md)
Oil Layer #1 | 5000 40 920 6 180 200
Oil Layer#2 | 6000 | Hurst-van Radial 40 920 6 180 150
Everdingen- .
Oil Layer #3 | 7000 Modified g 40 920 6 180 100
Oil Layer #4 | 8000 40 920 6 180 50
Table A2 PVT Input Data in MBAL for Oil Layers
Reservoir Fluid Oil 1@\/?3000, Ollg@ V61())00’ Ollgr@v7l())00 Oll? V8};)00’
Separator Single-Stage
Use Tables No
Use Matching No
Controlled Miscibility No
Solution GOR 275 (scfistb) | 400 (scfistb) | 540 (scfistb) | 750 (scfstb)
Oil gravity 40 (API)
Gas gravity 0.8 (sp. gravity)
Water salinity 10000 (ppm)
Mole percent H2S 0 (percent)
Mole percent CO2 5 (percent)
Mole percent N2 0 (percent)
Pb, Rs, Bo correlation Vazquez-Beggs
Oil viscosity correlation Petrosky et al




Table A3 Input Data - Relative Permeability for Oil and Gas Layers

Relative Permeability
Parameters Oil Layers Gas Layer
Rel Perm. From Corey Functions Corey Functions
Hysteresis No No
Modified No N/A
Water Sweep Efficiency 100% 100%
Gas Sweep Efficiency 100% N/A

Table A4 Input Data - Residual Saturation and Corey Exponents for Oil and Gas Layers

Oil Layers Residual Sz.lturation End P.oint Exponent
(fraction) (fraction)
Krw 0.15 0.5 4
Kro 0.2 0.8 4
Krg 0.02 0.5 2
Gus et Residual Sz.lturation End P.oint Expimsnt
(fraction) (fraction)
Krw 0.15 0.6 3
Krg 0.05 0.8 2




Table A5 Input Data for Option Summary in PROSPER
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Input Data
i Oil Gas Lift | Oil Non-Gas Lift | Gas Non-Gas Lift
Fluid Oil Dry and Wet Gas
PVT Method Black Oil
Equation Of State N/A
Separator Single-Stage
Hydrates Disable Warning
Water Viscosity Use Pressure Corrected Correlation
Water Vapour 806 Colovilatiohs Calculated Condensed
Water Vapour
Viscosity Model Newtonian Fluid
Steam Option No Steam Calculations
Flow Type Tubing
Well Type Producer
Artificial Lift Gas Lift (Continuous) None | N/A
Lift Type No Friction Loss In
% Annulus L
Predicting Pressure and Temperature (offshore)
Temperature Model Rough Approximation
Range Full System
Completion Cased Hole
Sand Control None
Inflow Type Single Branch
Gas Coning No
Table A6 Input Data for IPR
Parameter For Oil Layers For Gas
Reservoir Model Fetkovich Petroleum Expert
Mechanical/ Geometrical Skin Enter Skin by Hand Enter Skin by Hand
Drainage Area (acres per layer) | 61 51
Dietz Shape Factor 31.6 31.6
Wellbore Radius 0.255 ft 0.255 ft
Mechanical Skin 3 5




Table A7 Input Data for Downhole Equipment

Tubing OD 2.875”
Tubing ID 2.441”
Tubing Inside Roughness 0.0006
Casing OD 7

Casing ID 6.184”
Gas Lift Valve Size / Type 1” Orifice

Gas Lift Valve Setting Depth

5825” MD/ 4000’ TVD

Table A8 Input Data for Geothermal Gradient

Formation Measured Tenfpoer:::::-zn(deg
Depth (ft)
F.)
g 70
7064 240
10912 310

Table A9 Input Data for Directional Survey

ft MD ft TVD
0 0
1020 1019
2010 1986
3000 2561
4020 3075
5010 3562
5825 4000
7020 4963
7064 5000
8298 6000
9601 7000
10912 8000
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Pressure (psia)
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Figure A1 Reservoir Pressure Profile
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Figure A2 Reservoir Temperature Profile
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Elevation TVDSS, feet

GOR vs Depth
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Figure A4 Initial Oil Formation Volume Factor (B,;) Correlation
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Tank Input Data - Water Influx
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Figure AS Tank Input Data — Water Flux for Oil Layer @ 5000’ TVD

Tank Input Data - Rock Properties -
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Figure A6 Tank Input Data - Rock Compressibility for Oil Layer @ 5000° TVD
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Tank Input Data - Relative Permeabilities s & i i‘i m@;& : i ‘ * «d
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Figure A7 Tank Input Data - Relative Permeability for Oil Layer @ 5000’ TVD
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Figure A8 Water-Oil Relative Permeability from MBAL
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Water-Oil Relative Permeability
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Figure A9 Water-Oil Relative Permeability from Core Analysis
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Figure A10 Tank Input Data - Relative Permeability for In-situ Gas Zone
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Figure A12 Gas-Oil Relative Permeability from Core Analysis
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Figure A13 (a) and (b) Examples of IPR — Input Data for Oil Layer
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Figure Al14 (a) and (b) Example of IPR — Input Data for Gas Layer
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