

IMMOBILIZATION OF PEPTIED NUCLEIC ACID ON ELECTROPHILIC MAGNETITE NANOPARTICLE SURFACE

KRITSADA TANKANYA

A Thesis Submitted to the Graduate School of Naresuan University in Partial Fulfillment of the Requirements for the Master of Science Degree in Industrial Chemistry April 2012 Copyright 2012 by Naresuan University b00254869

4

IMMOBILIZATION OF PEPTIED NUCLEIC ACID ON ELECTROPHILIC MAGNETITE NANOPARTICLE SURFACE

KRITSADA TANKANYA

A Thesis Submitted to the Graduate School of Naresuan University in Partial Fulfillment of the Requirements for the Master of Science Degree in Industrial Chemistry April 2012 Copyright 2012 by Naresuan University

This thesis entitled "Immobilization of peptide nucleic acid on electrophilic magnetite nanoparticle surface" submitted by Kritsada Tankanya in partial fulfillment of the requirements for the Master of Science Degree in Industrial Chemistry is hereby approved.

(Associate Professor Metha Rutnakornpituk, Ph.D.)

Oth-, Cick

(Uthai Wichai, Ph.D.)

Fomfin Put Committee

(Boonjira Rutnakornpituk, Ph.D.)

21 ch

.....Committee

(Assistant Professor Sirirat Chancharunee, Ph.D.)

Approved

K. Repativilul,

(Assistant Professor Kanungnit Pupatwibul, Ph.D.) Dean of Graduate School 30 April 2012

ACKNOWLEDGEMENT

First, I would like to sincerely thank my research advisor, Dr. Uthai Wichai, for his support, attention, patience, and guidance throughout the completion of my research. Deeply thanks are also extended to Associate Professor Dr. Metha Rutnakornpituk for electrophilic nanomaterial solid supported; Associate Professor Dr. Tirayut Vilaivan, Department of Chemistry, Faculty of Science, Chulalongkorn University for allowing me to use MALDI-TOF mass spectrometer. I also would like to thank committee members, Dr. Boonjira Rutnakronpituk, and Assistant Professor Dr. Sirirat Chancharunee for their valuable insight, comments and suggestions.

I wish to thank all staff members at Department of Chemistry, Faculty of Sciences, Naresuan University, especially Uthai's and Metha's Research Group for their assistance and friendship.

I would like to thank Center for Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC) for tuition fee, stipend as well as research budgets.

Finally, I truly thank my parents for both of their support throughout my life and their inspiration throughout my education.

KritsadaTankanya

Title	IMMOBILIZATION OF PEPTIED NUCLEIC ACID ONTO
	ELECTROPHILIC MAGNETITE NANOPARTICLE
	SURFACE
Author	Kritsada Tankanya
Advisor	Uthai Wichai, Ph.D.
Co-Advisor	Boonjira Rutnakornpituk, Ph.D.
Academic Paper	Thesis M.S. in Industrial Chemistry, Naresuan University, 2012
Keywords	single-stranded aegPNA oligomers, carbazole derivatives,
	universal base, electrophilic MNPs

ABSTRACT

¢,

E47344The *aegPNA* has become an interesting tool for biomolecular probe applications. Particularly, magnetite nanoparticles (MNPs) probe is widely investigated on its property for DNA sequencing to improve detection sensitivity. First, synthesis of Fmoc-aegPNA monomers (thymine and carbazole derivatives) were prepared using HATU/2,6-lutidine and TBTU/HOBt as coupling agent (68-81% yields, respectively). Second, ss aegPNA oligomers containing universal bases were synthesized manually via solid phase synthesis on 1 µmole scale MBHA resin. The desired oligomer products were purified by reverse-phase HPLC. The molecular masses of target aegPNA oligomers were determined by MALDI-TOF mass spectrometry. Third, determination of 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) ring as electrophilic group onto MNPs loadings have been achieved by conductometric titration and it was found that the loading of active site was 2.669 ± 0.21 mmol.g⁻¹ (n=5). Finally, desired ss aegPNA oligomers were attached onto electrophilic MNPs surface monitoring by FT-IR and UV-vis spectrometry techniques. The ss aegPNA oligomers coated onto novel electrophilic MNPs was prepared via ring-opening reaction of amino group with VDM as electrophilic group without catalyst. The 1:1 ratio between aegPNA and MNPs gave the maximum immobilization. The increasing in length of ss aegPNA oligomers led to a decrease of the immobilization whereas size and steric congestion at the N-terminus show no significant different.

LIST OF CONTENTS

Chapt	hapter	
I	INTRODUCTION	and
	Rationale for the study	1
	Purpose of the study	3
	Significance of the study	4
	Scope of the study	5
	4	
Π	LITERTURE REVIEWS	7
	DNA and Peptide Nucleic Acid (<i>aeg</i> PNA)	7
	Magnetite Nanoparticles (MNPs)	11
	Magnetite Nanoparticles (MNPs) as probe for nucleic acid diagnosis	
	tools	13
	Azlactone compound as electrophilic linker	20
Ш	RESEARCH METHOLOGY	26
	General Procedure	30
	Synthesis of Fmoc- <i>aeg</i> PNA monomers	32
	Synthesis of ss aegPNA oligomers	45
	Loading determination for 2-vinyl-4,4-dimethylazlactone (VDM) as	
	electrophilic group onto MNPs	48
	Immobilization of ss aegPNA oligomers onto the electrophilic	
	MNPs	48

1

LIST OF CONTENTS (CONT.)

Chapter

Page

IV RESULTS AND DISCUSSION	49
Synthesis of Fmoc-aegPNA monomers containing thymine and	
carbazole derivatives	49
Synthesis of ss aegPNA oligomers	58
Loading of 2-vinyl-4,4-dimethylazlactone (VDM) as electrophilic	
group on MNPs	61
Immobilization of ss aegPNA oligomers onto the electrophilic	
MNPs	64
Effect of length of ss aegPNA oligomers with immobilization	
efficiency	69
Effect of steric of ss aegPNA oligomers with immobilization	
efficiency	72
V CONCLUSION	77
REFERENCES	79
APPENDIX	90
BIOGRAPHY	126

,

LIST OF FIGURES

Figure

1	Structures of (a) DNA, (b) aegPNA (Base: A, C, G, T)	2
2	Conceptual design of ss aegPNA oligomers-MNPs probe	3
3	Ideal application of ss aegPNA oligomers-MNPs probe for DNA	
	detection with high sensitivity	4
4	Synthesis of ss aegPNA oligomers (56a-g)	6
5	Hydrogén bonding between A : T and G : C base paring	8
6	Illustration of gene expression (a) normal gene expression	
	(b) antigene and antisense strategies	9
7	aegPNA structure and Watson-Crick base paring with DNA	10
8	Illustration of two strategies to fabricate multifunctional magnetite	
	nanoparticles and their potential applications	12
9	Preparation of DNA-MNPs for DNA target and AVS detection	14
10	Preparations of the three-layer MNPs, DNA-MNPs probe and	
	hybridization with ssDNA target	14
11	aegPNA modified magnetite bead-based assay for the specific detection	
	of hybridization in connection with an intercalator, Meldola's blue	
	(MDB)	15
12	Affinity capture assay for DNA. The detected molecular weight of the	
	aegPNA probe indicates the DNA sample	16
13	Thiol layer-coated MNPs with PNA as PNA probe and hybridized with	
	perfect-match ssDNA were immobilized by SERS	17
14	Synthesis of and gold shell-cobalt MNPs coated with thiolated PNA for	
	DNA target hybridization and fluorescence detection	18

Figure

15	Rign-opening reaction of nucleophiles attached to azlaztone	
	functionalized polymer networks on solid support	20
16	Synthesis of Wang resin initiator for ATRP	21
17	Synthesis of different supported architectures based on VDM for	
	Wang resin initiator	22
18	Synthesis of surface-anchored PVDM as templates for the	
	immobilization of protein	23
19	Grafting of VDM onto EB activated PP films and immobilization of	
	nucleophiles	24
20	Preparation of the multilayer assembly process	25
21	Synthesis of <i>aeg</i> PNAoligomers (56a-g)	28
22	¹ H NMR spectrum of <i>tert</i> -Butyl <i>N</i> -[2-(<i>N</i> '-9-fluorenylmethoxycarbonyl)	
	aminoethyl]glycinate hydrochloride salt (40) (CDCl ₃)	51
23	¹ H NMR spectrum of carbazole-9-yl-ethyl acetate (48) (CDCl ₃)	54
24	¹ H NMR spectrum of 3,6-dibromocarbazole-9-yl-ethyl acetate (49)	
	(CDCl ₃)	54
25	¹ H NMR spectrum of 3,6-dicyanocarbazole-9-yl-ethyl acetate (50)	
	(DMSO- <i>d</i> ₆)	55
26	¹ H NMR spectrum of 3,6-dinitrocarbazole-9-yl-ethyl acetate (51)	
	(DMSO- <i>d</i> ₆)	55
27	FT-IR Spectrum of 3,6-disubstituted carbazole-9yl-ethyl acetate (a) 3,6-	
	dibromo, (b) 3,6-dicyano, (c) 3,6-dinitrocarbazole-9-yl-ethyl	
	acetate	56

Figure

Page

28	Overlay ¹ H NMR spectrums of Fmoc- <i>aeg</i> PNA monomers (54a-d) to	
	compare pattern of CH ₂ group indicating rotamer property	<u>58</u>
29	HPLC chromatogram of (a) crude and (b) purified PNA-T ₈ (56g)	60
30	MALDI-TOF mass spectrum of purified PNA-T ₈ (56g)	60
31	¹ H NMR spectrum of (a) VDM (b) VDM with water (DMSO- d_6)	62
32	Conductometric back-titration curve of active site on MNPs with HCl	63
33	Structures of Fmoc-aeg-thymine-OtBu and NH2-aeg-thymine-COOH	65
34	¹ H MNR spectrum of NH ₂ -aeg-thymine-COOH hydrochloride (60)	
	(DMSO- <i>d</i> ₆)	65
35	UV absorption of NH ₂ -aeg-thymine-COOH (60) and MNPs	66
36	UV spectrum of non-specific NH2-aeg-thymine-COOH (60) washing	
	with 1,4-dioxane at 1-5 cycles	66
37	FT-IR spectra of (a) MNPs, (b) NH ₂ -aeg-thymine-COOH, (c) MNPs-	
	aegPNA-T-COOH	67
38	Kinetics study of immobilization of <i>aegPNA</i> thymine monomer (60)	
	onto MNPs surface at room temperature	69
39	Optimization of <i>aegPNA</i> thymine monomer (60) concentrations at 12 h.	69
40	HPLC chromatogram of homothymine ss aegPNA oligomers	70
41	MALDI-TOF mass spectrum of homothymine ss aegPNA oligomers	71
42	Effect of length of homothymine ss aegPNA oligomers attach onto	
	MNPs at room temperature	72

,

Figure

43	HPLC chromatogram of ss aegPNA hexamers containing carbazole	
	derivatives	73
44	MALDI-TOF mass spectrum of ss aegPNA hexamers containing	
	carbazole derivatives	74
45	FT-IR spectra of (a) MNPs (b) T_6 -MNPs (c) TC ₆ -MNPs (d) TCC ₆ -	
	MNPs_(e) TNC ₆ -MNPs complexes	75
46	Effect of the steric congestion at the N-terminal attach onto MNP	
	surface at room temperature	76
47	Approach to use PNA-MNPs probe for DNA diagnostic tools	78
48	¹ H NMR spectrum of <i>tert</i> -Butyl <i>N</i> -[2-(<i>N'</i> -9-fluorenylmethoxycarbonyl)	
	aminoethyl]glyeinate hydrochioride (40) (DMSO- <i>d</i> ₆)	91
49	¹³ C NMR spectrum of <i>tert</i> -Butyl <i>N</i> -[2-(<i>N'</i> -9-fluorenylmethoxycarbonyl)	
	aminoethyl] glyeinate hydrochioride (40) (DMSO-d ₆)	91
50	¹ H NMR spectrum of thymine-1-yl-methyl acetate (43) (CDCl ₃)	92
51	¹³ C NMR spectrum of thymine-1-yl-methyl acetate (43) (CDCl ₃)	92
52	¹ H NMR Spectrum of thymine-1-yl-acetic acid (44) (DMSO- d_6)	93
53	¹³ C NMR spectrum of thymine-1-yl-acetic acid (44) (DMSO- d_6)	93
54	¹ H NMR spectrum of carbazole-9-yl-ethyl acetate (48) (CDCl ₃)	94
55	¹³ C NMR spectrum of carbazole-9-yl-ethyl acetate (48) (CDCl ₃)	94
56	¹ H NMR spectrum of sarbazole-9-yl-acetic acid (47) (DMSO- <i>d</i> ₆)	95
57	¹³ C NMR spectrum of carbazole-9-yl-acetic acid (47) (DMSO- <i>d</i> ₆)	95
58	¹ H NMR spectrum of 3,6-dibromocarbazole-9-yl-ethyl acetate (49)	
	(CDCl ₃)	96

Figure

59	¹³ C NMR Spectrum of 3,6-dibromocarbazole-9-yl-ethyl acetate (49)	
	(CDCl ₃)	96
60	¹ H NMR spectrum of 3,6-dicyanocarbazole-9-yl-ethyl acetate (50)	
	(DMSO- <i>d</i> ₆)	97
61	¹³ C NMR spectrum of 3,6-dicyanocarbazole-9-yl-ethyl acetate (50)	
	$(DMSO-d_6)$	97
62	¹ H NMR spectrum of 3,6-dicyanocarbazole-9-yl-acetic acid (51)	
	(DMSO- <i>d</i> ₆)	98
63	¹³ C NMR spectrum of 3,6-dicyanocarbazole-9-yl-acetic acid (51)	
	(DMSO- <i>d</i> ₆)	98
64	¹ H NMR spectrum of 3,6-dinitrocarbazole-9-yl-ethyl acetate (52)	
	(DMSO- <i>d</i> ₆)	99
65	¹³ C NMR spectrum of 3,6-dinitrocarbazole-9-yl-ethyl acetate (52)	
	(DMSO- <i>d</i> ₆)	99
66	¹ H NMR spectrum of 3,6-dinitrocarbazole-9-yl-acetic acid (53)	
	(DMSO- <i>d</i> ₆)	100
67	¹³ C NMR spectrum of 3,6-dinitrocarbazole-9-yl-acetic acid (53)	
	(DMSO- <i>d</i> ₆)	100
68	¹ H NMR Spectrum of <i>tert</i> -Butyl <i>N</i> -[2-(<i>N</i> '-9 fluorenylmethoxycarbonyl)	
	aminoethyl]-N-[(thymine-1-yl)acetyl]glycinate (54a) (CDCl ₃)	101
69	13 C NMR spectrum of <i>tert</i> -Butyl <i>N</i> -[2-(<i>N'</i> -9 fluorenylmethoxycarbonyl)	
	aminoethyl]-N-[(thymine-1-yl)acetyl]glycinate (54a) (CDCl ₃)	101
70	¹ H NMR spectrum of <i>tert</i> -Butyl <i>N</i> -[2-(<i>N</i> '-9 fluorenylmethoxycarbonyl)	
	aminoethyl]-N- [(carbazole-9-yl)acetyl]glycinate (54b) (CDCl ₃)	102

Figure

71	¹³ C NMR spectrum of <i>tert</i> -Butyl <i>N</i> -[2-(<i>N'</i> -9 fluorenylmethoxycarbonyl)
	aminoethyl]-N- [(carbazole-9-yl)acetyl]glycinate (54b) (CDCl ₃)
72	¹ H NMR spectrum of <i>tert</i> -Butyl <i>N</i> -[2-(<i>N</i> '-9 fluorenylmethoxycarbonyl)
	aminoethyl]-N- [(3,6-dicyanocarbazole-9-yl)acetyl]glycinate (54c)
	(CDCl ₃)
73	¹³ C NMR spectrum of <i>tert</i> -Butyl N-[2-(N'-9 fluorenylmethoxy
	carbonyl)aminoethyl]-N- [(3,6-dicyanocarbazole-9-yl)acetyl]
	glycinate (54c) (CDCl ₃)
74	¹ H NMR spectrum of <i>tert</i> -Butyl <i>N</i> -[2-(<i>N'</i> -9 fluorenylmethoxycarbonyl)
	aminoethyl]-N-[(3,6-dinitrocarbazole-9-yl)acetyl]glycinate (54d)
	$(DMSO-d_6)$
75	13 C NMR spectrum of <i>tert</i> -Butyl N-[2-(N'-9 fluorenylmethoxy
	carbonyl) aminoethyl]-N-[(3,6-dinitrocarbazole-9-yl)
	acetyl]glycinate (54d) (DMSO- <i>d</i> ₆)
76	HPLC chromatogram of (a) crude and (b) purified NH_2 -TT-COONH ₂
	(56a)
77	MALDI-TOF mass spectrum of purified NH ₂ -TT-COONH ₂ (56a)
78	HPLC chromatogram of (a) crude and (b) purified NH ₂ -TTTT-
	COONH ₂ (56b)
79	MALDI-TOF mass spectrum of purified NH ₂ -TTTT-COONH ₂ (56b)
80	HPLC chromatogram of (a) crude and (b) purified NH_2 -TTTTTT-
	COONH ₂ (56c)
81	MALDI-TOF mass spectrum of purified NH2-TTTTTT-COONH2
	(56c)

Figure

Page

82	HPLC chromatogram of (a) crude and (b) purified NH ₂ -CBZ TTTTT-
	COONH ₂ (56d)
83	MALDI-TOF mass spectrum of purified NH2-CBZ TTTTT-COONH2
	(56d)
84	HPLC chromatogram of (a) crude and (b) purified NH ₂ -DCCBZ
	ŤТТТТ-СООNH ₂ (56е)
85	MALDI-TOF mass spectrum of purified NH ₂ -DCCBZ TTTTT-
	COONH ₂ (56e)
86	HPLC chromatogram of (a) crude and (b) purified NH ₂ -DNCBZ
	TTTTT- COONH ₂ (56f)
87	MALDI-TOF mass spectrum of purified NH ₂ -DNCBZ TTTTT-
	COONH ₂ (56f)
88	HPLC chromatogram of (a) crude and (b) purified NH_2 -TTTTTTTT-
	COONH ₂ (56g)
89	MALDI-TOF mass spectrum of purified NH ₂ -TTTTTTTT-COONH ₂
	(56g)
90	¹ H-NMR spectrum of (a) NH ₂ -aeg-thymine-COOH (65), (b) Product of
	reaction (66) (CDCl ₃)
91	¹ H-NMR spectrum of (a) Boc- <i>aeg</i> PNA thymine COOH (64),
	(b) Product of reaction retio 1:6 (CDCl ₃)
92	Calibration curve of NH ₂ -aeg-thymine-COOH (60) at 10, 30, 50 and
	100 μM

1

LIST OF SCHEMES

Scheme

1	Synthesis of Fmoc-aegPNA monomers (54a-d)	5
2	Immobilization of ss aegPNA oligomers coated onto electrophilic	
	MNPs	6
3	Preparation of <i>aegPNA-MNPs</i> probe via carboxylate and	
	trialkoxysilane group linkers: aegPNA can either indicate PNA	
	mónomer or 10 mers	19
4	Synthesis of 2-vinyl-4,4-dimethyl-5-oxazolone, or VDM	20
5	Synthesis of <i>tert</i> -Butyl N-[2-(N'-9-fluorenylmethoxycarbonyl)	
	aminoethyl] glyceinate hydrochloride (40)	26
6	Synthesis of thymine-1-yl-acetic acid (44)	26
7	Synthesis of carbazole-9-yl-acetic acid (47)	27
8	Synthesis of carbazole-9-yl-ethyl acetate (48)	27
9	Synthesis of 3,6-disubstituted carbazole-9-yl-acetic acid (51,53)	27
10	Synthesis of Fmoc-aegPNA monomers (54a-d)	28
11	Immobilization of <i>ss aegPNA</i> oligomers onto electrophilic MNPs	29
12	Synthesis of <i>tert</i> -Butyl N-[2-(N-9-fluorenylmethoxycarbonyl)	
	aminoethyl] glyceinate hydrochloride (40)	32
13	Synthesis of thymine-1-yl-methyl acetate (43)	33
14	Synthesis of thymine-1-yl-acetic acid (44)	34
15	Synthesis of carbazole-9-yl-acetic acid (47)	35
16	Synthesis of carbazole-9-yl-ethyl acetate (48)	36
17	Synthesis of 3,6-dibromocarbazole-9-yl-ethyl acetate (49)	36
18	Synthesis of 3,6-dicyanocarbazole-9-yl-ethyl acetate (50)	37
19	Synthesis of 3,6-dicyanocarbazole-9-yl acetic acid (51)	38

LIST OF SCHEMES (CONT.)

Scheme

20	Synthesis of 3,6-dinitrocarbazole-9-yl-ethyl acetate (52)	39
21	Synthesis of 3,6-dinitrocarbazole-9-yl-acetic acid (53)	39
22	Synthesis of <i>tert</i> -Butyl N-[2-(N'-9 fluorenylmethoxycarbonyl)	
	aminoethyl]-N-[(thymine-1-yl)acetyl]glycinate (54a)	40
23	Synthesis of tert-Butyl N-[2-(N'-9 fluorenylmethoxycarbonyl)	
	aminoethyl]-N-[(carbazole-9-yl)acetyl]glycinate (54b)	41
24	Synthesis of <i>tert</i> -Butyl N-[2-(N'-9 fluorenylmethoxycarbonyl)	
	aminoethyl]-N-[(3,6-dicyanocarbazole-9-yl)acetyl]glycinate (54c)	42
25	Synthesis of <i>tert</i> -Butyl N-[2-(N'-9 fluorenylmethoxycarbonyl)	
	aminoethyl]-N-[(3,6-dinitrocarbazole-9-yl)acetyl]glycinate (54d)	44
26	Preparation of Fmoc-aegPNA acid monomers for solid phase synthesis	
	under acidic condition	46
27	Ring-opening reaction of VDM with water	48
28	Monoalkylation and dialkylation of ethylenediamine (36) with tert-	
	butyl bromoacetate (37)	50
29	Synthesis of thymine-1-yl-acetic acid (44)	52
30	Synthesis of carbazole-9-yl-acetic acid (47)	52
31	Synthesis of carbazole-9-yl-ethyl acetate (48)	53
32	Synthesis of 3,6-disubstituted carbazoles acetic acid; (a) NBS / THF /	
	rt; (b) CuCN / NMP / reflux 4 h; (c) 4M KOH / 2M HCl;	
	(d) Cu(NO ₃) ₂ .3H ₂ O / Ac ₂ O / HOAc / 30 °C	53
33	Synthesis of Fmoc-aegPNA monomers (54a-d)	57
34	Intramolecular acylation in synthetic ss aegPNA oligomers via SPPS	61

LIST OF SCHEMES (CONT.)

Scheme

Page

35	Synthesis of methyl-2-(2-(tert-butoxycarbonylamino ethylamino)					
	acetate (62)	112				
36	Synthesis of Boc-aegPNA-thymine-methyl ester monomer (63)	113				
37	Synthesis of Boc-aegPNA-thymine-COOH (64)	114				
38	Synthesis of NH ₂ -aegPNA-thymine-COOH (65)	114				
39	Reactivity of amine and hydroxyl groups	115				
40	Optimization of VDM with hydroxyl groups	117				

,

LIST OF TABLES

Table

Page

1	Thermal stability form duplex helix complexes	11
2	Sequence of ss aegPNA oligomers (56a-g)	29
3	Sequence of <i>ss aeg</i> PNA oligomers used in this investigated	45
4	Coupling efficiency and molecular mass of target ss aegPNA oligomers	
	(56a-g)	61
5	Active site on surface via carboxylic acid	64
6	Sequence of homothymine ss aegPNA oligomer (56a-c and 56g)	70
7	Sequence of ss agePNA hexamers containing carbazole derivatives	73
8	Mol eq. between Boc-aegPNA-thymine-COOH and VDM	117
9	Extinction coefficient of carbazole derivative	120
10	The coupling efficiency of each monomer	120
11	Absorption, SD and %RSD of thymine <i>aeg</i> PNA monomer at 5, 10, 30,	
	50 and 100 μM	123
12	Calculation of detection limit	125

'

LIST OF ABBREVIATIONS

δ		=	Chemical shift
μΜ		=	micromolar
μmole		=	micromole
Ac ₂ O		=	acetic anhydride
AcOH		=	acetic acid
CDCl ₃		=	deuterated chloroform
CBZ		=	carbazole
d		=	doublet
DCCBZ	4	/=	3,6-dicyanocarbazole
DCM		=	dichloromethane
DIEA		=	Diisopropylethylamine
DMF		=	N, N'-dimethylformamide
DMSO- d_6		=	deuterated dimethylsulfoxide
DNA		=	deoxyribonucleic acid
DNCBZ		=	3,6-dinitrocarbazole
equiv		=	equivalent
Fmoc		=	9-fluorenylmethoxycarbonyl
g		=	gram
h		=	hour
HATU		=	O-(7-azabenzotriazol-l-yl)-N,N,N',N"-
			tetramethyluronium hexafluorophosphate
HOBt		=	1-Hydroxybenzotriazole
HPLC		Ξ	high performance liquid chromatography
J		=	coupling constant
m		=	multiplet
MALDI-TOF		=	Matrix-assisted laser desorption/ionization-time
			of flight

LIST OF ABBREVIATIONS (CONT.)

MeCN		=	acetonitrile
MeOH		=	methanol
mg		=	milligram
MHz		=	megahertz
min		=	minute
mL		=	milliliter
mM		=	millimolar
mmol		=	millimole
MS	ç	_ =	mass spectrometry
m/z		=	mass to charge ratio
nm		=	nanometer
NMR		=	nuclear magnetic resonaace
°C		=	degree celcius
PNA		=	peptide nucleic acid or polyamide nucleic acid
ppm		=	part per million
R_{f}		=	retention factor
S		=	singlet
t		=	triplet
Т		=	thymine
TFA		=	trifluoroacetic acid
TLC		=	thin layer chromatography
UV		=	ultraviolet

1