## CHAPTER VII

## CONCLUSION

The following results are all main theorems of this dissertation:

1. Let  $S = (T(s))_{s \geq 0}$  be a nonexpansive semigroup on a real Hilbert space H. Let  $f: H \to H$  be an  $\alpha$ -contraction, let  $A: H \to H$  be a strongly positive linear bounded self adjoint operator with coefficient  $\bar{\gamma}$  and let  $\gamma$  be a real number such that  $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$ . Let  $G: H \times H \to \mathbb{R}$  be a mapping satisfying hypotheses (E1)-(E4) and  $\Psi: H \to H$  an inverse-strongly monotone mappings with coefficients  $\delta$  such that  $F(S) \cap GEP(G, \Psi) \neq \emptyset$ . Let the sequences  $\{x_n\}, \{u_n\}$  and  $\{y_n\}$  be generated by

$$\begin{cases} x_1 \in H \text{ chosen arbitrary,} \\ G(u_n, y) + \langle \Psi x_n, y - u_n \rangle + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, & \forall y \in H, \\ y_n = \beta_n x_n + (1 - \beta_n) \frac{1}{s_n} \int_0^{s_n} T(s) u_n ds, \\ x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n A) y_n, \forall n \ge 1, \end{cases}$$

where the real sequences  $\{r_n\} \subset (0, 2\delta)$ ,  $\{s_n\} \subset (0, \infty)$  and  $\{\alpha_n\}$ ,  $\{\beta_n\}$  in (0, 1) satisfy the following conditions:

(D1) 
$$\lim_{n\to\infty} \alpha_n = 0$$
,  $\sum_{n=1}^{\infty} \alpha_n = +\infty$ ,

(D2) 
$$\liminf_{n\to\infty} r_n > 0$$
,  $\lim_{n\to\infty} |r_{n+1} - r_n| = 0$ ,

(D3) 
$$\lim_{n\to\infty} s_n = +\infty$$
,  $\lim_{n\to\infty} \frac{|s_n - s_{n-1}|}{s_n} = 0$ , and

(D4) 
$$0 < a \le \beta_n \le b < 1$$
,  $\lim_{n \to \infty} |\beta_n - \beta_{n-1}| = 0$ .

Then the sequences  $\{x_n\}, \{u_n\}$  and  $\{y_n\}$  converge strongly to z which is a unique

solution in  $F(S) \cap GEP(G, \Psi)$  of the variational inequality

$$\langle (\gamma f - A)z, p - z \rangle \le 0, \quad \forall p \in F(S) \cap GEP(G, \Psi).$$

2. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let  $S_1, S_2, \ldots, S_N : C \to C$  be a finite family of asymptotically nonexpansive mappings with sequences  $\{1 + k_{p(n)}^{i(n)}\}$  respectively, such that  $k_{p(n)}^{i(n)} \to 0$  as  $n \to \infty$ ,  $h_n := \max_{1 \le i(n) \le N} \{k_{p(n)}^{i(n)}\}$  and  $\Gamma := \bigcap_{i=1}^N F(S_i)$ ,

$$\Gamma = F(S_N S_{N-1} S_{N-2} \dots S_1) = F(S_1 S_N \dots S_2) = \dots = F(S_{N-1} S_{N-2} \dots S_1 S_N).$$

Let  $A:C\to H$  be an  $\alpha$ -inverse strongly monotone mapping. Let  $\phi:C\times C\to\mathbb{R}$  be a bifunction which satisfies conditions (A1)-(A4) such that  $\Omega:=EP\cap\Gamma$  is nonempty. Let  $F:C\to H$  be  $\delta$ -strongly monotone and  $\lambda$ -strictly pseudocontractive with  $\delta+\lambda>1$ ,  $f:C\to H$  a  $\rho$ -contraction,  $\gamma$  a positive real number such that  $\gamma<(1-\sqrt{(1-\delta)/\lambda})/\rho$  and r a constant such that  $r\in(0,2\alpha)$ . For given  $x_0\in C$  arbitrarily, let the sequence  $\{x_n\}$  be generated iteratively by (3.2.2). Suppose that  $\{\alpha_n\}$  and  $\{\mu_n\}$  are two sequences in [0,1] satisfying the following conditions:

(C1) 
$$\lim_{n\to\infty} \alpha_n = 0$$
,  $\lim_{n\to\infty} \frac{\alpha_{n+1}}{\alpha_n} = 1$ ,  $\sum_{n=0}^{\infty} \alpha_n = \infty$  and  $\lim_{n\to\infty} \frac{h_n}{\alpha_n} = 0$ ;

(C2) 
$$0 < \liminf_{n \to \infty} \mu_n \le \limsup_{n \to \infty} \mu_n < 1 \text{ and } \lim_{n \to \infty} \frac{\mu_{n+1} - \mu_n}{\alpha_{n+1}} = 0.$$

Assume that  $\sum_{n=1}^{\infty} \sup_{z \in B} \|S_{i(n+1)}^{p(n+1)} z - S_{i(n)}^{p(n)} z\| < \infty$ , for each bounded subset B of C. Then, the sequence  $\{x_n\}$  converges strongly to  $x^*$  of the following variational inequality

$$\langle (F - \gamma f)x^*, x - x^* \rangle \ge 0, \quad x \in \Omega$$

or equivalently  $\tilde{x} = P_{\Omega}(I - F + \gamma f)\tilde{x}$ , where  $P_{\Omega}$  is the metric projection of H onto  $\Omega$ .

3. Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly smooth Banach space E, let A be an  $\alpha$ -inverse-strongly monotone mapping of C into  $E^*$  with  $||Ay|| \leq ||Ay - Aq||$  for all  $y \in C$  and  $q \in F$ . Let  $\{T_1, T_2, \ldots, T_N\}$  and  $\{S_1, S_2, \ldots, S_N\}$  be two finite families of closed relatively weak quasi-nonexpansive mappings from C into itself with  $F \neq \emptyset$ , where  $F := \bigcap_{i=1}^N F(T_i) \cap \bigcap_{i=1}^N F(S_i) \cap VI(A, C)$ . Assume that  $T_i$  and  $S_i$  are uniformly continuous for all  $i \in \{1, 2, \ldots, N\}$ . Let  $\{x_n\}$  be a sequence generated by the following algolithm:

```
\begin{cases} x_0 = x \in C, \text{ chosen arbitrary,} \\ C_1 = C, x_1 = \Pi_{C_1} x_0, \\ w_n = \Pi_C J^{-1} (Jx_n - r_n Ax_n), \\ z_n = J^{-1} (\alpha_n Jx_{n-1} + \beta_n JT_n x_n + \gamma_n JS_n w_n), \\ y_n = J^{-1} (\delta_n Jx_1 + (1 - \delta_n) Jz_n), \\ C_{n+1} = \{u \in C_n : \phi(u, y_n) \leq \delta_n \phi(u, x_1) + (1 - \delta_n) [\alpha_n \phi(u, x_{n-1}) + (1 - \alpha_n) \phi(u, x_n)]\}, \\ x_{n+1} = \Pi_{C_{n+1}} x_1, \quad \forall n \geq 1, \end{cases}
```

where  $T_n = T_{n(\text{mod }N)}$ ,  $S_n = S_{n(\text{mod }N)}$ , and J is the normalized duality mapping on E. Assume that  $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}$  and  $\{r_n\}$  are the sequences in [0, 1] satisfying the restrictions:

- (C1)  $\lim_{n\to\infty} \delta_n = 0$ ;
- (C2)  $r_n \subset [a, b]$  for some a, b with  $0 < a < b < c^2 \alpha/2$ , where 1/c is the 2-uniformly convexity constant of E;
- (C3)  $\alpha_n + \beta_n + \gamma_n = 1$  and if one of the following conditions is satisfied
  - (a)  $\liminf_{n\to\infty} \alpha_n \beta_n > 0$  and  $\liminf_{n\to\infty} \alpha_n \gamma_n > 0$  and
  - (b)  $\lim_{n\to\infty} \alpha_n = 0$  and  $\lim \inf_{n\to\infty} \beta_n \gamma_n > 0$ .

Then  $\{x_n\}$  converges strongly to  $\Pi_F x_1$ , where  $\Pi_F$  is the generalized projection from C onto F.

4. Let E be a uniformly convex and uniformly smooth Banach space and C be a nonempty closed and convex subset of E. Let f be a bifunction from  $C \times C$  to  $\mathbb{R}$  satisfying (A1) - (A4). Assume that A is a continuous operator of C into  $E^*$  satisfying conditions (2.3.4) and (2.3.5) and  $S,T:C\to C$  are relatively weak nonexpansive mappings with  $F:=F(S)\cap F(T)\cap VI(A,C)\cap EP(f)\neq\emptyset$ . Let  $\{x_n\}$  be a sequence generated by the following manner:

$$\begin{cases} x_0 = x \in C \text{chosen arbitrary}, C_0 = C, \\ z_n = \Pi_C(\alpha_n J x_n + \beta_n J T x_n + \gamma_n J S x_n), \\ y_n = J^{-1}(\delta_n J x_n + (1 - \delta_n) J \Pi_C(J z_n - \beta A z_n)), \\ u_n \in C \quad such \ that \ f(u_n, y) + \frac{1}{r_n} \langle y - u_n, J u_n - J y_n \rangle \ge 0, \quad \forall y \in C, \\ C_{n+1} = \{z \in C_n : \phi(z, u_n) \le \phi(z, x_n)\}, \\ x_{n+1} = \Pi_{C_{n+1}} J x \quad \forall n \ge 0. \end{cases}$$

Assume that  $\{\alpha_n\}$ ,  $\{\beta_n\}$ ,  $\{\gamma_n\}$  and  $\{\delta_n\}$  are the sequences in [0,1] satisfying the restrictions:

- (C1)  $\alpha_n + \beta_n + \gamma_n = 1;$
- (C2)  $0 \le \delta_n < 1$ ,  $\limsup_{n \to \infty} \delta_n < 1$ ;
- (C3)  $\{r_n\} \subset [a,\infty)$  for some a > 0; and
- (C4)  $\liminf_{n\to\infty} \alpha_n \beta_n > 0$ ,  $\liminf_{n\to\infty} \alpha_n \gamma_n > 0$ .

Then  $\{x_n\}$  converges strongly to  $\Pi_F x$ .

5. Let E be a strictly convex and 2-uniformly smooth Banach space which admits a weakly sequentially continuous duality mapping and has the smoothness constant K. Let  $M_i: E \to 2^E$  be a maximal monotone mapping and  $\Psi_i: E \to 2^E$ 

E a  $L_i$ -Lipchitzian and relaxed  $(c_i, d_i)$ -cocoercive mapping with  $\rho_i \in (0, \frac{d_i - c_i L_i^2}{K^2 L_i^2})$ , respectively for each i = 1, 2. Let  $\{T_n : E \to E\}_{n=1}^{\infty}$  be a countable family of uniformly  $\varepsilon$ -strict pseudo-contractions. Define a mapping  $S_n : E \to E$  by

$$S_n x = (1 - \frac{\varepsilon}{K^2})x + \frac{\varepsilon}{K^2}T_n x$$
 for all  $x \in C$  and  $n \ge 1$ .

Assume that  $\Omega := \bigcap_{n=1}^{\infty} F(T_n) \cap F(Q) \neq \emptyset$ , where Q is defined as Lemma 5.1.3. Let  $f: E \to E$  be an  $\alpha$ -contraction, let  $A: E \to E$  be a strongly positive linear bounded self adjoint operator with coefficient  $\bar{\gamma}$  with  $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$ . Let  $x_1 = u \in E$  and  $\{x_n\}$  a sequence generated by

$$\begin{cases} z_n = J_{(M_2,\rho_2)}(x_n - \rho_2 \Psi_2 x_n), \\ y_n = J_{(M_1,\rho_1)}(z_n - \rho_1 \Psi_1 z_n), \\ x_{n+1} = \alpha_n \gamma f(x_n) + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A)[\mu S_n x_n + (1 - \mu)y_n], \quad \forall n \ge 1, \end{cases}$$

where  $\mu \in (0,1)$ , and  $\{\alpha_n\}$  and  $\{\beta_n\}$  are sequences in (0,1). Suppose that  $\{S_n\}$  satisfies AKTT-condition. Let  $S: E \to E$  be the mapping defined by  $Sy = \lim_{n\to\infty} S_n y$  for all  $y \in E$  and suppose that  $F(S) = \bigcap_{n=1}^{\infty} F(S_n)$ . If the control consequences  $\{\alpha_n\}$  and  $\{\beta_n\}$  satisfy the following restrictions

(C1) 
$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1;$$

(C2) 
$$\lim_{n\to\infty} \alpha_n = 0$$
 and  $\sum_{n=1}^{\infty} \alpha_n = \infty$ ,

then  $\{x_n\}$  converges strongly to  $\tilde{x}$  which solves the variational inequality:

$$\langle (A - \gamma f)\tilde{x}, J(\tilde{x} - z) \rangle \leq 0, z \in \Omega,$$

and  $(\tilde{x}, \tilde{y})$  is a solution of general system of variational inequality problem (5.1.2) such that  $\tilde{y} = J_{(M_2, \rho_2)}(\tilde{x} - \rho_2 \Psi_2 \tilde{x})$ .

6. Let E be a real p-uniformly convex Banach space with a weakly continuous duality mapping  $J_{\varphi}$ , and C a nonempty closed convex subset of E. Let  $\{T_n: C \to C\}$  be a family of uniformly  $\lambda$ -strict pseudo-contractions with respect to

 $p, \lambda \in [0, \min\{1, 2^{-(p-2)}c_p\})$  and  $\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$ . Let  $f: C \to C$  be a k-contraction with  $k \in (0, 1)$ . Assume that real sequences  $\{\alpha_n\}$ ,  $\{\beta_n\}$  and  $\{\gamma_n\}$  in (0, 1) satisfy the following conditions:

- 1.  $\alpha_n + \beta_n + \gamma_n = 1$  for all  $n \in \mathbb{N}$ ;
- 2.  $\lim_{n\to\infty} \alpha_n = 0$  and  $\sum_{n=0}^{\infty} \alpha_n = +\infty$ ;
- $3. \ \ 0 < \liminf_{n \to \infty} \gamma_n \leq \limsup_{n \to \infty} \gamma_n < \xi, \text{ where } \xi = 1 2^{p-2} \lambda c_p^{-1}.$

Let  $\{x_n\}$  be the sequence generated by the following

$$\begin{cases} x_1 = x \in C, \\ x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n T_n x_n, & n \ge 1. \end{cases}$$

Suppose that  $\{T_n\}$  satisfies the AKTT-condition. Let T be a mapping of C into itself defined by  $Tz = \lim_{n\to\infty} T_n z$  for all  $z\in C$  and suppose that  $F(T) = \bigcap_{n=1}^{\infty} F(T_n)$ . Then the sequence  $\{x_n\}$  converges strongly to  $\tilde{x}$  which solves the variational inequality:

$$\langle (I-f)\tilde{x}, J_{\omega}(\tilde{x}-z)\rangle \leq 0, z \in F(T).$$

7. Let C be a nonempty, bounded, closed and convex subset of a smooth, strictly convex and reflexive Banach space E, let  $T:C\to E^*$  be an  $\eta$ -hemicontinuous and relaxed  $\eta-\xi$  monotone mapping. Let f be a bifunction from  $C\times C$  to  $\mathbb R$  satisfying (A1), (A3) and (A4) and let  $\varphi$  be a lower semicontinuous and convex function from C to  $\mathbb R$ . Let r>0 and  $z\in C$ . Assume that

- (i)  $\eta(x,y) + \eta(y,x) = 0$  for all  $x,y \in C$ ;
- (ii) for any fixed  $u, v \in C$ , the mapping  $x \mapsto \langle Tv, \eta(x, u) \rangle$  is convex and lower semicontinuous;

(iii)  $\xi : E \to \mathbb{R}$  is weakly lower semicontinuous; that is, for any net  $\{x_{\beta}\}, x_{\beta}$  converges to x in  $\sigma(E, E^*)$  which implies that  $\xi(x) \leq \liminf \xi(x_{\beta})$ .

Then, the solution set of the problem (6.1.2) is nonempty; that is, there exists  $x_0 \in C$  such that

$$f(x_0,y)+\langle Tx_0,\eta(y,x_0)\rangle+\varphi(y)+rac{1}{r}\langle y-x_0,J(x_0-z)\rangle\geq \varphi(x_0), \quad \forall y\in C.$$

8. Let E be a uniformly convex and smooth Banach space and let C be a nonempty, bounded, closed and convex subset of E. Let f be a bifunction from  $C \times C$  to  $\mathbb{R}$  satisfying (A1)-(A4). Let  $T: C \to E^*$  be an  $\eta$ -hemicontinuous and relaxed  $\eta - \xi$  monotone mapping and let  $\{S_n\}_{n=0}^{\infty}$  be a sequence of nonexpansive mappings of C into itself such that  $\Omega := \bigcap_{n=0}^{\infty} F(S_n) \cap EP(f,T) \neq \emptyset$ . Let  $\{x_n\}$  be the sequence in C generated by

$$\begin{cases} x_0 \in C, D_0 = C, \\ C_n = \overline{co} \{z \in C : \|z - S_n z\| \le t_n \|x_n - S_n x_n\|\}, & n \ge 0, \\ u_n \in C \text{ such that} \\ f(u_n, y) + \varphi(y) + \langle Tu_n, \eta(y, u_n) \rangle + \frac{1}{r_n} \langle y - u_n, J(u_n - x_n) \rangle \ge \varphi(u_n), \forall y \in C, n \ge 0, \\ D_n = \{z \in D_{n-1} : \langle u_n - z, J(x_n - u_n) \rangle \ge 0\}, & n \ge 1, \\ x_{n+1} = P_{C_n \cap D_n} x_0, & n \ge 0, \end{cases}$$

where  $\{t_n\}$  and  $\{r_n\}$  are sequences which satisfy the conditions:

(C1) 
$$\{t_n\} \subset (0,1)$$
 and  $\lim_{n\to\infty} t_n = 0$ ;

(C2) 
$$\{r_n\} \subset (0,1)$$
 and  $\liminf_{n\to\infty} r_n > 0$ .

Assume that  $\{S_n\}_{n=0}^{\infty}$  satisfy the NST-condition. Then, the sequence  $\{x_n\}$  converges strongly to  $P_{\Omega}x_0$ .

9. Let E be a uniformly convex and smooth Banach space and let C be a nonempty, bounded, closed and convex subset of E. Let f be a bifunction from  $C \times C$  to  $\mathbb{R}$  satisfying (A1)-(A4), A an  $\alpha$ -inverse strongly monotone mapping of C into  $E^*$  and  $\{T_n\}_{n=0}^{\infty}$  a sequence of nonexpansive mappings of C into itself such that  $\Omega := \bigcap_{n=0}^{\infty} F(T_n) \cap GEP(f) \neq \emptyset$  and suppose that  $\{T_n\}_{n=0}^{\infty}$  satisfies the NST-condition. Let  $\{x_n\}$  be the sequence in C generated by

$$\begin{cases} x_0 \in C, D_0 = C, \\ C_n = \overline{co}\{z \in C: \|z - T_n z\| \le t_n \|x_n - T_n x_n\|\}, & n \ge 1, \\ u_n \in C \text{ such that } f(u_n, y) + \langle A u_n, y - u_n \rangle + \frac{1}{r_n} \langle y - u_n, J(u_n - x_n) \rangle \ge 0, \forall y \in C, n \ge 0, \\ D_n = \{z \in D_{n-1}: \langle u_n - z, J(x_n - u_n) \rangle \ge 0\}, & n \ge 1, \\ x_{n+1} = P_{C_n \cap D_n} x_0, & n \ge 0, \end{cases}$$
 where  $\{t_n\}$  and  $\{r_n\}$  are sequences which satisfy the conditions:

(C1) 
$$\{t_n\} \subset (0,1)$$
 and  $\lim_{n\to\infty} t_n = 0$ ;

(C2) 
$$\{r_n\} \subset (0,1)$$
 and  $\liminf_{n\to\infty} r_n > 0$ .

Then, the sequence  $\{x_n\}$  converges strongly to  $P_{\Omega}x_0$ .