CHAPTER VI

EXISTENCE AND ITERATIVE APPROXIMATION FOR
EQUILIBRIUM PROBLEMS AND FIXED POINT

PROBLEMS IN BANACH SPACES

6.1 Existence theorems and iterative approximation methods for gen-
eralized mixed equilibrium problems for a countable family of non-

expansive mappings

In this section, we introduce the new generalized mixed equilibrium prob-

lem basing on hemicontinuous and relaxed monotonic mapping.

For solving the mixed equilibrium problem, let us assume the following

conditions for a bifunction f:

(A1) f(z,z) =0 for all x € C;

(A2) f is monotone, i.e. f(z,y)+ f(y,z) <0 for all z,y € C;
(A3) for all y € C, f(-,y) is weakly upper semicontinuous;
(A4) for all z € C, f(z,-) is convex.

Let f: C x C — R be a bifunction and ¢ : C — R a real-valued function.

We consider the following new generalized mixed equilibrium problem :
Find z € C such that f(z,y) + (Tz,n(y, z)) + p(y) > (z), YyeC. (6.1.1)

The set of such z € C is denoted by EP(f,T), i.e.,

EP(f,T) ={z € C: f(z,y) + (Tz,n(y,2)) + ¢(y) > ¢(z), Yy € C}.

Using the KKM technique, we obtain the existence of solutions for the

generalized mixed equilibrium problem in a Banach space. Furthermore, we also
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introduce a hybrid projection algorithm for finding a common element in the solu-
tion set of a generalized mixed equilibrium problem and the common fixed point

set of a countable family of nonexpansive mappings.

Lemma 6.1.1. Let C be a nonempty, bounded, closed and conver subset of a
smooth, strictly convexr and reflexive Banach space E, let T : C — E* be an n-
hemicontinuous and relazed n — & monotone mapping. Let f be a bifunction from
C x C to R satisfying (A1) and (A4) and let ¢ be a lower semicontinuous and

convez function from C to R. Let r > 0 and z € C. Assume that

) iilg,2)=0, YIel.

(ii) for any fized u,v € C, the mapping x — (T'v,7n(zT,u)) is conver.

Then the following problems (6.1.2) and (6.1.3) are equivalent:
Find x € C such that

f(z,y9) + o(y) + (Tz,n(y,z)) + %(y —z,J(z — 2)) > p(z), Vy € C; (6.1.2)

Find © € C such that

Fl,u) + Ty, n(u,2)) + 9(3) + -y = 2, J(@ — 2)) 2 ¢(@) + £y —2), W € C.

(6.1.3)

Proof. Let = € C be a solution of the problem (6.1.2). Since T is relaxed 1 — ¢

monotone, we have

() + Ty, o, 2) + 0ly) + —(y = 7, (s = 2)
> flau) +&y—2) + o) + -y — 2, J(@ ~ 2)) + (T20(y,2))

> p(z)+&(y—z), Vyel. (6.1.4)

Thus z € C is a solution of the problem (6.1.3).
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Conversely, let z € C be a solution of the problem (6.1.3). Letting
y=01-t)z+ty, Vte(0,1), (6.1.5)
then v, € C. Since z € C is a solution of the problem (6.1.3), it follows that

F(au) + (T (e D)) + 9l + (o — 2, (5 = 2)
> () +&(y: — x)

= () + tP&(y — x). (6.1.6)

Using (i), (ii), (A1) and (A4), we have

(Tye, 0y, x)) < (1 =t)(Tys,n(z, ) +t{Ty:, n(y, 7))
= Tz + tly — %)), n(y, =) (6.1.7)
and
flz,y) < (A —=8)f(z,2)+tf(z,y) =tf(z,y) (6.1.8)

The convexity of the function ¢ implies that

o(y) = o((1=t)a+ty) < (1—t)p(z) + te(y)- (6.1.9)

It follows from (6.1.6)-(6.1.9) that

tf(z,y) + t{T(z +tly — )0y, 2)) +to(y) > f(@,9) + (Tye 0y, 7)) + @(ye)

— (1 - (). (6.1.10)
Moreover, we observe that

%(yt —z,J(x—2) = =(Q-t)z+ty—=x,J(x—2))

(t(y — ), J(z — 2))

el
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= ;(y—m, J(z — 2)). (6.1.11)

From (6.1.6) and (6.1.10), we obtain

1 (@,9) + LT+ tly — ), 1y, 2)) + bply) + -ty — 2, (@ = 2)

> f(.’L', yt) + (Tyh n(yt, $)> + So(yt)
~ (1~ () + o — 5, (@~ 2)
2 gle) + FEg =) — (L )ple)
= tp(z) + PE(y — 2).
Hence
Flz,u) + (T -+ y — 2)), 109, 2)) + 9(3) + ~{y = 3, Iz 2)
> g(z) + ey ). (61.13)

Since T is n-hemicontinuous and p > 1, taking ¢t — 0 in (6.1.13), we get

J(z,5) + (T2, g, 2) + 0o) + -y = 5, J( — 2) = pla), VyeC.

Therefore,  is also a solution of the problem (6.1.2). This completes the proof. [J

Next we use the concept of KKM mapping to prove the following two lemmas

for our main result.

Lemma 6.1.2. Let C be a nonempty, bounded, closed and convez subset of a
smooth, strictly convex and reflexive Banach space E, let T : C — E* be an n-
hemicontinuous and relazed 1 — & monotone mapping. Let f be a bifunction from
C x C to R satisfying (A1), (A3) and (A4) and let ¢ be a lower semicontinuous

and convex function from C to R. Let r > 0 and z € C. Assume that

(1) n(z,y) +n(y,x) =0 for all z,y € C;
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(i) for any fized u,v € C, the mapping x — (Tv,n(x,u)) is conver and lower
semicontinuous;

(iii) € :+ E — R is weakly lower semicontinuous; that is, for any net {zs},zp

converges to x in o(E, E*) which implies that £(z) < liminf {(zp).

Then, the solution set of the problem (6.1.2) is nonempty; that is, there exists

o € C such that

F(z0,9) + (T, 1y, 20)) + (3) + ~(y = 0, (30 ~ 2)
> (o), Vy € C.
(6.1.14)

Proof. Let z € C. Define two set-valued mappings F;, G, : C — 2F as follows:
1
Ruw) = {# € 0 o) + 0l 2) + )+ 1o = T(a =) 2 9(0)
and

6.t) = {= € C So0) + 2 +000)+ H =05 =2 2 ) + €0 -

for every y € C. It is easily to seen that y € F,(y) and y € G.(y), and hence
F.(y) # 0 and G,(y) # 0.

(a) We claim that F, is a KKM mapping. If F, is not a KKM mapping,

then there exist {y;,...,y,} C C and t; > 0,4 =1,...,n, such that
Zti =l; Y= Ztiyi ¢ UFz(yi)- (6.1.15)
=1 =1 =1

By the definition of F,, we have

fy,w) + Ty, n(yi, 9)) + o(y:) — p(y) + %(yi —y,J(y—2)) <0, Vi=1,...,n
(6.1.16)
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It follows from (A1), (A4), (ii) and the convexity of ¢ that

0 = fly,y)+ (Ty,n(y,y)) +(y) — p(y) + %(y 0, Jg—~2))

< 3t (10,9 + (Tl ) + o) — o) + 1= Ty =29

1=1

£ ), (6.1.17)

which is a contradiction. This implies that F, is a KKM mapping.

(b) We claim that G, is a KKM mapping. It is sufficient to show that
F,(y) C G:y), VyeC. (6.1.18)
For any given y € C, taking = € F,(y), then
Fle,u) + (T2 0y, ) + o) - o(z) + 2y =5, J@=2) 20.  (61.19)
It follows from (6.1.19) and the relaxed n — £ monotonicity of 7" that

Flz,u) + (T2 0y, ) + o) - (&) + ~{y =7, J( = 2)

%

£(2,9) + (T2, (9, 2)) + £ — 2) + ply) — p() + -y — 3, Iz — 2)

> £y a). (6.1.20)
It follows that z € G,(y) and so
F.(y) C G:y), VyeC. (6.1.21)

This implies that G, is also a KKM mapping.

(c) Next, we show that G (y) is closed for all y € C. Let {on} be a sequence

in G,(y) such that g, — p as n — co. It then follows from g, € G.(y) that,

f(on,y) + (Ty,n(y, 0n)) + p(y) + %(y = 2y F0n — 2))
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> (o) +&(y — en)- (6.1.22)

By (A3), (ii), the continuity of J, and the lower semicontinuity of ¢, and || - [|?,

we obtain from (6.1.22) that

w(o) +£&(y — o) + (Ty,n(e,y))

IN

lim inf ¢(g,) + liminf &(y — g,) + lim inf(T'y, n(on, y))

IN

lim inf(¢(en) + £(y — n) + (T'y,1(en,y)))

lim sup(p(2n) + £(u — 0n) + (Ty, 7(0n,¥)))

n—o0

lim sup(¢(en) + £(y — on) — (Ty,1(y, o))

n—00

im sup(f (en, ) + (0) + 0 = 0, /(20 — 2)

n—o0

IA

IA

= tmsup(/(ony) + p(6) + -y~ 5 J(0a — ) + (2 = ear I(ea — 2))

n—o0

— timsup(f(en 9) + 9u) + -y ~ 2, (on — 2)) — ~ll2 — all)

n—00

IN

: o g
lim sup(f (en, y) + @(y)) + limsup ~(y — 2, J(on — 2)) — ~lim inf ||z — enll”

n—o0 n—oo

IA

fle,y) +o(y) + %(y— z,J(o—2)) — %IIQ— z||?

IA

flo,y) +o(y) + %(y— Zrdln—2)) — %(9— gl = 2))

= Jlow) + o)+ {0, J(e— ). (61.23)
Thus,
fo,y) + (Ty,n(y, 0) + »(y) + %(y —0,J(0—2)) > v(0) +&(y — 0)-

This shows that ¢ € G,(y) and hence G,(y) is closed for all y € C.

(d) We prove that G,(y) is weakly compact. Indeed, we equip E with the
weak topology. Then C, as a closed bounded convex subset in a reflexive space, 1s

weakly compact. Hence G,(y) is also weakly compact.
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By using (a)-(d) and Lemma 6.1.1 and Lemma 2.1.76 that

() F:() = () G:-lw) # 0.

yeC yeC

Hence there exists zo € C satisfying the inequality (6.1.14). This completes the

proof. £

Motivated by Takahashi and Zembayashi [63], and Ceng and Yao [69], we
next prove the following crucial lemma concerning the generalized mixed equilib-

rium problem in a strictly convex, reflexive and smooth Banach space.

Lemma 6.1.3. Let C be a nonempty, bounded, closed and convex subset of a
smooth, strictly convex and reflerive Banach space E, let T : C — E* be an n-
hemicontinuous and relazed 1 — & monotone mapping. Let f be a bifunction from
C x C to R satisfying (A1)-(A4) and let ¢ be a lower semicontinuous and conver

function from C to R. Let r > 0 and and define a mapping ®, : E — C as follows:

0.(@) = {2 € C ) + (T2unly, ) +1000) + 10 = 2.9 =)

> ¢(z2),Vy € C} (6.1.24)

for all x € E. Assume that

(i) n(z,y) + n(y,z) =0, for all z,y € C;

(ii) for any fired u,v € C, the mapping z — (Tv,n(z,u)) is convezr and lower

semicontinuous and the mapping x — (Tu,n(v,x)) is lower semicontinuous;
(i) € : E — R is weakly lower semicontinuous;

() for any z,y € C, &(z —y) +&(y —x) 2 0.

Then, the following holds:
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(1) @, s single-valued;
(2) (®,x — @y, J(P,z — z)) < (P2 — Py, J(P,y —y)) forall z,y € E;

(4) EP(f,T) is closed and convez.

Proof. For each z € E, by Lemma 6.1.2, we conclude that ®,(z) is nonempty.

(1) We prove that ®, is single-valued. Indeed, for z € E and r > 0, let 2,

2 € ®,z. Then,

(21,22) + {Toa, ez, m2)) + 0lan) + 2 = 21, (1 = ) 2 (1)
and

Flea, ) + (T mlen, ) +9(a1) + ar = 20, (2 = ) 2 ().

Adding the two inequalities, from (i) we have

f(z2,21) + f(21,22) + (Tz1 — Tz2, (22, 21)) + —71:(z2 —z1,J(z1 —x) — J(22—1x)) > 0.

(6.1.25)
From (A2), we have
(T2 — Tap, (22, 21)) + %(22 =2, T2l — Jim—a]) =0, (6.1.26)
That is,
%(22 — STl — ) — o — 2]} = W — Ton, il 21 (6.1.27)

Since T is relaxed n — £ monotone and r > 0, one has

(20 — 21, (21 — T) — J(22 — T)) > 7€(22 — 21) (6.1.28)
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In (6.1.27) exchanging the position of z; and z,, we get

1

;(Zl — 29, J(22 . .’L‘) L~ J(Zl o .’L')) > (T21 = TZQ, T](Z], ZQ)), (6129)
that is,
(21 — 22, J (22 — ) — J(21 — x)) > r€(21 — 22) (6.1.30)

Now, adding the inequalities (6.1.28) and (6.1.30), by using (iv) we have

Aze — 21, (21 —z) — J(22 — 2)) > 7(€(22 — 21) + £(21 — 22)) > 0. (6.1.31)
Hence,
0<(zg—2,J(z1 — 1) —J(22— 1)) = (22 — ) — (21 — 2), J (21 — ) — J (22 — T)).

Since J is monotone and FE is strictly convex, we obtain that z; — z = 2, — z and

hence z; = zo. Therefore S, is single-valued.

(2) For z,y € C, we have
F(@ 2, B ) (T, 1, By 5)) 4o () —p(®,2) (B~ 0, (B -2)) > 0
and
£(@,,,2) + (T, (%2, B9))+(2r2)—p(Bry) +—(Br— 2y, J(Bry—1)) 2 0

Adding the above two inequalities and by (i) and (A2), we get

1
(T, x — TPy, n(Py, 7)) + —(Pry — Oz, J(Prz —2) — J(Pry —y)) >0
T

(6.1.32)
that is,

1
(®,y — Oz, J(,x — ) — J(Dpy —y)) > (TPy— TPz,n(Pry, Prx))

T
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> £y — B,). (6.1.33)
In (6.1.33) exchanging the position of ®,z and ®,y, we get
N z— 0y, J(Bey —y) — S(Bz—2)) 2 6@ Doy). (6.1.34)
Adding the inequalities (6.1.33) and (6.1.34), we have

2(®,y — @,x, J(®,x — x) — J(Dry — y)) = r(§(Drz — ®.y) + £(2,y — 2,7)).

(6.1.35)
It follows from (iv) that
(®,y — @z, J(Prz — ) — J(Pry —y)) > 0. (6.1.36)
Hence
(®z — Pry, J (P — 7)) < (D,2 — By, J(Dry — V))- (6.1.37)

(3) Next, we show that F(®,) = EP(f,T). Indeed, we have the following:

ue F(®,) & u=9du
& Jwy)+ (Tuny,w) + o) + -y~ w Jw—w) 2 plw), VyeC
& flu,y) +(Tu,n(y,w) +(y) > p(u), Vyel
o ue EP(f,T). (6.1.38)

Hence, F(®,) = EP(f,T).

(4) Finally, we prove that EP(f,T) is closed and convex. For each y € C,

we define the mapping G : C — 2F by

Gly) ={z € C: f(z,y) + (Tz,n(y,x)) + v(y) = ¢(2)}-



148

Since y € G(y), we have G(y) # 0. We prove that G is a KKM mapping on
C. Suppose that there exists a finite subset {z1, 22, ..., zm} of C and a; > 0 with
Yoy a; = 1such that 2 =3 &;2; € G(2) for all i = 1,2,...,m. Then

f2,2z)+ (Tz,n(z, 2)) + o(z:) —p(2) <0, 1=1,2,...,m.

From (A1), (A4), (i) and the convexity of ¢, we have

0= f(2,2) +(T2,n(z,2)) + () — p(2)

L ( Zajz,) +(T2,n(j§ajzj, )H‘P(Z%%) o(3)

o (f(2,25) + (T2,n(z, 2) + p(2;) — p(2))

Ms

1

A

which is a contradiction. Thus G is a KKM mapping on C.

Next, we prove that G(y) is closed for each y € C. For any y € C, let {z,}
be any sequence in G(y) such that z, — z5. We claim that zo € G(y). Then, for

each y € C, we have

[(@n,y) + (TZ0, 0y, z2)) + ©(¥) > @(z0)-

By (A3), (i), (ii) and the lower semicontinuity of of ¢, we obtain the following

¢(z0) + (T'zo,1(zo,y)) < liminf o(z,) + lim inf(Tzn, 17(2n, y))

< liminf(¢(zn) + (T2n, n(zn,9)))
= liminf(p(zn) — (TZa, 7(y, Tn)))
< liin_’solip(‘/’(xn) — (T20,n(y, 0)))
£ limsup(f(za,y) + e(y))

< f(=o,y) + »(y)-

Hence,

f(@o,y) + (Tzo.n(y, T0)) + (y) > @(T0)-
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This shows that zo € G(y) and hence G(y) is closed for each y € C. Thus

EP(f,T) =[\,ec G(y) is also closed.

Next, we observe that G(y) is weakly compact. In fact, since C' is bounded,
closed and convex, we also have G(y) is weakly compact in the weak topology. By

Lemma 2.1.76, we can conclude that (), G(y) = EP(f,T) # 0.

Finally, we prove that EP(f,T) is convex. In fact, let u,v € F(®,) and
z=tu+ (1 —t)vfor t € (0,1). From (2), we know that

(P,u — B2, J(Prze — 2) — J(Pru —u)) > 0.
This yields that
<'I_L — (I),-Zt, J((I),—Zt - Zt)> 2 0. (61_39)

Similarly, we also have

('U = <I>,.zt, J(@rzt = Zt)) > 0. (61.40)

It follows from (6.1.39) and (6.1.40) that

”Zt = (I)rzt“2 = <2t — Pz, J(Zt - q)rzt)>
= tlu—D,2,J(z — Br2)) + (1 — t)(v — P2z, J (20 — Dr2y))

0.

IN

Hence z; € F(®,) = EP(f,T) and hence EP(f,T) is convex. This completes the

proof. a

Next, we prove a strong convergence theorem by using a hybrid projection

algorithm in a uniformly convex and smooth Banach space.

Theorem 6.1.4. Let E be a uniformly convex and smooth Banach space and let C

be a nonempty, bounded, closed and conver subset of E. Let f be a bifunction from
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C x C to R satisfying (A1)-(A4). Let T : C — E* be an n-hemicontinuous and
relazed 7 — £ monotone mapping and let {S,}52, be a sequence of nonezpansive
mappings of C into itself such that Q == (\ory F(S,) NEP(f,T) # 0. Let {z,} be
the sequence in C generated by

(

| To € C,Dy=C,

C.=co{z € C: ||z — Spz|| L tpllxn — Snzs|l}, n >0,

Uy € C such that

[ (ny y) + @(y) + (Ttin, (Y, wn)) + 72y — tn, J (Un — Tn)) > @(un), ¥y € C,n 20,

D,={z€D;;:{(upn—2,J(xp, —u,)) 20}, n=>1,

L$n+l = PC,.nD,,l?O, n >0,

(6.1.41)

where {t,} and {r,} are sequences which satisfy the conditions:

(C1) {t.} C (0,1) and lim,, o0 t, = 0;

(C2) {r,} € (0,1) and liminf,_ .7, > 0.

Assume that {S,}2, satisfy the NST-condition. Then, the sequence {x,} converges

strongly to Poxg.-

Proof. Firstly, we rewrite the algorithm (6.1.41) as the following :

(

To € Cv DO = Ca
Co=00{2 €C: ||z — Spz| L tulltn — Snzall}, n>1,

Dn = {Z € Dn—l : (‘I).,-,_.Z'n -2, J(-Tn - q)rnxn» 2 0}7 n Z 17

[ Tn+1 = Pc,np,To, mn >0,

where @, is the mapping defined by (6.1.24) for all » > 0. We first show that the

sequence {z,} is well-defined. It is easy to verify that C,, N D, is closed and convex
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and Q C C, for all n > 0. Next, we prove that Q C C, N D,,. Since Dy = C, we
also have 0 € Cy N Dy. Suppose that Q@ C Cr_y N Dy_; for k > 2. 1t follows from

Lemma 6.1.3 (2) that
(@, zk — @r, 0, J (P, u — uw) — J(Pr, Tk — z1)) 2 0,
for all w € 2. This implies that
(P, — u, J(zk — Prozk)) > 0,

for all v € Q. Hence 2 C D;. By the mathematical induction, we get that
Q2 c C,N D, for each n > 0 and hence {z,} is well-defined. Put w = Pqzo. Since

Qc C,ND, and z,,1 = Pc,np,To, we have

a1 — zoll < [lw — zoll,7 = 0. (6.1.43)
Since T4 € Dypyy C D, and z,41 = Pc,np, %o, We have

[zn+1 — zoll < l|Tns2 — Zol|-

This implies that {||z, — ||} is nondecreasing and hence lim,, .« |2, — o|| = d for
some a constant d. Moreover, by the convexity of D,,, we also have '%(.'En_*_] +Zpyo) €
D,, and hence

Tnt1 + Tn2

”550 = $n+1” < 9

To —

1
< 5 (ll50 = @wnall + llzo = zasall)-

This implies that

Tnt1 + Tnt2
2

n—oo n—oo

. 1 1

lim | =(Zo — Tn+1) + 5(To — Tn+2)
2 2

By Lemma 2.1.45, we have

nango |8y = Znsall = 0. (6.1.44)
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Since {z,} is bounded, there exists a subsequence {z,, } of {z,} such that
Zn, =~ Z€C ask— o0 (6.1.45)

Next, we show that z € (.2, F(S,). Since z,41 € C, and t, > 0, there exists
meN, {Xo, A1,---,Am} C[0,1] and {yo,¥1,---,Ym} C C such that

m
Tny1 — Z AilYi

m

Z/\izl,

<t,, and [|y; — Sl £ ol — Sy

=0 i=0
for each 2 =0,1,...,m. Since C is bounded, by Lemma 2.1.46, we have
lon = Suzall < N7m = mrall + [[msn = 30 Mgl + || 30 A = D Ao
i=0 i=0 i=0

+ ” i AiSnyi — Sn(i /\iyi)ll +
i=0 i=0

20 = Zasall + 1+ > Aillss — Suvil

Sn(i )‘iyi) = Snzn
=0

<
=0
m
=1
#7 (| max (s = well = 1Sa; — Suail)) + | > = an
S “.’L‘n - x"'H” +in+ t"M + ”xn+1 i -’rn”

+’)’-1( max (|ly; — Say;ll + llyk — Snykn)) 240 “ Z A\iYi — Tn
=0

0<j<k<m

< 2T — Tnga |l + (2 4+ M)t, + 71 (2ML,,),

where M = sup,,5q||Zn — SnuZa|l. Applying (C1) and (6.1.44) into the above in-

equality, we obtain
lim ||z, — Spza| = 0. (6.1.46)
n—oo

In particular, we obtain
lim [ = S5, Ta, il = 0. (6.1.47)
k—o0

Using (6.1.45), (6.1.47) and the NST-condition, we have & € (o, F'(S)-
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Next, we show that £ € EP(f,T). By the construction of D,,, we see from

Theorem 2.1.44 that ®, x,, = Pp, T,. Since z,,; € D,, we obtain
”-'L'n = (I)rnxn” 8 || xn+l” — 0,

as n — oco. From (C2), we also have

1

Tn

Jxg =B 25)

1
= —llzn = ®r.2a]| = 0, (6.1.48)

as n — oco. By (6.1.48), we also have ®,, z,, — Z. By the definition of ®,, , for

each y € C, we obtain

1
f(q)rnk-'znka y) + <T<I)rnkxnk7 77(1/7 ankxnk» * <p(y) + ',r_<y L (brnkxnka J(q)rnkm"k i zﬂk))

N
> W(‘prnk Tny)-

By (A3), (6.1.48), (ii), the weakly lower semicontinuity of ¢ and 7n-hemicontinuity

of T we have

p(z) < liminfp(P,,, zn,)
< liminf f(®,, T,,,y) + Uminf(TP,, Tn,, 0y, Pr., Tn,))
k—o0 k k—o0 L3 k
ik
+ cp(y) W liIEH inf —'<y - (I)rnkxﬂkv J((I)Tnkxnk - Z"k)>
—00 Nk
< f(@y) +ey) + (Tz,1(y, 7))
Hence,

f(@,9) + o(y) + (Tz,n(y, T)) > p(T).

This shows that Z € EP(f,T) and hence Z € Q := (o, F(S,) N EP(f,T).

Finally, we show that z,, — w as n — oo, where w := Pozo. By the weakly

lower semicontinuity of the norm, it follows from (6.1.43) that

0 — wl < llz — &l| < liminf [lzg — 2, || < lim sup 2 — oyl < llz0 — wl.
n, 15
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This shows that
lim ||z — T, || = llzo — || = [lz0 — 7|
k—o0
and T = w. Since E is uniformly convex, we obtain that o — z,, — Zo — w.

It follows that z,, — w. So we have z, — w as n — 00. This completes the

proof. O

Applying Lemma 2.1.48 and Theorem 6.1.4, we obtain the following results

immediately.

Corollary 6.1.5. Let E be a uniformly convez and smooth Banach space and let
C be a nonempty, bounded, closed and convez subset of E. Let f be a bifunction
from C x C to R satisfying (A1)-(A4). Let T : C — E* be an n-hemicontinuous
and relazed 1—& monotone mapping and let {S,}52 ¢ be a sequence of nonexpansive
mappings of C into itself such that Q := (Voo F(Sa) N EP(f,T) # 0. Let {85} be

a family of nonnegative numbers with indices n,k € N with k <n such that

(i) Z};l ﬂ,’i =1 for every n € N;

(ii) lim, ., 8% > 0 for every k € N

and let Gn = anl + (1 — o) Sor_, BESy, for alln € N, where {an} C [a,b] for some

a,be (0,1) with a <b. Let {z,} be the sequence in C generated by

(

zo € C,Dg=C,

Co=700{z € C: |z — Gnz|| < tu|zn — Gazall}, 720,

u, € C such that

F(ttnyy) + 0Y) + (T, 1Y, un)) + 7=y — tn, I (Un — Tn)) Z p(un),Vy € C,n 20,

Dnz{zeDn—l:<un_zaJ(xn—un))20}v n>1,

an+1 = PC,,nD,,ﬂf‘O’ n >0,

where {t,} and {r,} are sequences which satisfy the conditions:
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(C1) {t,} € (0,1) and lim, oo t, =0;

(C2) {rn,} C (0,1) and liminf, o7, > 0.

Then, the sequence {z,} converges strongly to Poxo.

If we take S, = S, a nonexpansive mapping on C, for all n > 0 in Theorem

6.1.4, then we obtain the following result.

Theorem 6.1.6. Let E be a uniformly convexr and smooth Banach space and let
C be a nonempty, bounded, closed and convex subset of E. Let f be a bifunction
from C x C to R satisfying (A1)-(A4). Let T : C — E* be an n-hemicontinuous
and relazed n — £ monotone mapping and let S be a nonexpansive mapping of C
into itself such that Q := F(S)N EP(f,T) # 0. Let {z,} be the sequence in C

generated by

.

9 € C,Dy = C,

Co=7t0{2€C :||z— 82| <tullza— Sznfl}, n=0,

u, € C such that

f(tn, y) + @(Y) + (T, (Y, n)) + 7y — Un, J(un — T4)) = 9(ua),Vy € C,n >0,

D,={z€Dy_y:(upn—2,J(xp —u,)) >0}, n>1,

\$n+l o PCnnan(h n Z 0)

where {t,} and {r,} are sequences which satisfy the conditions:

(C1) {t.} C (0,1) and lim, o t, =0;

(C2) {r,} C (0,1) and liminf, 7, > 0.
Then, the sequence {x,} converges strongly to Pox.

If we take T'= 0 and ¢ = 0 in Theorem 6.1.4, then we obtain the following

result concerning an equilibrium problem in a Banach space setting.
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Theorem 6.1.7. Let E be a uniformly convex and smooth Banach space and let C
be a nonempty, bounded, closed and convex subset of E. Let f be a bifunction from
C x C to R satisfying (A1)-(A4) and let {S,}>°, be a sequence of nonezpansive
mappings of C into itself such that Q := (oo o F(S,)NEP(f) # 0. Let {z,} be the
sequence in C generated by

;

zog € C,Dg =C,
C,=c0{z€C:|z— Suz| < tallzn — Snzall}, n>0,
 un € C such that f(u,,v)+ i(y — Up, J(un — x,)) > 0,Vy € C,n > 0,

Dnz{zeDn—1:(un_zaJ(xn_un))20}7 n21

3

| Znt1 = Pe.np,To, 1 2>0,

(6.1.49)

where {t,} and {r,} are sequences which satisfy the conditions:

(C1) {t.} c (0,1) and lim,,_.st, = 0;

(C2) {r.} € (0,1) and liminf, . r, > 0.

Assume that { S, }22, satisfy the NST-condition, the sequence {z,} converges strongly

to PQIL‘().

If we take f =0 and T = 0 and ¢ = 0 in Theorem 6.1.4, then we obtain

the following result.

Theorem 6.1.8. Let E be a uniformly conver and smooth Banach space, C a
nonempty, bounded, closed and conver subset of E and {S,}32, a sequence of
nonezpansive mappings of C into itself such that  := (., F(Sn) # 0 and suppose

that {S,}22, satisfies the NST-condition. Let {x,} be the sequence in C generated
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o € C,Dy = C,
Cn =00{z € C: ||z — Spz|| < tullzn — Suzall}, n >0, (6.1.50)
Topin—="PeoiToy =20

If {t,} C (0,1) and lim,_,oo t, =0, then {z,} converges strongly to Paxo.

Remark 6.1.9. By Lemma 2.1.48, if we define T,, = o,/ + (1 — an) Y p, BES), for

all n >.0 in Theorem 6.1.7 and Theorem 6.1.8, then the theorems also hold.

6.2 Existence and iterative approximation for generalized
equilibrium problems for a countable family of

nonexpansive mappings in Banach spaces

The purpose of this section we first prove the existence of a solution of the
generalized equilibrium problem (GEP) by using the KKM mapping in a Banach
space setting. We construct a hybrid algorithm for finding a common element in
the solution set of a generalized equilibrium problem and the fixed point set of a

countable family of nonexpansive mappings in Banach spaces.

Let f : CxC — R be a bifunction and A : C — E* be a nonlinear mapping.

We consider the following generalize equilibrium problem (GEP):
Find u € C such that f(u,y) + (Au,y —u) >0, VyeC. (6.2.1)
The set of such u € C is denoted by GEP(f), i.e.,
GEP(f)={uveC: f(u,y)+ (Au,y —u) >0, Yy € C}.

Theorem 6.2.1. Let C be a nonempty, bounded, closed and convezr subset of a
smooth, strictly convexr and reflexive Banach space E, let f be a bifunction from

C x C to R satisfying (A1)-(A4), where

(A1) f(z,z) =0 for allz € C;
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(A2) f is monotone, i.e. f(z,y)+ f(y,z) <0 for all z,y € C;
(A3) for ally € C, f(.,y) is weakly upper semicontinuous;
(A4) for allz € C, f(z,.) is conver.

Let A be a-inverse strongly monotone of C into E*. For allT > 0 and x € E,

define the mapping S, : E — 2€ as follows:
5= {2 C: o y)+(Az,y—z)+%(y—z,J(z-x)) >0, WyeC). (622)
Then the following statements hold:
(1) for each z € E, S.(z) # 0;
(2) S, is single-valued;
(3) (Sr(x) = Sr(y), J(S;x — z)) < (S(2) — S:(y), J(Sry —v)) Jor all z,y € E;
(4) F(S;) = GEP();

(5) GEP(f) is nonempty, closed and convez.

Proof. (1) Let xo be any given point in E. For each y € C, we define the mapping
G:C—2E by

1
Gly) ={z€C: flzy) +(Azy —2) + —(y—2,J(z —2)) 2 0} for all y € C.
It is easily to seen that y € G(y), and hence G(y) # 0.

(a) First, we will show that G is a KKM mapping. Suppose that there
exists a finite subset {y1,¥2,...,ym} of C and a; > 0 with >~ o; = 1 such that
=3 1" 0y €G(y;) forall i = 1,2,...,m. It follows that

1
f(Z,y:) + (AZ,y; — ) + ;(y,— —Z,J(z —x)) <0, foralli =1,2,...,m.
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By (A1) and (A4), we have

0 = f(& %)+ (A%, & —2) + %(z‘: — %, J(& — )

< (1w + (s - 2)+ Lo - 2,9 — ) <0,

=1

which is a contradiction. Thus G is a KKM mapping on C.

(b) Next, we show that G(y) is closed for all y € C. Let {z,} be a sequence

in G(y) such that z, — z as n — oco. It then follows from z, € G(y) that,
|
f(z'm y) T (Azm Y- zn) 23 ;(y — Zn, J(Zn E .’IZ)) <3 0. (623)

By (A3), the continuity of J, and the lower semicontinuity of || - ||?, we obtain from

(6.2.3) that

n—o00

0 < liminf[f(2.,y)+ (Azp,y — 2,) + %(y — 2, J(2n — T0))]

< i Supl(2n, )+ (A2 — 20} + 2y = 70, Iz~ 0)) + (20 = 2, I 2 — 20)]
= limsuplf(zn,) + {Azn,y = 20) + £y = 50, I o = ) = Tzn = 201}
< lifln_’sip f(zn,y) + liin_'s(:p(Azn, Y— 2zp) + %ligl_’sip(y — g, J(2n — Zo))
- %liﬂicgf 2 — zo|?
< J(29) + Ay — 2) + oy — 30, I~ 20)) — ]2 — 2ol

= f(29)+ (Azy — 2+ g — 30, Iz = 70)) — ~(z — 20, (= — 50)

= S5y + A5y — )+ —ly— 2 (e~ 20).

This shows that z € G(y) and hence G(y) is closed for all y € C.

(c) We prove that G(y) is weakly compact. We now equip E with the weak
topology. Then C, as a closed bounded convex subset in a reflexive space, is weakly

compact. Hence G(y) is also weakly compact.
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Using (a), (b) and (c) and Lemma 2.1.76, we have (), G(y) # 0. It is

easily to seen that

Sr(z0) = m G(y)

yeC
Hence S,(zo) # 0. Since z, is arbitrary, we can conclude that S,(z) # 0 for all

z€eFE.

(2) We prove that S, is single-valued. In fact, for z € C and r > 0, let
21, 22 € Sy(z). Then,
1
f(z1,22) + (Az1, 20 — z1) + ;(ZQ —z1,J(z1 —x)) > 0.
and
b
f(2z2,21) + (A2, 21 — 22) + ;(zl — 29, J(z0 — x)) > 0.

Adding the two inequalities. From the condition (A2) and monotonicity of A, we

have

0 < f(z1,22) + f(22,21) + (Az1, 20 — 21) + (A2p, 21 — 22)

+%<2;2 —zl,.](Zl —IE) - J(ZZ ——$)>

1
< (Azy — Az, 20 — 21) + ;(22 =00 T — ) — Jlm —x))
1
< —allAz — Azl|* + ;(22 —21,J(z1 — ) — J(22 — x))
1
< Yo a it -5 - J@m-o), (6:2.0
and hence

(z2 — 21, (21 — ) — J(22 — )) > 0.
Hence
0<(zp—21,J(z1—2) = J(22 —2)) = (22 — ) — (21 — 2), I (21 — ) — J (22 — T))-

Since J is monotone and FE is strictly convex, we obtain that z; — z = 2o — = and

hence z; = z3. Therefore S, is single-valued.
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(3) For z,y € C, we have
ﬂ&@swmwA&@&y—&@+%ww-&@Jwﬂ—x»zo

and

1
f(Sy, Spx) + (AS,y, Srz — S,y) + ;(Srm - Sy, J(Sry—y)) > 0.

Again, adding the two inequalities, we also have
(AS,z — AS,y, Syy — Srx) + (Sry — Srz, J(Srx — 2) — J(Sry — y)) = 0.
It follows from monotonicity of A that
(Sry — Spzx, J(Srx — x)) < (Sry — Srz, J(Sry — y)).-

(4) It is easy to see that
ze F(S,) & z=5/%
1
® [y +{Azy -2+ —(y—-2J(z-2)) 20, WeC

g f(Z,y)+<AZ,y—Z)ZO, VyEC

& z€GEP(f).

Hence F(S,) = GEP(f).

(5) Finally, we claim that GEP(f) is nonempty, closed and convex. For
each y € C, we define the mapping © : C — 2F by

O(y) = {z € C: f(z,y) + (Az,y — 7) > 0}.

Since y € O(y), we have O(y) # 0. We prove that © is a KKM mapping on
C. Suppose that there exists a finite subset {21, 2, ..., zm} of C and o; > 0 with

Yo a;=1suchthat 2= o;z € O(z) for all i = 1,2,...,m. Then

f(2,25)+<A2,Zi—2><0, T =y 2 e IR
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From (A1) and (A4), we have
0=f(2,2)+(A2,2-2) <) o (f(z,z,-) 4 (A2, 27— z)) <0,
=1
which is a contradiction. Thus © is a KKM mapping on C.

Next, we prove that ©(y) is closed for each y € C. For any y € C, let {z,}
be any sequence in ©(y) such that z, — zo. We claim that o € ©(y). Then, for

each y € C, we have
] f(xm y) i <A$my — fL'n) > 0.

By (A3), we see that

f(l'Oa y) £ <Ail?0, Y= :BO) Z lim sup f(xn, y) + lu{.lo(Axmy =, .’13,-,) Z 0.

n—o0

This shows that zo € ©(y) and O(y) is closed for each y € C. Thus (), O(y) =
GEP(f) is also closed.

We observe that ©(y) is weakly compact. In fact, since C is bounded, closed
and convex, we also have O(y) is weakly compact in the weak topology. By Lemma

2.1.76, we can conclude that [, .. ©(y) = GEP(f) # 0.

Finally, we prove that GEP(f) is convex. In fact, let u,v € F(S;) and

2z =tu+ (1 —t)v for t € (0,1). From (3), we know that
(Syu — Spze, J(Srze — z1) — J(Syu —u)) > 0.

This yields that
(U = S,.zt, J(S,-Zt — Zt)) > 0. (6.2.5)
Similarly, we also have

(v— Sz, J(Srze — 2)) > 0. (6.2.6)
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It follows from (6.2.5) and (6.2.6) that

”Zt - Srzt“2 = (Zt 024 J(Zt = Srzt))

= t{u— Syz,J(z — Srze)) + (1 — t){v — Srz, J (2t — Sr2t))

IN

0.

Hence z, € F(S,) = GEP(f) and hence GEP(f) is convex. This completes the

proof. {1

6.2.1 Strong convergence theorems

In this section, we prove a strong convergence theorem by using a hybrid pro-

jection algorithm in a uniformly convex and smooth Banach space.

Theorem 6.2.2. Let E be a uniformly conver and smooth Banach space and let
C be a nonempty, bounded, closed and convex subset of E. Let f be a bifunction
from C x C to R satisfying (A1)-(A4), A an a-inverse strongly monotone mapping
of C into E* and {1}, a sequence of nonexpansive mappings of C into itself
such that Q := (oo F(T,,) NGEP(f) # 0 and suppose that {T,}32, satisfies the
NST-condition. Let {z,} be the sequence in C generated by

(

zo € C,Dg=0C,
Co=7C0{z €C:||lz—Tuz|| L tullzn — Tnzall}, n>1,

 un € C such that f(un,y) + (Aun,y — un) + i(y — Up, J(un — T,)) > 0,Vy € C,n >0,

D, ={z2€ D,y i ity — &, (2~ )y 20}, nZl,

| Znt1 = Pc.np,To, n =0,

(6.2.7)

where {t,} and {r,} are sequences which satisfy the conditions:

(C1) {t,} C (0,1) and lim, o t, = 0;
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(C2) {r,} C (0,1) and liminf, 7, > 0.
Then, the sequence {x,} converges strongly to Poxy.

Proof. Firstly, we rewrite the algorithm (6.2.7) as the following :

(

z9g € C,Dy = C,

Co=00{z€C:|z—T.z|| L tallzn — Tnzall}, n>1,
(6.2.8)

I {z € Dp_y : (S Tn — 2, J (T — Srzn)) >0}, n2>1,

( Tnt1 = FPc.np, 9, n >0,

where S, is the mapping defined by (6.2.2) for all r > 0. We first show that the
sequence {z,} is well-defined. It is easy to verify that C, N D, is closed and convex
and Q C C, for all n > 0. Next, we prove that Q c C, N D,. Since Dy = C, we
also have Q2 C Cy N Dy. Suppose that Q C Ci_; N Di_; for k > 2. It follows from
Lemma 6.2.1 (3) that

(Sr .k — S u, J(Sp u — uw) — J(S,, .2k — T1)) = 0,
for all u € 2. This implies that
(Srozk — u, J(z — Srezx)) 2 0,

for all u € Q. Hence Q C D;. By the mathematical induction, we get that
Q c C,N D, for each n > 0 and hence {z,} is well-defined. Put w = Prxo. Since

QcC C,N D, and z,4+; = Pc,np,To, we have
|Zns1 — zo]| < ||lw — xo)|,n > 0. (6.2.9)

Since {z,} is bounded, there exists a subsequence {z,,} of {z,} such that z,, —

v € C. Since Tpyo € Dyyq C D, and z,41 = Pe,np, To, we have

|Tn+1 — zol| < |Zns2 — zoll-
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Since {z, — xo} is bounded, we have lim,,_., ||z, — || = d for some a constant d.

Moreover, by the convexity of D,,, we also have %(znﬂ + Zpyo) € D,, and hence

Tnt1 + Tni2

<+ (I I+1 1)
= o — Tn - 4n -
2 =5 0 — Tn41 o — Tny2

lzo — Znta]l < ||zo —

This implies that

Tny1 + Tngo
2

=l

Tog —

; 1 1
i |30~ 2012) + a0 — 2012

= lim
n—oo n—

o0

By Lemma 2.1.45, we have lim,,_, ||ZTn — Zny1] = 0.

Next, we show that v € (., F(T,). Since Zn,41 € Cy and t, > 0, there

exists m € N, {Xo, A1,--.,Am} C [0,1] and {yo,¥1,---,Ym} C C such that
Z/\i =1, |[Tn+1— Z/\iyi
i=1 i=0
for each 2 =0,1,...,m. Since C is bounded, by Lemma 2.1.46, we have
Tnt1 — Z /\iyi” L a “ Z Aili — Z ATnyi
i=0 i=0 =0

| 30 AT = T | +
1=0 1=0

<ig, | and ”yl b Tnyi“ < tn”In = Tnxn”

Hxn - Tnxn” < ”In Lk :L',,+1|| nn

Tn(i /\iyi) = Tien
i=0

< 2||zn — Tppa|l + (24 2M)t,
= Y . - v
7 (mex (s = vl = 1T~ T )
< 2|zn = Tapa|l + (2 + 2M)t,,

w7t max (e — Toaall — llys — Toas)

0<i<j<m

S 2”1;71 = xn-l—l” + (2 iy 2M)tn A5 7_1(4Mtn)7

where M = sup,,5 ||z, — w||. It follows from (C1) that lim, . ||z — Thzs| = 0.

Since {T,} satisfies the NST-condition, we have v € (oo, F(T,)-

n=0

Next, we show that v € GEP(f). By the construction of D,, we see from
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(2.1.44) that S, z, = Pp,z,. Since z,4; € D,, we obtain
ln = o tnll = M — Zagil] = 03

as n — oo. From (C2), we also have

1

J(z, — Sr, zn)

1
= T—Hxn - S,.zq]| — 0, (6.2.10)

n

as n — oo. Since {z,} is bounded, it has a subsequence {z,,} which weakly
converges to some v € E. By (6.2.10), we also have S,, — v. By the definition of

S,nj, for each y € C, we obtain

1
TS, Ty ¥) + (AS Zny, Y =5, En) + r—(y < S, Loty S, Tny = Bn,) )2 0-

ng

By (A3) and (6.2.10), we have
f('U,y)‘*‘(AU,y—'U)ZO, VyEC
This shows that v € GEP(f) and hence v € Q := o, F(T.) NGEP(f).

Note that w = Pqzy. Finally, we show that z, — w as n — oco. By the

weakly lower semicontinuity of the norm, it follows from (6.2.9) that

2o — wll < llzo — ]| < liminf |1z — || < limsup [z — 2| < llzo — w]l-

1—00

This shows that
lim [|zo — 2y,|| = [|[z0 — w|| = [|zo — v
1—00
and v = w. Since E is uniformly convex, we obtain that zo — z,, — To — w.

It follows that z,, — w. So we have z,, — w as n — oo. This completes the

proof. a

If we take f =0 and A = 0 in Theorem 6.2.2, then we obtain the following

result.
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Theorem 6.2.3. Let E be a uniformly conver and smooth Banach space, C' a
nonempty, bounded, closed and convez subset of E and {T,,}2, a sequence of non-
ezpansive mappings of C into itself such that Q = (oo, F(T,) # 0 and suppose
that {T,}52, satisfies the NST-condition. Let {x,} be the sequence in C generated

by
xo € C, Dy = C,
Co=00{z €C: ||z - Toz| < tollzn — Tuznll}, n>1, (6:2.11)
ZTut1 =FPo,ze, m20.

If {t,} € (0,1) and lim,,_,n t, = 0, then {z,} converges strongly to Poxy.

Remark 6.2.4. By Lemma 2.1.48, if we define T,, = a,] + (1 — o) 35, BES;, for

all n > 0 in Theorem 6.2.1 and Theorem 6.2.3, then the theorems also hold.

If we take T,, = I, the identity mapping on C, for all n > 0 in Theorem

6.2.2, then we obtain the following result.

Theorem 6.2.5. Let E be a uniformly convexr and smooth Banach space, C a
nonempty, bounded, closed and conver subset of E. Let f be a bifunction from
C x C to R satisfying (A1)-(A4) and A an a-inverse strongly monotone mapping

of C into E*. Let {z,} be the sequence in C' generated by

4

z9 € C,Dy = C,
un € C such that f(un,y) + (Atn,y — tn) + 7y — Un, J(un — 7,)) 2 0,Yy € C,n 2 0,

Dn:{zeDn—1:(un_zyj(xn_un))20}7 nZL

Tny1 = PD".’L'(), n 2 0.
\

(6.2.12)

If {r,} € (0,1) and liminf, o7, > 0, then {z,} converges strongly to Pcrp(s)To-

If we take A = 0 in Theorem 6.2.2, then we obtain the following result

concerning an equilibrium problem in a Banach space setting.
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Theorem 6.2.6. Let E be a uniformly convex and smooth Banach space and let C
be a nonempty, bounded, closed and convez subset of E. Let f be a bifunction from
C x C to R satisfying (A1)-(A4) and let {T,,}2, be a sequence of nonexpansive
mappings of C into itself such that Q = (oo, F(T,)NEP(f) # 0 and suppose that
{T.}22, satisfy the NST-condition. Let {z,} be the sequence in C generated by

(

g € C,Dy = C,
Cho==0o{z €C:|z— Tzl < tallzn — Taz.|}, n>1,
\ un € C such that f(un,y)+ 7=y — tn, J(un — z,)) > 0,¥y € C,n >0,

Dn:{zeDn—l:(un_z;'](:l;n"un)>20}7 n = 1,

\$n+1 = Pc,np,To, n >0,

(6.2.13)

where {t,} and {r,} are sequences which satisfy the conditions:

(C1) {t.} CiD,1) ‘and limg,,..csbe=0;

(C2) {r,} C (0,1) and liminf, . r, > 0.

Then, the sequence {x,} converges strongly to Pqxy.





