CHAPTER V

STRONG CONVERGENCE THEOREMS FOR STRICT

PSEUDO-CONTRACTIONS IN BANACH SPACES

5.1 A general iterative process for solving a system of variational in-

clusions in Banach spaces

In this section, we introduce a general iterative method for finding solutions
of a general system of variational inclusions with Lipchitzian relaxed cocoercive
mappings. Strong convergence theorems are established in strictly convex and 2-
uniformly smooth Banach spaces. Moreover, we apply our result to the problem
of finding a common fixed point of a countable family of strict pseudo-contraction

mappings.

In a smooth Banach space, a mapping A : C — F is called strongly positive

[27] if there exists a constant 7 > 0 with property

(Az, J(z)) 2 Allz|*, llal —bA|l = sup [((al—bA)z, J(z))], a € [0,1], b€ [-1,1],

[lzll<1
(5.1.1)
where I is the identity mapping and J is the normalized duality mapping.
Next, we consider a system of quasi-variational inclusions:
Find (z*,y*) € E x E such that
0€z*—y* + p (V1y* + Myz*),
0 € y* — z* + p2(Voz* + Moy"), {5.1.2)

where ¥; : E — E and M; : E — 2F are nonlinear mappings for each

i=1,2
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As special cases of the problem (5.1.2), we have the following:

(1) If ¥; = ¥y = ¥ and M; = My = M, then the problem (5.1.2) is reduced to

the following:

Find (z*,y*) € E x E such that

0€z* —y* + p(Vy* + Mz*),

0 €y* —z* + po(Vz* + My*). (5.1.3)

(2) Further, if z* = y* in the problem (5.1.3), then the problem (5.1.3) is reduced

to the following:
Find z* € E such that
0€¥Yz* + Mz". (5.1.4)

Definition 5.1.1. [67] Let M : E — 2F be a multi-valued maximal accretive

mapping. The single-valued mapping Juy,y) : E — E defined by
Japy)(u) = +pM) ' (u), YueE

is called the resolvent operator associated with M, where p is any positive number

and I is the identity mapping.

Lemma 5.1.2. [67) u € E s a solution of variational inclusion (5.1.4) if and only

if u = Jim,p)(u — p¥u), Vp > 0, that is,
VI(E,¥, M) = F(J,pI — p¥)), Vp >0,
where VI(E, ¥, M) denotes the set of solutions to the problem (5.1.4) .

Lemma 5.1.3. [68] For any (z*,y*) € E x E, where y* = Ja, pp) (" — p2¥az*),
(z*,y*) is a solution of the problem (5.1.2) if and only if z* is a fized point of the
mapping Q defined by

Q(x) = Jiy o) [T (Marp) (& — p2¥22) — p1P1 My p0) (T — p2¥2T)]-
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Theorem 5.1.4. (27, Lemma 1.9] Let C be a nonempty closed convexr subset of a
reflexive, smooth Banach space E which admits a weakly sequentially continuous
duality mapping J from E to E*. Let T : C — C be a nonezpansive mapping
such that F(T) is nonempty, f : C — C a contraction with coefficient a € (0, 1),
and let A be a strongly positive bounded linear operator with coefficient ¥ > 0 and

0 <~ < 1. Then the net {z,} defined by
zy =ty f(z) + (1 — tA)Tx, (5.1.5)

converges strongly as t — 0 to a fized point T of T which solves the variational

inequality:
(A-7vf)z,J(E - 2)) <0, Vz € F(T). (5.1.6)

Lemma 5.1.5. Let C be a nonempty closed convexr subset of a real 2-uniformly
smooth Banach space E with the smoothness constant K. Let ¥V : C — E be a

Ly-Lipchitzian and relazed (c, d)-cocoercive mapping with d > cL?,. Then
(I = AW)z — (I = A)y|* < (14 2AcLy — 20d + 2X°K2LY,)||lz — y|I*. (5.1.7)

Ifo< A< %;*, then I — AV is nonexpansive.
v

Proof. Using Lemma 2.1.52 and the cocoercivity of the mapping ¥, we have, for

all z,y € C,

(I = A0)z — (I = A)y|> = |(z —y) — (A¥z — ATy)|?
= |z —yl* — 2M(¥z — Ty, J(z — y))

+ 202 K| Wz — Dy||?

IA

Iz — ylI* — 2\[—c| Lz — Ty||* + d]|z — |
+ 202K %|| ¥z — Wy|?
= |lz - yl> - 2Xdl|lz — y|I* + 2Ac|| ¥z — y||*

+ 2N K2 || W — Wy|?
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< (1+2XcL? — 2Xd + 2X°K2L2)||z — ||

Hence (5.1.7) is proved. Assume that A < %}g‘—’. Then, we have (1+2A\cL3 —2\d+
v
2)2K?L2) < 1. This together with (5.1.7) implies that / — AV is nonexpansive. [

Lemma 5.1.6. Let E be a strictly convez and 2-uniformly smooth Banach space
admits a weakly sequentially continuous duality mapping with the smoothness con-
stant K. Let M; : E — 2F be a mazimal monotone mapping and ¥; : E — E
a L;-Lipchitzian and relazed (c;, d;)-cocoercive mapping with d; > ¢;L?. Let p; €
(O,W) respectively for each i = 1,2. Let {T,, : E — E}32, be a countable
family of uniformly e-strict pseudo-contractions. Define a mapping S, : E — E

and G, : F — FE by

Spz = (1 — 2Tx Vz € C andn > 1.

K2 T+ K
and

Gn = pSp+ (1—p)Q,

where Q is defined as in Lemma 5.1.3. Assume that Q := N2, F(T,) N F(Q) # 0.
Let f : E — E be an a-contraction, let A : E — E be a strongly positive linear

bounded self adjoint operator with coefficient ¥ with 0 < v < g Then the following
hold :

1. For each n € N, G,, is nonezxpansive such that
F(Gn) = F(S2) N F(Q) = F(T,) N F(Q)-

2. Suppose that {G,} satisfies AKTT-condition. Let G : E — E be the map-
ping defined by Gy = lim,_,o, Gy for all y € E and suppose that F(G) =
N, F(Gy,). The net {z,} defined by z, = tyf(z:) + (I — tA)Gz, converges
strongly as t — 0 to a fized point T of G which solves the variational inequal-

ty:

(A—=~f)x,J(& —2)) <0, Vz € F(G), (5.1.8)
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and (Z,7) is a solution of general system of variational inequality problem

(5.1.2) such that § = Jiat, ) (T — p2¥aZ).

Proof. It follows from Lemma 2.1.50 that S, is nonexpansive such that F(S,) =
F(T,) for each n € N. Next, we prove that @) is nonexpansive. Indeed, we observe

that

Q(x) = Jtron)[JMap2) (@ — P2Y2T) — p1¥1T (M ) (T — P2VaT)]-

= Jonp)I = P1¥1) (M, p0) (L — p2¥2)z.

The nonexpansivity of Jias, p1), J(Mape)s I — p1¥1 and I — pp¥y implies that @Q is

nonexpansive. By Lemma 2.1.58, we have G,, is nonexpansive such that
F(Gn) = F(S:) N F(Q) = F(T,) N F(Q) # 0,Vn € N.

Hence (i) is proved. It is well-known that if E is uniformly smooth, then E' is
reflexive. Hence Theorem 2.1.53 implies that {z,} converges strongly as ¢ — 0 to

a fixed point £ of G which solves the variational inequality:
(A=~f)z,J(& - 2)) <0, Vz € F(G), (5.1.9)

and (Z,9) is a solution of the problem (5.1.2), where § = J(as,,pp)(Z — p2¥27). This

completes the proof of (ii). a

Theorem 5.1.7. Let E be a strictly convez and 2-uniformly smooth Banach space
which admits a weakly sequentially continuous duality mapping and has the smooth-
ness constant K. Let M; : E — 2F be a mazimal monotone mapping and V; : E —
E a L;-Lipchitzian and relazed (c;,d;)-cocoercive mapping with d; > ¢;L?. Let
pi € (0, W) respectively for each i =1,2. Let {T,, : E — E}32, be a countable

family of uniformly e-strict pseudo-contractions. Define a mapping S, : E — E by

>

2T:t:forallazreoandn>1
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Assume that 0 := N2, F(T,) N F(Q) # 0, where Q s defined as Lemma 5.1.3.
Let f : E — E be an a-contraction, let A : E — E be a strongly positive linear
bounded self adjoint operator with coefficient ¥ with 0 < v < z Letxy =u e E

and {z,} a sequence generated by

Zn = J(Ma,p0) (Tn — P2¥2T0),
Yn = J(M],pl)(zn =3 pl\I’lz‘n)y
Tnt1 = @Y f(Tn) + OuZn + (il - anA)[uSnzn + (1 — W], Vn>1,

(5.1.10)

where p € (0,1), and {a,} and {B,} are sequences in (0,1). Suppose that {S,} sat-
isfies AKTT-condition. Let S : E — E be the mapping defined by Sy = lim,, oo Sny
for ally € E and suppose that F(S) = N2, F(S,). If the control consequences {o, }
and {B,} satisfy the following restrictions

(C1) 0 < liminf, .o B, < limsup,_, Bn < 1;

(C2) lim, oo =0 and Y oo | ap = 00,

then {z,} converges strongly to T which solves the variational inequality:
(A=1f)z,J(& - 2)) <0,z €,
and (Z,7) is a solution of general system of variational inequality problem (5.1.2)

such that § = J(ay,p0) (T — p2¥al).

Proof. First, we show that sequences {z,}, {y»} and {z,} are bounded.

By the control condition (C2), we may assume, with no loss of generality, that
an < (1Bl Al7

Since A is a linear bounded operator on E, by (5.1.1), we have

Al = sup{[(Au, J(u))| : u € E, [lu|| = 1}.
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Observe that

(L= Ba)] — cnAu, J(w)) = 1—Bn— an({Au, J(u))

> 1— B~ a4l
> 0.
It follows that
(1= Bu)] — anAll = sup{{((1— Bu)] — anA)u, J(u)) : u € E, ||ul| =1}

= sup{l — B, — an{Au, J(u)) : u € E, |ju|| =1}

< 1-06,—a,7.
Therefore, taking z € €, one has
T = Joy o) [ (Mo 02) (T — P2%2T) — P11 (s ) (T — p2¥2T)]- (5.1.11)
Putting § = J(ay,py) (T — p2V2T), one sees that
Z = Joty o) (T — p1V17). (5.1.12)

1t follows from Lemma 2.1.61 and Lemma 5.1.5 that

lza =Gl = 1JMar0) (Tn — P2%2T0) = Tty ) (B — p2¥27) |
< (2o — p2¥Y2z,) — (T — p2¥27)||
<z -zl (5.1.13)
This implies that
lyn —Z|l = IJ1,00) (20 — P1¥120) = J(ry,00) (T — P1Y1D)]]

IN

(20 — P1¥120) — (T — 11Dl

< lza -9l
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< lzn — 2. (5.1.14)

Setting t, = pS,r, + (1 — )y, and applying Lemma 2.1.50, we have S, is
a nonexpansive mapping such that F(S,) = F(T,) for all n > 1 and hence
N2, F(S,) =N, F(T,). Then

”tn i E“ T ”/,LS,,:L‘n 4 (1 = /—")yn = i'“
< pf|Samn — Z|| + (L — p)llyn — Z||

< lzn — 2|l (5.1.15)
It follows from the last inequality that

a1 =2l = llenvf(@n) + Bazn + (1 = Bu)] — anA)tn — Z|
= |lan(vf(z0) — AZ) + Ba(za — ) + (1 — Bu)] — anA)(tn — 7)]|
< (1= B — an¥)llwn — 2| + Bullzn — Z|| + anllvf(zn) — AZ||
< (1= an¥)llzn — 2| + anvallzs — 2| + anllvf(Z) — AZ||

= (1-ax(y = y0))llzn — Z|| + |7/ (2) — AZ.

By induction, we have

o i
||zn—z||gmax{||zl—f||,”ﬁ_(i)—m”}, 1.
Y — N

This shows that the sequence {z,} is bounded, so are {y,}, {z.} and {t.}.

On the other hand, from the nonexpansivity of the mappings Jias,,p,), ON€

sees that

”yn+l == yn” = IIJ(MI,FI)(Zn+1 = pl\Plzn+1) - J(MI,PI)(Zn - pl\IllZﬂ)"

IA

"(Zn+1 = P1‘1’12n+1) e (Zn o Pl‘l’nzn)”

< lzner — zall- (5.1.16)



112

In a similar way, one can obtain that

2041 = 2all < |Tns1 — Zall- (5.1.17)
It follows that

lyns1 = Yall < l|Tnt1 — zall- (5.1.18)
This impl.ies that

Itasr — tall = IBSnt1Zasr + (1 — B)¥ns1 — (Sazn + (1 — 1))l

1Sns1Tns1 — #Sn11Tn + (1 = B)Ynt1 + LSn41Tn — PSnTn — (1= wyall

S /~""Sn+lxn+l h Sn+1$n” + (1 B y‘)“yn+l L yn” T “"Sﬂ+lxn . Snxn”
< pllTnss — zall + (1 — Pl Tnsr — zall + 4 & | Sn412 — Snzll
ZE{Tn
= ||Tnt1 — Zall + 1 S?p} | Snt12 — Snz|l- (5.1.19)
z€{zn
Setting
Tn+1 = (1 - ﬂn)en I ﬁnmn’ Vn Z 1, (5120)
one sees that
€nt+1 — €n
= an+17f($n+l) + ((1 - ,BrH-l)I i an+lA)tn+l " an')’f(xn) + ((1 - IBn)I - anA)tn
1 = ﬁn+l 1— ﬁn
= ﬂ—(’y‘f(xn+l) - Atn+1) + tn+1 - = (’Yf(xn) = Atn) —in
1-— ﬁn—f—l b ,Bn

and so it follows that

Qn

1_ﬁn

Uyl

T==p ”'Yf(-'rn) — Aty ]| + ||tns1 — talls
- Mo+l

lensa —eall = v f(Znt1) — Atnsall +



113

which combines with (5.1.19) yields that

Qi1 Oy

llenss — enll — |Zns1 — Tall = —— s} — Atppr] + v f(zn) — At ||
L=Pn41 1—fn
+p sup ||Sny12 — Saz||- (5.1.21)
z€{zn}

Using the conditions (C1) and (C2) and AKTT-condition of {S,}, we have

ligljsp(||€n+1 — eall = |Zn+1 — zall) <O
Hence, fror.n Lemma 2.1.56, it follows that

nh_I’{.lo llen — za]| = 0. (5.1.2%)
From (5.1.20), it follows that

[Za+1 — zall = (1 = Bn)llen — Zall-
By (5.1.22), one sees that

i 71— anl] = 0. (5123
On the other hand, one has

Tni1 — Tn = o(7f(n) — Azp) + (L = Ba)] — 0 A)(tn — zn).  (5.1.24)
It follows that

(1= 8o — aaW)tn — Tull < ||Zn = Tasall + anllvf(z0) — Azall.  (5.1.25)

From the conditions (C1), (C2) and (5.1.23), one sees that

lim ||t, — z.]| = 0. (5.1.26)
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Define the mapping G,, by

Gn = H'Sn =+ (1 = U)Qa

where Q is defined as in Lemma 5.1.3. From Lemma 6.2.1 (i), we see that G, is

nonexpansive such that

F(Gn) = F(T,) N F(Q) = F(Sx) N F(Q)- (5.1.27)
From (5.1.:26), it follows that

nlingo [|Grzn — zall = 0. (5.1.28)

Since {S,} satisfies AKTT-condition and S : E — E is the mapping defined by
Sy = lim,_.e Spy for all y € E, we have {G,} satisfies AKTT-condition. Let the
mapping G : E — E is the mapping defined by Gy = lim, ., Gny for all y € E.

It follows from the nonexpansivity of S and
Gy = pSy+ (1 —p)Q
that G is nonexpansive such that
F(G) = F(8) N F(Q) = M2, F(S,) N F(Q) = ML, F(T,) N F(Q) = N7, F(Gn)-

Next, we prove that

lim sup(vyf(Z) — Az, J(z, — T)) <0, (5.1.29)

n—oo

where Z = lim;_¢ z; with z; be the fixed point of the contraction
z+— tyf(z) + (I —tA)Gz.

Then 1z, solves the fixed point equation z; = tyf(z;) + (I —tA)Gz,. It follows from

Lemma 5.1.6 (ii) that Z € F(G) = €2, which solves the variational inequality:

(A=7)z,J(& - 2)) 0, Vz € F(G),
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and (Z,7) is a solution of general system of variational inequality problem (5.1.2)

such that § = J(a, ) (T — p2¥aZ). Let {2, } be a subsequence of {z,} such that

Jlim (yf(%) — AZ, J (zn, — 2)) = limsup(vf(2) — Az, J (zn — ). (5.1.30)

n—o0

If follows from reflexivity of E and the boundedness of sequence {z,, } that there
exists {n, } which is a subsequence of {zn,} converging weakly to w € C as
i — o0. It follows from (5.1.28) and the nonexpansivity of G, we have w € F(G)
by Lemma 2.1.59. Since the duality map J is single-valued and weakly sequentially

continuous from E to E*, we get that

liinqsgp(vf (&) — A%, J(zo — 7)) = lim (vf(Z) — AZ, J (20, — 7))
= 1&{2)(7f(£) 2 A:‘iv J(xnki 3 j))

= (A-71f)z,J(E-w)) <0
as required. Now from Lemma 2.1.52, we have

€041 — Z||?
= |lonVf (@) + BaZn + [(1 = Ba)] — cnAlts — E||”
= (1 = Bu)] — 0nAl(tn — &) + an(VS (€n) — AZ) + fu(z0 — D)
< (1= Bo— @)’ llta — E|* + 2en(1f (2n) = AZ) + u(@n — £), J (Tnt1 — 7))
= (1= Bn—an¥)’llta — Z)* + 26a{n — £, J (Tns1 — Z))
+ 20 (Vf (Tn) — AZ, J(Tns1 — F))
= (1= Bn—an¥)’llta — Z)|* + 2Bu(zn — £, J (Tns1 — Z))
+200(7f (zn) = Y/ (&), J (Tns1 — T)) + 20 ([ (Z) — AZ, J (Tns1 — T))
(1 = Bn — a¥)*lltn — Z|1* + 28allzn — Zl1Tns1 — 2]l
+ 2047 f (@n) = V@ T — Zl| + 20a{7f(Z) — AZ, J(Tn11 — )

(1= Ba — 0n?)?l|Zn — Z|* + Balllznss — ZI* + llza — ZI1*)

IA

IA

+anya(||zns — ElI + |20 — EII°) + 20m(7f(Z) — AZ, J (Tns1 — 2))
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== [(1 - ,Bn - Otn’_Y)2 <+ :811 T an’ya]”In i 5:”2 o (,Bn e an7a)l|xn+l - .’2”2

+ 20, (v f(Z) — AZ, J(Tpy1 — I)), (5.1.31)

which implies that

"xn+l e ii'”2
(1 = Bn — a¥)? + B + oy - 2, . i
T ———— AZ, J(Tpy —
< 1— Bn — anya |z — Z]|° + 5, % an'ya (vf(Z) — A%, J(Tpy1 — T))
- 2&11(:7 . ’Ya) | ~112 ﬂ2 + Qﬁnan'y SE an’y 112
P . F -
[ 1= [ — anya] I —al N W ll#n — 2|
b2 (f(@) — AB, (a1 — 2)
1— ﬂn — QR Y REASS L, S\ Tn+1 o
- ) 43 Y= - n = nUn
= 1_M llzn — Z||2 + 200 (7 —12). [ 82 + 2807+ T M,
1— [y — anya] 1 — Bn — anya 200, (7 — var)
1 = = ~
i (vf(@) — AZ, J (a1 — x))], (5.1.32)
) o

where Mj is an appropriate constant such that Mz > sup,,5q ||z, — Z||*. Put

2o Tiga(cr) Br + 2fnom¥ + 07 1 - _
n= d kn et n M. A ’ J . ’
= fa—ama S T o o (AE) AR (i)
that is,
[Znr1 = ZlI? < (1 = ju)llzn — 2| + nka- (5.1.33)

It follows that from conditions (C1), (C2) and (5.1.29) that

(oo}
lim 7, =0, Zjn = oo and limsupk, < 0.
n—oo =1 n—o0

Apply Lemma 2.2.10 to (5.1.33) to conclude z, — T as n — oo. This completes
the proof. O

Setting A =1,y =1, f := u, we have the following result.

Theorem 5.1.8. Let E be a strictly convex and 2-uniformly smooth Banach space
which admits a weakly sequentially continuous duality mapping and has the smooth-

ness constant K. Let M; : E — 2F be a mazimal monotone mapping and ¥; : E —
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E a L;-Lipchitzian and relazed (c;,d;)-cocoercive mapping with d; > c;L?. Let
pi € (0, d‘K;szCLLZ), respectively for each i = 1,2. Let {T,, : E — E}32, be a countable
family of uniformly e-strict pseudo-contractions. Define a mapping S, : E — E by

£ &

Sab= (1= ﬁ)x + K2Tna: forallz € C andn > 1.

Assume that Q := N2, F(T,) N F(Q) # 0, where Q is defined as in Lemma 5.1.3.
Let z; = u € E and {z,} a sequence generated by

Zn = J(Mz,pz)(zn == P2‘I'2-Tn),

Yn = J(M],pl)(zn = pl\Illzn)) (5'1‘34)

Tp41 = (07 Gt ﬁn-’zn -+ (1 - ,Bn - an)[ﬂsnxn + (1 e ll')yn]: Vn Z 1’
where i € (0,1), and {a,} and {B,} are sequences in (0,1). Suppose that {S,} sat-
isfies AK TT-condition. Let S : E — E be the mapping defined by Sy = lim,_,oo Sny
for ally € E and suppose that F(S) = N, F(S,,). If the control consequences { o }
and {f3,} satisfy the following restrictions

(C1) 0 < liminf, o By <limsup,,_,. Bn < 1;

(C2) limy o005 =0 ond ¥~ @ =00,

then {x,} converges strongly to T which solves the variational inequality:
(I- 17, J(E-2) <0,2€9,

and (%,7) is a solution of general system of variational inequality problem (5.1.2)

such that § = J(M,pp) (T — p2¥al).
Remark 5.1.9. Theorem 5.1.7 mainly improves Theorem 2.1 of Qin et al. [68], in

the following respects:

(a) From the class of inverse-strongly accretive mappings to the class of Lip-

chitzian and relaxed cocoercive mappings.
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(b) From a e-strict pseudo-contraction to the countable family of uniformly e-

strict pseudo-contractions.

(c) From a uniformly convex and 2-uniformly smooth Banach space to a strictly
convex and 2-uniformly smooth Banach space which admits a weakly sequen-

tially continuous duality mapping.

Further, if {T}, : E — E} be a countable family of nonexpansive mappings,

then Theorem 5.1.7 is reduced to the following result.

Theorem 5.1.10. Let E be a strictly convezr and 2-uniformly smooth Banach
space which admits a weakly sequentially continuous duality mapping and has the
smoothness constant K. Let M; : E — 2F be a mazimal monotone mapping and
U, : E — E a L;-Lipchitzian and relazed (c;, d;)-cocoercive mapping with d; > izl
Let p; € (0, dT—f‘Zfi—i), respectively for eachi=1,2. Let {T,, : E — E}2, be a count-
able family of nonezpansive mappings. Assume that Q := N2, F(T,) N F(Q) # 0,
where Q is defined as in Lemma 5.1.3. Let f : E — E be an a-contraction, let

A : E — E be a strongly positive linear bounded self adjoint operator with coef-

ficitent ¥ with 0 < v < g Let z; = u € E and {z,} a sequence generated by

Zn = J(Myp2) (Tn — P2¥2T0),
Yn = Jar,o1) (20 — P1¥120),
Tnt1 = an’yf(xn) + ﬁnzn + ((1 = ,Bn)I — anA)[ll’Tnxn + (]_ — /*l’)ynly Vn Z 1,

(5.1.35)

where pu € (0,1), and {a,} and {B,} are sequences in (0,1). Suppose that {Tn} sat-
isfies AKTT-condition. LetT : E — E be the mapping defined by Ty = limy oo Tny
for ally € E and suppose that F(T) = N, F(T,). If the control consequences {an}

and {f3,} satisfy the following restrictions

(C1) 0 < Bminfy, .o B < LM 8UP,; e fn < 1;
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(C2) limy—on 0y =0 and 3o iy =00,

then {x,} converges strongly to T which solves the variational inequality:
<(A 5 7f)§:1 J(i = Z)) £ Oiz € Q?

and (&,7) is a solution of general system of variational inequality problem (5.1.2)

such that § = J(uy p0)(Z — p2¥aT).

Remark 5.1.11. As in [33, Theorem 4.1], we can generate a sequence {7} of
nonexpansive mappings satisfying AKTT-condition i.e. Y oo, sup{||Tns12 — To2 :
z € B} < oo for any bounded subset B of E by using convex combination of a
general sequence {S;} of nonexpansive mappings with a common fixed point. To

be more precise, they obtained the following lemma.

Lemma 5.1.12. [33] Let C be a closed convex subset of a smooth Banach space
E. Suppose that {Sx} is a sequence of nonezpansive mappings of E into itself with
a common fized point. For eachn € N, define T, : C — C by

Tom =Ygtk Sumh e E; (5.1.36)
k=1

where {8k} is a family of nonnegative numbers with indices n,k € N with k < n

such that
(1) Sr_ Bk =1 foralln eN;
(ii) limp oo 85 > 0 for every k € N;

(i) 3o ¥ =i |ﬂ1’:+1 — B < oo
Then

(1) Each T, is a nonezpansive mapping.

(2) {T.} satisfies AKTT-condition.
(8) If T : C — C is defined by

Tz = Zﬁ,’:Skx, Vz € C,

k=1
then Tz = lim,_o Tz and F(T) = N, F(T,,) = N2, F(Sk)-
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Theorem 5.1.13. Let E be a strictly convexr and 2-uniformly smooth Banach
space which admits a weakly sequentially continuous duality mapping and has the
smoothness constant K. Let M; : E — 2F be a mazimal monotone mapping and
V; : E — E a L;-Lipchitzian and relazed (c;, d;)-cocoercive mapping with d; > ¢;L?.
Let p; € (0, i,%z%?), respectively for eachi=1,2. Let {Sx: E — E}32, be a count-
able family of nonezpansive mappings. Assume that Q0 := N2 F(Sk) N F(Q) # 0,
where Q is defined as in Lemma 5.1.3. Let f : E — E be an a-contraction, let
A : E — FE be a strongly positive linear bounded self adjownt operator with coef-

fictent 7 with 0 < v < z Let z, = u € E and {z,} a sequence generated by

Zn = Tty p2) (T — 235,

Yo = J001) (% = P1¥120),

Tny1 = an’Yf(xn) + :ann == ((1 - ,Bn)l == anA)[:u‘ ZZ:I ﬂ,’:SkIL‘n + (1 e /J)yn]w Vn .>_ 17
(5.1.37)

where {3k} satisfies conditions (i)-(iii) of Lemma 5.1.12, p € (0,1), and {o,} and
{B.} are sequences in (0,1). Suppose that {T,,} satisfies AKTT-condition. Let
T : E — E be the mapping defined by Ty = lim,, o, T,,y for all y € E and suppose
that F(T) = N2, F(T,). If the control consequences {a,} and {B,} satisfy the
following restrictions

(C1) 0 < liminf, 0o B < limsup,,_,o, B < 1;

(C2) lim, o 0n =0 and ) o a, = 00,

then {z,} converges strongly to T which solves the variational inequality:
((A - ’Yf)i'1 J(‘;i" i Z)) S O,Z (S Qa

and (Z,7) is a solution of general system of variational inequality problem (5.1.2)

such that § = J(u, pp) (T — p2¥aZ).
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Proof. We write the iteration (5.1.37) as

Zn = ‘](Mz,pz)(zn = p2l112xn):
Yn = J(Ml,pl)(zn c ° plllllzn)v

Tnt1 = an'Yf(a:n) + BnTn + ((1 = ﬂn)I il anA) [I-LTn-Tn =+ (1 = u)yn], VYn > 1,

where T}, is defined by (5.1.36). It is clear that each mapping T, is nonexpansive.

By Theorem 5.1.10 and Lemma 5.1.12, the conclusion follows. O

The following example appears in [33] shows that there exists {3F} satisfying

the conditions of Lemma 5.1.12.

Example 5.1.14. Let {85} be defined by

e 27k (k <n)

21k (k = n),

for all n,k € N with k < n. In this case, the sequence {T,,} of mappings generated
by {Sk} is defined as follows: For x € C,

Tz = Sz,

Tox = %Slx 4 %Sza:,

Tz = %Slx + i—Szx + %ng:,

Tuz = 1812+ 1S,z + §S3x + gSaz,

Tz = %Sla: + %Sgl' + %S;;x + 1—1654.7: +---+ 5;}.75,,_@ + 2,1—1_1—3,@.



122

5.2 Strong convergence theorems of viscosity iterative methods for a

countable family of strict pseudo-contractions in Banach spaces

In this section, we consider a countable family {7,}52 , of strictly pseudo-
contractions, a strong convergence of viscosity iteration is shown in order to find a
common fixed point of {7,,}2, in either p-uniformly convex Banach space which
admits a weakly continuous duality mapping or p-uniformly convex Banach space

with uniformly Gateaux differentiable norm.

Definition 5.2.1. A countable family of mapping {7,, : C — C}, is called a
family of uniformly A-strict pseudo-contractions with respect to p, if there exists a

constant A € [0,1) such that

[Tz — Toyll? < llz —ylIP + A — T)z — (I — T,)y||?, Vr,y € C, Vn>1.

ForT : C — C anonexpansive mapping, t € (0,1) and f € Ii¢, tf+(1—t)T :
C — C defines a contraction mapping. Thus, by the Banach contraction mapping

principle, there exists a unique fixed point z/ satisfyin
p t ymg

zf =tf(z) + (1 —t) T (5.2.1)

For simplicity we will write z, for xtf provided no confusion occurs. Next, we will

prove the following lemma.

Lemma 5.2.2. Let E be a reflexive Banach space which admits a weakly continuous
duality mapping J, with gauge . Let C be a nonempty closed convex subset of E,
T : C — C a nonexpansive mapping with F(T) # 0 and f € Ilc. Then the net
{z:} defined by (5.2.1) converges strongly ast — 0 to a fized point T of T which

solves the variational inequality :

(I = )&, J (& — 2)) <0,z € F(T). (5.2.2)
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Proof. We first show that the uniqueness of a solution of the variational inequality

(5.2.2). Suppose both & € F(T) and z* € F(T) are solutions to (5.2.2), then

(I = f)Z, Jo(F —2")) <0 (5:2.3)
and

((I = flz*, Jy(z* — F)) <0. (5:24)
Adding (5.2.3) and (5.2.4), we obtain

(I- PE—(I- fz, J,( —z*)) <0. (5.2.5)

Noticing that for any z,y € F,

(I= Nz =T~y Jplz—y)) = (z-y,Jdp(z—y)) = (f(z) = f(¥), Jo(z —v))
lz = yllelllz — yl) — 1 (=) = F@)llelz -yl
> 2(llz —yll) — a@(llz - yl)

(1 - a)®(llz - yl)) > 0. (5.2.6)

v

From (5.2.5), we conclude that ®(||Z — z*||) = 0. This implies that Z = z* and
the uniqueness is proved. Below we use & to denote the unique solution of (5.2.2).

Next, we will prove that {z;} is bounded. Take a p € F(T'), then we have

lze —pll = lltf(z:) + (A —8)Tz —pll
= [[A=)Tz — (1 - t)p+ t(f(z) — D)l

< (1 =t)llze - pll + tlallz: — pll + || f(p) — pID)-
It follows that

Iz~ pll < =1 (®) ~ 5.

Hence {z} is bounded, so are {f(z;)} and {T(z;)}. The definition of {z,} implies

that

lze — Txi|| = t|| f(x:) — Tze|| — 0 as t — 0. (5.2.7)
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If follows from reflexivity of E and the boundedness of sequence {z;} that there
exists {z,, } which is a subsequence of {z,} converging weakly to w € C' as n — o0,

Since J,, is weakly sequentially continuous, we have by Lemma 2.1.43 that
lim sup @ (|, — zl) = lim sup &(||z,, —w]]) + ®(||lz — wl]), for all z € E.
Let
H{%) = lim_'sup ®(||z¢, — z||), for all z € E.
It follow.s that
H(z) = H(w) + ®(||z — wl|), for allz € E.
Since

lze, — Tz || = tallf(2e,) — Te, || = 0 as n— oo.

We obtain

H(Tw) = limsup ®(||z;, — Twl||) = limsup ®(||Tz, — Twl|)

< limsup ®(||z:, — wl||) = H(w). (5.2.8)

On the other hand, however,

H(Tw) = H(w) + &(||T(w) — wl])- (5-2.9)
It follows from (5.2.8) and (5.2.9) that

(| T(w) — w|) = H(Tw) — H(w) <O0.

This implies that Tw = w. Next we show that z;, — w as n — oo. In fact, since
o(t) = fot @(r)dr,¥t > 0, and ¢ : [0,00) — [0,00) is a gauge function, then for
1> k>0, p(kz) < ¢(z) and

O (kt) = /0 p(7T)dT = k/o p(kz)dz < k/o o(x)dz = kO(t).
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Following Lemma 2.1.43, we have

O(||ze, —wll) = (A —ta)Tze, = (1 = ta)w + ta(f(20,) — w)]])

= (|1 ~ ta)Tze, — (1 = ta)wl]) + tn(f (22,) — w, I (22, — w))
B((1 — to)llze, — wll) + talf (ze) — f(w), J (T, — w))
Half (w) — w, J(21, —w))
(1= ta)@(llze, — wll) + tall f(22.) — ()T (22, — W)

+ta (f(w) — w, J(ze, — w))

IN

IA

IN

(1 = ta)2(llze, — wll) + tacrllze, — wll|Jp(zen —w)ll
Ha(f (w) — w, J(2e, —w))
= (1 ta)®(llze, — wll) + tna®(]| 2, — wl])
Ha(f (w) — w, J (21, —w))
= (1= ta(l — ))®(||zs, — wl))

o f(w) — w, J (24, — W) (5.2.10)
This implies that

(llze, —wll) <

1 i —(f(w) = w, J (20, = w))-

Now observing that z,, — w implies J,(z:, — w) — 0, we conclude from the last
inequality that

®(||z, — wl||) — 0 as n — oo.

Hence z;, — w as n — co. Next we prove that w solves the variational inequality

(5.2.2). For any z € F(T), we observe that

(I =Tz, — (I —T)z,Jp(z: — 2)) = (2 — 2,Jp(z1 — 2)) + (Tz: — T2, Jo(ze— 2))
= Oz — 2|l) — (T2 — Tze, (@1 — 2))

> |z - 2ll) = 1Tz = Tz||l| J (2 — 2l
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v

P(|lz — 2ll) — llz — zellll Jp (2 = 2]

(|2 — 2ll) - @z — 2l) = 0. (5:211)

Since
Ty = tf(z:) + (1 - )Tz,
we can derive that
(I = N@) =~ =Ty + (I~ Tha.
Thus
(I~ @), o= 2)) =~ = T)ae = (I =Tz, Jyfe = 2)

4l — T )y, Jw(l't - z))

< A = Tzt Jp(ze — 2))- (5.2:12)
Noticing that
xy, —Txy, > w—T(w)=w—w=0.
Now replacing ¢ in (5.2.12) with ¢, and letting n — oo, we have
(I = frw, Jy(w — 2)) < 0.

So, w € F(T) is a solution of the variational inequality (5.2.2), and hence w =
by the uniqueness. In a summary, we have shown that each cluster point of {z,}(at

t — 0) equals . Therefore, z; — & as t — 0. This completes the proof. O

Theorem 5.2.3. Let E be a real p-uniformly conver Banach space with a weakly
continuous duality mapping J,, and C a nonempty closed convex subset of E. Let
{T,. : C — C} be a family of uniformly A-strict pseudo-contractions with respect to
p, A € [0,min{1,2-?"D¢,}) and N, F(T,) # 0. Let f : C — C be a k-contraction
with k € (0,1). Assume that real sequences {an}, {Bn} and {v,} in (0,1) satisfy

the following conditions:
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1. ap+ Bp+vm=1forallneN;
2. lim, ,o0n =0 and ) ., an =+00;

2. 0 < liminf,_co Ve < limsup, o, Yn < &, where £ =1 —2P72)c, .

Let {z,} be the sequence generated by the following

=1z €C,
(5.2.13)
Tnt1 = anf(xn) + ,ann + A/nTnzn7 n 1.

Suppose that {T,,} satisfies the AKTT-condition. Let T be a mapping of C into it-
self defined by Tz = lim,, oo Tyz for all z € C and suppose that F(T) = N[, F Tk
Then the sequence {z,,} converges strongly to Z which solves the variational inequal-

y -

(I = )z, J,(F — 2)) <0,z € F(T). (5.2.14)
Proof. Rewrite the iterative sequence (5.2.13) as follows:

Tnt1 = O f(T0) + BoZn + VSnZn, n>1, (5.2.15)

where ), = B, — %(1 — &), Y= ¢ and 5y = (1 — &I + €Ty, 1 is the identity
mapping. By Lemma 2.1.54, S, is nonexpansive such that F(S,) = F(T5) for all
n € N. Taking any q € N2, F(T,). From (5.2.15), it implies that

2t —gll < anllf(zn) = all + Bullza — gll + 7all Snzn — dll

< ankllen —all + ull fla) — all + (1 — aa)llan —
~ an(l— K@)~ all + (1 a1 = K)lza gl
< max{ s~ al 2170

Therefore, the sequence {z,} is bounded, and so are the sequences { f(z,)}, 15 2a):

Since Sptn = (1 — &)2n + &Tnz, and liminf&, > 0, we know that {Thz,} is
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bounded. We note that for any bounded subset B of C,

sup [|Sus12 — Szl
zEB
= Suglll((l — &nr1)2 + EnriTonz) — (1= &)z + &TR2)ll)
zE
< &1 — &nlsup ||2]| + Enyrsup | Tosrz — Tnzll + [nsr — &nl sup [ Tnz|l
z€B z€B 2€B

= I§n+l 3 gnl sup(“z” =t ”TZ“) + &ny15up ”Tn+lz w Tnz”-
z€B zeB

From Y%7  |&u41 — &n| < 00 and {T},} satisfies AKTT-condition, we obtain that

Zsup [|Sns12 — Saz| < o0,

oo
1 z2€B

that is the sequence {S,} satisfies AKTT-condition. Applying Lemma 2.2.9, we

can take the mapping S : C — C defined by

83 =vlim Spza Ve € C. (5.2.16)

n—00

Moreover, we have S is nonexpansive and

Sz = lim Sz = lim ((1—-&))z+&Taz)=(1—- &2+ ET=.

n—00

It is easy to see that F(S) = F(T). Hence F(S) = N2, F(T) = N2, F(Sy). The

iterative sequence (5.2.15) can be expressed as follows:
Tns1 = BpZn + (1= BL)Yn,

where

ynzlfnﬂl_f(xn)‘*“ e S (5.2.17)

We estimate from (5.2.17)

“yn+1"yn”
(eS| ’Y::+I Qn ’Y,Irl
= [|—2 f(gpp1) + —E S 1Ty — ———f(Tn) + — " 5nZn
\1— <R e — e T g
QAni1 ’7;1-{-1
- k||$n+1—rnl|+1—,—||5n+1zn+1—5nxnll

n+1 Mo+l
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Apy1 (29
- n) Sn n
o T 1) — Sl
Qnyl o
< —M_/_—k”x"'i‘l - CC"” + n——*_/l[”Sn+lxn+l - Sn+11'n" + ”Sn+lxn . Snxn”]
n+1 15 n+1
Qpt1 (649
- == n _Sn n
= 2 1) — Sl
Qnt1 Y,
< ‘n—lk"xn*}-l 2 xﬂ” + —_——E#—“Ixn+1 =y -’L'n” + sup ||Sn+lz = SnZ"]
¥+ n+1 I= n+1 z€{zn}
Qpnip1 Qn
. n _Sn n|l- 5.2.18
o () — Sl (5:2.18)
Hence
Qnt1 Va1
1yntr = gall = lIZnrs = zall < T—5—HllTnn — zall + 1—"+,— sup || Sns12 — Snzl|
— Mn+1 — Pn+l z€{zn}
Qnyl Ay
+ — Tn) — Spzrll- 5.2.19
C W) Sl (5219)
Since limg, o 0 = 0, and lim, oo SUP, (s} [Snt12 — Snzl| = 0, we have from
(5.2.19) that
lim sup([|yn+1 — Yall = |Zas1 — 2all) < 0.
n—oo
Hence, by Lemma 2.1.56, we obtain
lim ||y, — za|| = 0. (5.2.20)
From (5.2.17), we get
lim [y — Sa@nll = Hm —2 || f(2n) — SuZnl =0, (5.2.21)
n—oo n—oo 1 — ﬂ:l

and so it follows from (5.2.20) and (5.2.21) that

lim ||z, — Saza|| = 0. (5.2.22)
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It follows from Lemma 2.2.9 and (5.2.22), we have

IN

N — | = SnZn|l + |Snzn — S|

A

|zn — Saznll + sup{||Snz — Sz| : z € {za}}

— 0 asn — oo. (5.2.23)

Since S is a nonexpansive mapping, we have from Lemma 2.1.54 that the net {z;}
generated by
z =tf(z) + (1 —t)Sz

converges strongly to T € F(S), ast — 0%. Next, we prove that

limsup(f(Z) — &, J,(z. — %)) <0, (5.2.24)

n—oo

Let {z,,} be a subsequence of {z,} such that

klim (f(z) — %, Jp(Tn, — Z)) = limsup(f(Z) — &, Jy(zn — T))- (5.2.25)
If follows from reflexivity of E and the boundedness of sequence {z,,} that there
exists {xnki} which is a subsequence of {z, } converging weakly to w € C as
i — co. Since J, is weakly continuous, we have by Lemma 2.1.43 that

lim 5up ®(|[n,, — o) = lim 5up ({|&n,, — wl)) + B(Jlz — w]), for all & € E.
Let

H(z) = limsup &(||z,,, — zl|), for all z € E.

It follows that

H(z) = H(w) + ®(|]z — w]|), forallz € E.

From (5.2.23), we obtain

H(Sw) = limsup ®(||z,, — Swl|) = limsup (|| Szn,, — Swl|)

1—00 1—00
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< limsup ®(||zn,, — w|)) = H(w) (5.2.26)

2—00

On the other hand, however,
H(Sw) = H(w) + ®(||S(w) — wl|) (65:227)

It follows from (5.2.26) and (5.2.27) that
(|| S(w) — wll) = H(Sw) — H(w) <0.
This impli&s.that Sw = w that is w € F(S) = F(T). Since the duality map J,, is

single-valued and weakly continuous, we get that

limsup( /() = £, Jp(@n ~ D) = Jim (f(&) ~ %, Jolon, )
= 2131;’(]“(:%) » :iv Jtp(-Tnki - i))

= (I - f)Z,J,(T—w)) <0
as required. Finally, we show that z, — Z as n — oo.

O(||znir — E) = llan(f(@n) = F(&)) + Bu(zn — T) + 70(SnTn — ) + an(f(&) — D))

< @(lan(f(zn) = f(Z)) + Buln — ) + o (Snzn — D))
+ an(f(i) -z, Jtp(l'n+1 - i»
S (I)(”ank"zn - i” + ﬁ;"ﬂ?n i) j” = 7;“-7311 o= ';i'.“)

o an(f(‘;i") - ‘%1 J¢($n+1 - :i'))
= O((1 - an(1 = k))llzn — 2ll) + 0n(f(Z) — T, Jp(Tns1 — T))

< (11— an(1 = E)2(|J2n — Zl) + aulf () = T, Jp(Tns1 — F))-  (5:2.28)

It follows that from condition (i) and (5.2.24) that

lim o, =0, Zan = oo and limsup{f(Z) — Z, Jo(znt1 — Z)) < 0.

n—o0o
n=1

Apply Lemma 2.2.10 to (5.2.28) to conclude ®(||zn41 — Z||) — 0 as n — oo; that

is, , — & as n — oo. This completes the proof. O
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If {T,, : C — C} is a family of nonexpansive mappings, then we obtain the

following results:

Corollary 5.2.4. Let E be a real p-uniformly convexr Banach space with a weakly
continuous duality mapping J,, and C a nonempty closed convex subset of E. Let
{T,, : C — C} be a family of nonezpansive mappings such that N3, F(T,,) # 0. Let
f : C — C be a k-contraction with k € (0,1). Assume that real sequences {on},

{Bn} and {y,} in (0,1) satisfy the following conditions:
1. an+Bn+mm=1forallneN;

2. lm,, ooy, =0 and ) -~ o, = +00;

8. 0 < liminf,, v, < limsup,,_, ., 1n < 1.

Let {z,} be the sequence generated by the following

Ty =€ C,
Tny1 = anf(xn) =1 ﬁnxn = ’YnTnxnv 7.2 1
Suppose that {T,,} satisfies the AKTT-condition. Let T be a mapping of C into itself

defined by Tz = limy,_,oo Tnz for all z € C and suppose that F(T) = NS, F(T3)-

Then the sequence {z,} converges strongly & which solves the variational inequality

(I = )2, Jo& — ) < 0,z € F(T).

Corollary 5.2.5. Let E be a real p-uniformly convexr Banach space with a weakly
continuous duality mapping J,, and C a nonempty closed convex subset of E. Let
T : C — C be a \-strict pseudo-contraction with respect to p, A € [0, min{1,2""2¢,})
and F(T) # 0. Let f : C — C be a k-contraction with k € (0,1). Assume that real
sequences {an}, {Bn} and {v.} in (0,1) satisfy the following conditions:

1. ap+Bn+v=1forallneN;



133

2. lim, oo 0 =0 and 3 oo @y =400

2. 0 < liminf, .07V, < limsup, ., s < &, where £ =1 —2P72\c; .

Let {z,} be the sequence generated by the following
z, =z € C,
Tt = Cnf(Ea) -t Oatn + gl Ty M 2 L.
Then the sequence {z,} converges strongly to T which solves the variational in-
equality.:
(I — )z, Jp(& - 2)) < 0,z € F(T).

Theorem 5.2.6. Let E be a real p-uniformly convez Banach space with uni-
formly Gateauz differentiable norm, and C a nonempty closed convex subset of
E which has the fized point property for nonezpansive mappings. Let i, G —
C} be a family of uniformly A-strict pseudo-contractions with respect to p, A €
[0, min{1,2"®2¢,}) and N2, F(T,) # 0. Let f: C — C be a k-contraction with
k € (0,1). Assume that real sequences {an}, {Ba} and {y.} in (0,1) satisfy the

following conditions:
1. on 4+ Bn+ =1 foralneN;

2. hmn—»oo an = 0 and Z:;O ay, = +00;

2. 0 < Hminf,_co Y < limsup,_,, Va < &, where £ =1 —2P72\c;h.

Let {z,} be the sequence generated by the following

.=z €C,
(5.2.29)

Tnt1 = anf(zn) =+ ﬁnxn =t 'YnTnxna A
Suppose that {T,,} satisfies the AKTT-condition. LetT be a mapping of C into itself
defined by Tz = limy, .o Tpz for all z € C and suppose that F(T) = N2, FT)-

Then the sequence {z,} converges strongly to a common fized point T of {Ta:}:
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Proof. It follows from the same argumentation as Theorem 5.2.3 that {z,} is
bounded and lim, , ||z, — Sz,|| = 0, where S is a nonexpansive mapping de-
fined by (5.2.16). From Lemma 2.1.55 that the net {z,} generated by z, =
tf(z,) + (1 — t)Sz, converges strongly to & € F(S) = F(T), as t — 0*. Obvi-
ously,

Ty — Tp = (1 — t)(Sz¢ — zn) + t(f(ze) — z0)-

In view of Lemma 2.1.43, we calculate

IA

lze = zall® < (1= Sz — all* + 2{f (z) — Tn, J (2 — 7))

A

(1 = 2t + ) (l|ze — Tnll + [|SZn — za|)?

+2t(f(z¢) — x¢, J(x¢ — Tn)) + 2t||z¢ — T,

and therefore

(1 +8)?||zn — Szal|

(f(@) =1, J(Tn—21)) < éllwt—wnllzﬂL Cllze—znll+ll2n—Szal)-

2t
Since {z,}, {z:} and {Sz,} are bounded and lim,_. ”ﬂ—;&ﬂ = 0, we obtain
t
lim sup(f(z;) — zs, J(xn — x¢)) < §M, (5.2.30)

where M = sup,,5 ie01) {114t — 2a[|°}. We also know that

(f(@) -5, J(zn—3)) = (f(@) =20, J(@a — 3)) + {f(E) = f(20) + 20 — T, T (@0 — 1))

+{f(@) — & J(zn — &) — J(Tn — T1))- (5.2.31)

From the fact that =, — € F(T), as t — 0, {z,} is bounded and the duality
mapping J is norm-to-weak* uniformly continuous on bounded subset of E, it

follows that as t — 0,
(f(Z)—%,J(xn— %) — J(zp —x)) =0, foralln e N

and

(f(z)— flz) + ¢ — Z, J(xn — 2¢)) — 0, forallm € N.
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Combining (5.2.30), (5.2.31) and two results mentioned above, we get

limsup(f(z) — %, J(zn, — T)) < 0. (5.2.32)

n—00

From (5.2.15) and Lemma 2.1.43, we get

IN

IZnis = Z* < llan(f(@a) = f(2)) + Bu(@n = F) + Va(Saa — T)|I?
+ 20,(f(Z) — T, J (Tnt1 — T))
< (1= aa(l = K)lzn — 2|

+ 200 (f (&) — & J(Tns1 — E))- (5.2.33)

Hence applying in Lemma 2.2.10 to (5.2.33), we conclude that lim, . [|[2n, — Z|| =
0. O

Corollary 5.2.7. Let E be a real p-uniformly conver Banach space with uniformly
Gateaur differentiable norm, and C a nonempty closed convez subset of E which
has the fized point property for nonexpansive mappings. Let {T,, : C — C} be a
family of nonexpansive mappings such that N2 F(T,) # 0. Let f : C — C be a
k-contraction with k € (0,1). Assume that real sequences {a,}, {fn} and {yn} in

(0,1) satisfy the following conditions:

1. an+Bn+vm=1foralneN;
2. limy oo 0n =0 and Y oo ap = +00;

3. 0 < liminf, o v, < limsup,_ ., ¥» < 1.

Let {z,} be the sequence generated by the following

Fi = el

Tnt1 = anf(xn) +- 5113:11 i 7nTnzny n > 1.



136

Suppose that {T,} satisfies the AKTT-condition. Let T be a mapping of C into itself
defined by Tz = lim,_,o Tz for all z € C and suppose that F(T) = N3, F(T,).

Then the sequence {z,} converges strongly to a common fized point T of {T,}.

Corollary 5.2.8. Let E be a real p-uniformly conver Banach space with uniformly
Gateaux differentiable norm, and C' a nonempty closed conver subset of E which
has the fized point property for nonezpansive mappings. LetT : C — C be a A-strict
pseudo-contractions with respect to p, A € [0, min{1,2-?¢,}) and F(T) # 0. Let
f:C — C be a k-contraction with k € (0,1). Assume that real sequences {},
{Bn} and {v,} in (0,1) satisfy the following conditions:

1. ap+Bn+vm =1 foralln € N;

2. B 0 =0 and 327 56 = F00;

3. 0 < liminf,_ oo ¥n < limsup,,_,,, 1 <&, where { =1 — 2"‘2/\051.

Let {z,} be the sequence generated by the following

=z €C,
(5.2.34)

Tn+1 = anf(xn) i ﬁnxn + 'YnTxna n>1.

Then the sequence {x,,} converges strongly to a common fized point T of {Ty}.





