CHAPTER V

STRONG CONVERGENCE THEOREMS FOR STRICT PSEUDO-CONTRACTIONS IN BANACH SPACES

5.1 A general iterative process for solving a system of variational inclusions in Banach spaces

In this section, we introduce a general iterative method for finding solutions of a general system of variational inclusions with Lipchitzian relaxed cocoercive mappings. Strong convergence theorems are established in strictly convex and 2-uniformly smooth Banach spaces. Moreover, we apply our result to the problem of finding a common fixed point of a countable family of strict pseudo-contraction mappings.

In a smooth Banach space, a mapping $A:C\to E$ is called *strongly positive* [27] if there exists a constant $\bar{\gamma}>0$ with property

$$\langle Ax, J(x) \rangle \ge \bar{\gamma} \|x\|^2, \ \|aI - bA\| = \sup_{\|x\| \le 1} |\langle (aI - bA)x, \ J(x) \rangle|, \ a \in [0, 1], \ b \in [-1, 1],$$

$$(5.1.1)$$

where I is the identity mapping and J is the normalized duality mapping.

Next, we consider a system of quasi-variational inclusions: Find $(x^*,y^*)\in E\times E$ such that

$$0 \in x^* - y^* + \rho_1(\Psi_1 y^* + M_1 x^*),$$

$$0 \in y^* - x^* + \rho_2(\Psi_2 x^* + M_2 y^*),$$
(5.1.2)

where $\Psi_i: E \to E$ and $M_i: E \to 2^E$ are nonlinear mappings for each i=1,2.

As special cases of the problem (5.1.2), we have the following:

(1) If $\Psi_1 = \Psi_2 = \Psi$ and $M_1 = M_2 = M$, then the problem (5.1.2) is reduced to the following:

Find $(x^*, y^*) \in E \times E$ such that

$$0 \in x^* - y^* + \rho_1(\Psi y^* + M x^*),$$

$$0 \in y^* - x^* + \rho_2(\Psi x^* + M y^*).$$
(5.1.3)

(2) Further, if $x^* = y^*$ in the problem (5.1.3), then the problem (5.1.3) is reduced to the following:

Find $x^* \in E$ such that

$$0 \in \Psi x^* + Mx^*. \tag{5.1.4}$$

Definition 5.1.1. [67] Let $M: E \to 2^E$ be a multi-valued maximal accretive mapping. The single-valued mapping $J_{(M,\rho)}: E \to E$ defined by

$$J_{(M,\rho)}(u) = (I + \rho M)^{-1}(u), \quad \forall u \in E$$

is called the resolvent operator associated with M, where ρ is any positive number and I is the identity mapping.

Lemma 5.1.2. [67] $u \in E$ is a solution of variational inclusion (5.1.4) if and only if $u = J_{(M,\rho)}(u - \rho \Psi u)$, $\forall \rho > 0$, that is,

$$VI(E, \Psi, M) = F(J_{(M,\rho)}(I - \rho \Psi)), \ \forall \rho > 0,$$

where $VI(E, \Psi, M)$ denotes the set of solutions to the problem (5.1.4).

Lemma 5.1.3. [68] For any $(x^*, y^*) \in E \times E$, where $y^* = J_{(M_2, \rho_2)}(x^* - \rho_2 \Psi_2 x^*)$, (x^*, y^*) is a solution of the problem (5.1.2) if and only if x^* is a fixed point of the mapping Q defined by

$$Q(x) = J_{(M_1,\rho_1)}[J_{(M_2,\rho_2)}(x - \rho_2\Psi_2 x) - \rho_1\Psi_1 J_{(M_2,\rho_2)}(x - \rho_2\Psi_2 x)].$$

Theorem 5.1.4. [27, Lemma 1.9] Let C be a nonempty closed convex subset of a reflexive, smooth Banach space E which admits a weakly sequentially continuous duality mapping J from E to E^* . Let $T:C\to C$ be a nonexpansive mapping such that F(T) is nonempty, $f:C\to C$ a contraction with coefficient $\alpha\in(0,1)$, and let A be a strongly positive bounded linear operator with coefficient $\bar{\gamma}>0$ and $0<\gamma<\frac{\bar{\gamma}}{\alpha}$. Then the net $\{x_t\}$ defined by

$$x_t = t\gamma f(x_t) + (1 - tA)Tx_t \tag{5.1.5}$$

converges strongly as $t \to 0$ to a fixed point \tilde{x} of T which solves the variational inequality:

$$\langle (A - \gamma f)\tilde{x}, J(\tilde{x} - z) \rangle \le 0, \ \forall z \in F(T). \tag{5.1.6}$$

Lemma 5.1.5. Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space E with the smoothness constant K. Let $\Psi: C \to E$ be a L_{Ψ} -Lipchitzian and relaxed (c,d)-cocoercive mapping with $d > cL_{\Psi}^2$. Then

$$\|(I - \lambda \Psi)x - (I - \lambda \Psi)y\|^2 \le (1 + 2\lambda c L_{\Psi}^2 - 2\lambda d + 2\lambda^2 K^2 L_{\Psi}^2) \|x - y\|^2.$$
 (5.1.7) If $0 < \lambda \le \frac{d - c L_{\Psi}^2}{K^2 L_{\Psi}^2}$, then $I - \lambda \Psi$ is nonexpansive.

Proof. Using Lemma 2.1.52 and the cocoercivity of the mapping Ψ , we have, for all $x, y \in C$,

$$\begin{aligned} \|(I - \lambda \Psi)x - (I - \lambda \Psi)y\|^2 &= \|(x - y) - (\lambda \Psi x - \lambda \Psi y)\|^2 \\ &= \|x - y\|^2 - 2\lambda \langle \Psi x - \Psi y, J(x - y) \rangle \\ &+ 2\lambda^2 K^2 \|\Psi x - \Psi y\|^2 \\ &\leq \|x - y\|^2 - 2\lambda [-c\|\Psi x - \Psi y\|^2 + d\|x - y\|^2] \\ &+ 2\lambda^2 K^2 \|\Psi x - \Psi y\|^2 \\ &= \|x - y\|^2 - 2\lambda d\|x - y\|^2 + 2\lambda c\|\Psi x - \Psi y\|^2 \\ &+ 2\lambda^2 K^2 \|\Psi x - \Psi y\|^2 \end{aligned}$$

$$\leq (1 + 2\lambda cL_{\Psi}^2 - 2\lambda d + 2\lambda^2 K^2 L_{\Psi}^2) ||x - y||^2.$$

Hence (5.1.7) is proved. Assume that $\lambda \leq \frac{d-cL_{\Psi}^2}{K^2L_{\Psi}^2}$. Then, we have $(1+2\lambda cL_{\Psi}^2-2\lambda d+2\lambda^2K^2L_{\Psi}^2)\leq 1$. This together with (5.1.7) implies that $I-\lambda\Psi$ is nonexpansive. \square

Lemma 5.1.6. Let E be a strictly convex and 2-uniformly smooth Banach space admits a weakly sequentially continuous duality mapping with the smoothness constant K. Let $M_i: E \to 2^E$ be a maximal monotone mapping and $\Psi_i: E \to E$ a L_i -Lipchitzian and relaxed (c_i, d_i) -cocoercive mapping with $d_i > c_i L_i^2$. Let $\rho_i \in (0, \frac{d_i - c_i L_i^2}{K^2 L_i^2})$, respectively for each i = 1, 2. Let $\{T_n: E \to E\}_{n=1}^{\infty}$ be a countable family of uniformly ε -strict pseudo-contractions. Define a mapping $S_n: E \to E$ and $G_n: E \to E$ by

$$S_n x = (1 - \frac{\varepsilon}{K^2})x + \frac{\varepsilon}{K^2}T_n x, \ \forall x \in C \ and \ n \ge 1.$$

and

$$G_n = \mu S_n + (1 - \mu)Q,$$

where Q is defined as in Lemma 5.1.3. Assume that $\Omega := \bigcap_{n=1}^{\infty} F(T_n) \cap F(Q) \neq \emptyset$. Let $f: E \to E$ be an α -contraction, let $A: E \to E$ be a strongly positive linear bounded self adjoint operator with coefficient $\bar{\gamma}$ with $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$. Then the following hold:

1. For each $n \in \mathbb{N}$, G_n is nonexpansive such that

$$F(G_n) = F(S_n) \cap F(Q) = F(T_n) \cap F(Q).$$

2. Suppose that {G_n} satisfies AKTT-condition. Let G: E → E be the mapping defined by Gy = lim_{n→∞} G_ny for all y ∈ E and suppose that F(G) = ∩_{n=1}[∞] F(G_n). The net {x_t} defined by x_t = tγf(x_t) + (I − tA)Gx_t converges strongly as t → 0 to a fixed point x̃ of G which solves the variational inequality:

$$\langle (A - \gamma f)\tilde{x}, J(\tilde{x} - z) \rangle \le 0, \ \forall z \in F(G),$$
 (5.1.8)

and (\tilde{x}, \tilde{y}) is a solution of general system of variational inequality problem (5.1.2) such that $\tilde{y} = J_{(M_2, \rho_2)}(\tilde{x} - \rho_2 \Psi_2 \tilde{x})$.

Proof. It follows from Lemma 2.1.50 that S_n is nonexpansive such that $F(S_n) = F(T_n)$ for each $n \in \mathbb{N}$. Next, we prove that Q is nonexpansive. Indeed, we observe that

$$Q(x) = J_{(M_1,\rho_1)}[J_{(M_2,\rho_2)}(x-\rho_2\Psi_2x)-\rho_1\Psi_1J_{(M_2,\rho_2)}(x-\rho_2\Psi_2x)].$$

$$= J_{(M_1,\rho_1)}(I-\rho_1\Psi_1)J_{(M_2,\rho_2)}(I-\rho_2\Psi_2)x.$$

The nonexpansivity of $J_{(M_1,\rho_1)}$, $J_{(M_2,\rho_2)}$, $I - \rho_1 \Psi_1$ and $I - \rho_2 \Psi_2$ implies that Q is nonexpansive. By Lemma 2.1.58, we have G_n is nonexpansive such that

$$F(G_n) = F(S_n) \cap F(Q) = F(T_n) \cap F(Q) \neq \emptyset, \forall n \in \mathbb{N}.$$

Hence (i) is proved. It is well-known that if E is uniformly smooth, then E is reflexive. Hence Theorem 2.1.53 implies that $\{x_t\}$ converges strongly as $t \to 0$ to a fixed point \tilde{x} of G which solves the variational inequality:

$$\langle (A - \gamma f)\tilde{x}, J(\tilde{x} - z) \rangle \le 0, \ \forall z \in F(G),$$
 (5.1.9)

and (\tilde{x}, \tilde{y}) is a solution of the problem (5.1.2), where $\tilde{y} = J_{(M_2, \rho_2)}(\tilde{x} - \rho_2 \Psi_2 \tilde{x})$. This completes the proof of (ii).

Theorem 5.1.7. Let E be a strictly convex and 2-uniformly smooth Banach space which admits a weakly sequentially continuous duality mapping and has the smoothness constant K. Let $M_i: E \to 2^E$ be a maximal monotone mapping and $\Psi_i: E \to E$ a L_i -Lipchitzian and relaxed (c_i, d_i) -cocoercive mapping with $d_i > c_i L_i^2$. Let $\rho_i \in (0, \frac{d_i - c_i L_i^2}{K^2 L_i^2})$, respectively for each i = 1, 2. Let $\{T_n: E \to E\}_{n=1}^{\infty}$ be a countable family of uniformly ε -strict pseudo-contractions. Define a mapping $S_n: E \to E$ by

$$S_n x = (1 - \frac{\varepsilon}{K^2})x + \frac{\varepsilon}{K^2}T_n x \text{ for all } x \in C \text{ and } n \ge 1.$$

Assume that $\Omega := \bigcap_{n=1}^{\infty} F(T_n) \cap F(Q) \neq \emptyset$, where Q is defined as Lemma 5.1.3. Let $f : E \to E$ be an α -contraction, let $A : E \to E$ be a strongly positive linear bounded self adjoint operator with coefficient $\bar{\gamma}$ with $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$. Let $x_1 = u \in E$ and $\{x_n\}$ a sequence generated by

$$\begin{cases}
z_n = J_{(M_2,\rho_2)}(x_n - \rho_2 \Psi_2 x_n), \\
y_n = J_{(M_1,\rho_1)}(z_n - \rho_1 \Psi_1 z_n), \\
x_{n+1} = \alpha_n \gamma f(x_n) + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A)[\mu S_n x_n + (1 - \mu)y_n], \quad \forall n \ge 1,
\end{cases}$$
(5.1.10)

where $\mu \in (0,1)$, and $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in (0,1). Suppose that $\{S_n\}$ satisfies AKTT-condition. Let $S: E \to E$ be the mapping defined by $Sy = \lim_{n \to \infty} S_n y$ for all $y \in E$ and suppose that $F(S) = \bigcap_{n=1}^{\infty} F(S_n)$. If the control consequences $\{\alpha_n\}$ and $\{\beta_n\}$ satisfy the following restrictions

(C1)
$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1;$$

(C2)
$$\lim_{n\to\infty} \alpha_n = 0$$
 and $\sum_{n=1}^{\infty} \alpha_n = \infty$,

then $\{x_n\}$ converges strongly to \tilde{x} which solves the variational inequality:

$$\langle (A - \gamma f)\tilde{x}, J(\tilde{x} - z) \rangle \leq 0, z \in \Omega,$$

and (\tilde{x}, \tilde{y}) is a solution of general system of variational inequality problem (5.1.2) such that $\tilde{y} = J_{(M_2, \rho_2)}(\tilde{x} - \rho_2 \Psi_2 \tilde{x})$.

Proof. First, we show that sequences $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ are bounded. By the control condition (C2), we may assume, with no loss of generality, that $\alpha_n \leq (1-\beta_n)\|A\|^{-1}$.

Since A is a linear bounded operator on E, by (5.1.1), we have

$$||A|| = \sup\{|\langle Au, J(u)\rangle| : u \in E, ||u|| = 1\}.$$

Observe that

$$\langle ((1 - \beta_n)I - \alpha_n A)u, J(u) \rangle = 1 - \beta_n - \alpha_n \langle Au, J(u) \rangle$$

$$\geq 1 - \beta_n - \alpha_n ||A||$$

$$\geq 0.$$

It follows that

$$\begin{aligned} \|(1-\beta_n)I - \alpha_n A\| &= \sup\{\langle ((1-\beta_n)I - \alpha_n A)u, J(u)\rangle : u \in E, \|u\| = 1\} \\ &= \sup\{1-\beta_n - \alpha_n \langle Au, J(u)\rangle : u \in E, \|u\| = 1\} \\ &\leq 1-\beta_n - \alpha_n \bar{\gamma}. \end{aligned}$$

Therefore, taking $\bar{x} \in \Omega$, one has

$$\bar{x} = J_{(M_1,\rho_1)}[J_{(M_2,\rho_2)}(\bar{x} - \rho_2\Psi_2\bar{x}) - \rho_1\Psi_1J_{(M_2,\rho_2)}(\bar{x} - \rho_2\Psi_2\bar{x})]. \tag{5.1.11}$$

Putting $\bar{y} = J_{(M_2,\rho_2)}(\bar{x} - \rho_2 \Psi_2 \bar{x})$, one sees that

$$\bar{x} = J_{(M_1,\rho_1)}(\bar{y} - \rho_1 \Psi_1 \bar{y}). \tag{5.1.12}$$

It follows from Lemma 2.1.61 and Lemma 5.1.5 that

$$||z_{n} - \bar{y}|| = ||J_{(M_{2},\rho_{2})}(x_{n} - \rho_{2}\Psi_{2}x_{n}) - J_{(M_{2},\rho_{2})}(\bar{x} - \rho_{2}\Psi_{2}\bar{x})||$$

$$\leq ||(x_{n} - \rho_{2}\Psi_{2}x_{n}) - (\bar{x} - \rho_{2}\Psi_{2}\bar{x})||$$

$$\leq ||x_{n} - \bar{x}||.$$
(5.1.13)

This implies that

$$||y_n - \bar{x}|| = ||J_{(M_1,\rho_1)}(z_n - \rho_1 \Psi_1 z_n) - J_{(M_1,\rho_1)}(\bar{y} - \rho_1 \Psi_1 \bar{y})||$$

$$\leq ||(z_n - \rho_1 \Psi_1 z_n) - (\bar{y} - \rho_1 \Psi_1 \bar{y})||$$

$$\leq ||z_n - \bar{y}||$$

$$\leq \|x_n - \bar{x}\|. \tag{5.1.14}$$

Setting $t_n = \mu S_n x_n + (1 - \mu) y_n$ and applying Lemma 2.1.50, we have S_n is a nonexpansive mapping such that $F(S_n) = F(T_n)$ for all $n \geq 1$ and hence $\bigcap_{n=1}^{\infty} F(S_n) = \bigcap_{n=1}^{\infty} F(T_n)$. Then

$$||t_{n} - \bar{x}|| = ||\mu S_{n} x_{n} + (1 - \mu) y_{n} - \bar{x}||$$

$$\leq \mu ||S_{n} x_{n} - \bar{x}|| + (1 - \mu) ||y_{n} - \bar{x}||$$

$$\leq ||x_{n} - \bar{x}||.$$
(5.1.15)

It follows from the last inequality that

$$||x_{n+1} - \bar{x}|| = ||\alpha_n \gamma f(x_n) + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A)t_n - \bar{x}||$$

$$= ||\alpha_n (\gamma f(x_n) - A\bar{x}) + \beta_n (x_n - \bar{x}) + ((1 - \beta_n)I - \alpha_n A)(t_n - \bar{x})||$$

$$\leq (1 - \beta_n - \alpha_n \bar{\gamma})||x_n - \bar{x}|| + \beta_n ||x_n - \bar{x}|| + \alpha_n ||\gamma f(x_n) - A\bar{x}||$$

$$\leq (1 - \alpha_n \bar{\gamma})||x_n - \bar{x}|| + \alpha_n \gamma \alpha ||x_n - \bar{x}|| + \alpha_n ||\gamma f(\bar{x}) - A\bar{x}||$$

$$= (1 - \alpha_n (\bar{\gamma} - \gamma \alpha))||x_n - \bar{x}|| + \alpha_n ||\gamma f(\bar{x}) - A\bar{x}||.$$

By induction, we have

$$||x_n - \bar{x}|| \le \max\left\{||x_1 - \bar{x}||, \frac{||\gamma f(\bar{x}) - A\bar{x}||}{\bar{\gamma} - \gamma\alpha}\right\}, \quad n \ge 1.$$

This shows that the sequence $\{x_n\}$ is bounded, so are $\{y_n\}$, $\{z_n\}$ and $\{t_n\}$.

On the other hand, from the nonexpansivity of the mappings $J_{(M_2,\rho_2)}$, one sees that

$$||y_{n+1} - y_n|| = ||J_{(M_1,\rho_1)}(z_{n+1} - \rho_1 \Psi_1 z_{n+1}) - J_{(M_1,\rho_1)}(z_n - \rho_1 \Psi_1 z_n)||$$

$$\leq ||(z_{n+1} - \rho_1 \Psi_1 z_{n+1}) - (z_n - \rho_1 \Psi_1 z_n)||$$

$$\leq ||z_{n+1} - z_n||.$$
(5.1.16)

In a similar way, one can obtain that

$$||z_{n+1} - z_n|| \le ||x_{n+1} - x_n||. \tag{5.1.17}$$

It follows that

$$||y_{n+1} - y_n|| \le ||x_{n+1} - x_n||. \tag{5.1.18}$$

This implies that

$$||t_{n+1} - t_n|| = ||\mu S_{n+1} x_{n+1} + (1 - \mu) y_{n+1} - (\mu S_n x_n + (1 - \mu) y_n)||$$

$$= ||\mu S_{n+1} x_{n+1} - \mu S_{n+1} x_n + (1 - \mu) y_{n+1} + \mu S_{n+1} x_n - \mu S_n x_n - (1 - \mu) y_n||$$

$$\leq \mu ||S_{n+1} x_{n+1} - S_{n+1} x_n|| + (1 - \mu) ||y_{n+1} - y_n|| + \mu ||S_{n+1} x_n - S_n x_n||$$

$$\leq \mu ||x_{n+1} - x_n|| + (1 - \mu) ||x_{n+1} - x_n|| + \mu \sup_{z \in \{x_n\}} ||S_{n+1} z - S_n z||$$

$$= ||x_{n+1} - x_n|| + \mu \sup_{z \in \{x_n\}} ||S_{n+1} z - S_n z||.$$
(5.1.19)

Setting

$$x_{n+1} = (1 - \beta_n)e_n + \beta_n x_n, \quad \forall n \ge 1,$$
 (5.1.20)

one sees that

$$= \frac{\alpha_{n+1} - e_n}{1 - \beta_{n+1}} - \frac{\alpha_n \gamma f(x_{n+1}) + ((1 - \beta_{n+1})I - \alpha_{n+1}A)t_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_n \gamma f(x_n) + ((1 - \beta_n)I - \alpha_nA)t_n}{1 - \beta_n}$$

$$= \frac{\alpha_{n+1}}{1 - \beta_{n+1}} (\gamma f(x_{n+1}) - At_{n+1}) + t_{n+1} - \frac{\alpha_n}{1 - \beta_n} (\gamma f(x_n) - At_n) - t_n$$

and so it follows that

$$||e_{n+1} - e_n|| \le \frac{\alpha_{n+1}}{1 - \beta_{n+1}} ||\gamma f(x_{n+1}) - At_{n+1}|| + \frac{\alpha_n}{1 - \beta_n} ||\gamma f(x_n) - At_n|| + ||t_{n+1} - t_n||,$$

which combines with (5.1.19) yields that

$$||e_{n+1} - e_n|| - ||x_{n+1} - x_n|| \le \frac{\alpha_{n+1}}{1 - \beta_{n+1}} ||\gamma f(x_{n+1}) - At_{n+1}|| + \frac{\alpha_n}{1 - \beta_n} ||\gamma f(x_n) - At_n|| + \mu \sup_{z \in \{x_n\}} ||S_{n+1}z - S_nz||.$$
(5.1.21)

Using the conditions (C1) and (C2) and AKTT-condition of $\{S_n\}$, we have

$$\limsup_{n \to \infty} (\|e_{n+1} - e_n\| - \|x_{n+1} - x_n\|) \le 0.$$

Hence, from Lemma 2.1.56, it follows that

$$\lim_{n \to \infty} \|e_n - x_n\| = 0. \tag{5.1.22}$$

From (5.1.20), it follows that

$$||x_{n+1} - x_n|| = (1 - \beta_n)||e_n - x_n||.$$

By (5.1.22), one sees that

$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0. (5.1.23)$$

On the other hand, one has

$$x_{n+1} - x_n = \alpha_n(\gamma f(x_n) - Ax_n) + ((1 - \beta_n)I - \alpha_n A)(t_n - x_n).$$
 (5.1.24)

It follows that

$$(1 - \beta_n - \alpha_n \bar{\gamma}) \|t_n - x_n\| \leq \|x_n - x_{n+1}\| + \alpha_n \|\gamma f(x_n) - Ax_n\|.$$
 (5.1.25)

From the conditions (C1), (C2) and (5.1.23), one sees that

$$\lim_{n \to \infty} ||t_n - x_n|| = 0. (5.1.26)$$

Define the mapping G_n by

$$G_n = \mu S_n + (1 - \mu)Q,$$

where Q is defined as in Lemma 5.1.3. From Lemma 6.2.1 (i), we see that G_n is nonexpansive such that

$$F(G_n) = F(T_n) \cap F(Q) = F(S_n) \cap F(Q). \tag{5.1.27}$$

From (5.1.26), it follows that

$$\lim_{n \to \infty} \|G_n x_n - x_n\| = 0. \tag{5.1.28}$$

Since $\{S_n\}$ satisfies AKTT-condition and $S: E \to E$ is the mapping defined by $Sy = \lim_{n \to \infty} S_n y$ for all $y \in E$, we have $\{G_n\}$ satisfies AKTT-condition. Let the mapping $G: E \to E$ is the mapping defined by $Gy = \lim_{n \to \infty} G_n y$ for all $y \in E$. It follows from the nonexpansivity of S and

$$Gy = \mu Sy + (1 - \mu)Q$$

that G is nonexpansive such that

$$F(G) = F(S) \cap F(Q) = \bigcap_{n=1}^{\infty} F(S_n) \cap F(Q) = \bigcap_{n=1}^{\infty} F(T_n) \cap F(Q) = \bigcap_{n=1}^{\infty} F(G_n).$$

Next, we prove that

$$\limsup_{n \to \infty} \langle \gamma f(\tilde{x}) - A\tilde{x}, J(x_n - \tilde{x}) \rangle \le 0, \tag{5.1.29}$$

where $\tilde{x} = \lim_{t\to 0} x_t$ with x_t be the fixed point of the contraction

$$x \mapsto t\gamma f(x) + (I - tA)Gx$$
.

Then x_t solves the fixed point equation $x_t = t\gamma f(x_t) + (I - tA)Gx_t$. It follows from Lemma 5.1.6 (ii) that $\tilde{x} \in F(G) = \Omega$, which solves the variational inequality:

$$\langle (A - \gamma f)\tilde{x}, J(\tilde{x} - z) \rangle \leq 0, \ \forall z \in F(G),$$

and (\tilde{x}, \tilde{y}) is a solution of general system of variational inequality problem (5.1.2) such that $\tilde{y} = J_{(M_2, \rho_2)}(\tilde{x} - \rho_2 \Psi_2 \tilde{x})$. Let $\{x_{n_k}\}$ be a subsequence of $\{x_n\}$ such that

$$\lim_{k \to \infty} \langle \gamma f(\tilde{x}) - A\tilde{x}, J(x_{n_k} - \tilde{x}) \rangle = \limsup_{n \to \infty} \langle \gamma f(\tilde{x}) - A\tilde{x}, J(x_n - \tilde{x}) \rangle.$$
 (5.1.30)

If follows from reflexivity of E and the boundedness of sequence $\{x_{n_k}\}$ that there exists $\{x_{n_{k_i}}\}$ which is a subsequence of $\{x_{n_k}\}$ converging weakly to $w \in C$ as $i \to \infty$. It follows from (5.1.28) and the nonexpansivity of G, we have $w \in F(G)$ by Lemma 2.1.59. Since the duality map J is single-valued and weakly sequentially continuous from E to E^* , we get that

$$\limsup_{n \to \infty} \langle \gamma f(\tilde{x}) - A\tilde{x}, J(x_n - \tilde{x}) \rangle = \lim_{k \to \infty} \langle \gamma f(\tilde{x}) - A\tilde{x}, J(x_{n_k} - \tilde{x}) \rangle$$

$$= \lim_{i \to \infty} \langle \gamma f(\tilde{x}) - A\tilde{x}, J(x_{n_{k_i}} - \tilde{x}) \rangle$$

$$= \langle (A - \gamma f)\tilde{x}, J(\tilde{x} - w) \rangle \leq 0$$

as required. Now from Lemma 2.1.52, we have

$$||x_{n+1} - \tilde{x}||^{2}$$

$$= ||\alpha_{n}\gamma f(x_{n}) + \beta_{n}x_{n} + [(1 - \beta_{n})I - \alpha_{n}A]t_{n} - \tilde{x}||^{2}$$

$$= ||[(1 - \beta_{n})I - \alpha_{n}A](t_{n} - \tilde{x}) + \alpha_{n}(\gamma f(x_{n}) - A\tilde{x}) + \beta_{n}(x_{n} - \tilde{x})||^{2}$$

$$\leq (1 - \beta_{n} - \alpha_{n}\bar{\gamma})^{2}||t_{n} - \tilde{x}||^{2} + 2\langle\alpha_{n}(\gamma f(x_{n}) - A\tilde{x}) + \beta_{n}(x_{n} - \tilde{x}), J(x_{n+1} - \tilde{x})\rangle$$

$$= (1 - \beta_{n} - \alpha_{n}\bar{\gamma})^{2}||t_{n} - \tilde{x}||^{2} + 2\beta_{n}\langle x_{n} - \tilde{x}, J(x_{n+1} - \tilde{x})\rangle$$

$$+ 2\alpha_{n}\langle\gamma f(x_{n}) - A\tilde{x}, J(x_{n+1} - \tilde{x})\rangle$$

$$+ 2\alpha_{n}\langle\gamma f(x_{n}) - \gamma f(\tilde{x}), J(x_{n+1} - \tilde{x})\rangle + 2\alpha_{n}\langle\gamma f(\tilde{x}) - A\tilde{x}, J(x_{n+1} - \tilde{x})\rangle$$

$$\leq (1 - \beta_{n} - \alpha_{n}\bar{\gamma})^{2}||t_{n} - \tilde{x}||^{2} + 2\beta_{n}||x_{n} - \tilde{x}||||x_{n+1} - \tilde{x}||$$

$$+ 2\alpha_{n}||\gamma f(x_{n}) - \gamma f(\tilde{x})||||x_{n+1} - \tilde{x}|| + 2\alpha_{n}\langle\gamma f(\tilde{x}) - A\tilde{x}, J(x_{n+1} - \tilde{x})\rangle$$

$$\leq (1 - \beta_{n} - \alpha_{n}\bar{\gamma})^{2}||x_{n} - \tilde{x}||^{2} + \beta_{n}(||x_{n+1} - \tilde{x}||^{2} + ||x_{n} - \tilde{x}||^{2})$$

$$+ \alpha_{n}\gamma\alpha(||x_{n+1} - \tilde{x}||^{2} + ||x_{n} - \tilde{x}||^{2}) + 2\alpha_{n}\langle\gamma f(\tilde{x}) - A\tilde{x}, J(x_{n+1} - \tilde{x})\rangle$$

$$= [(1 - \beta_n - \alpha_n \bar{\gamma})^2 + \beta_n + \alpha_n \gamma \alpha] \|x_n - \bar{x}\|^2 + (\beta_n + \alpha_n \gamma \alpha) \|x_{n+1} - \bar{x}\|^2 + 2\alpha_n \langle \gamma f(\bar{x}) - A\bar{x}, J(x_{n+1} - \bar{x}) \rangle,$$
(5.1.31)

which implies that

that is,

$$\|x_{n+1} - \tilde{x}\|^{2}$$

$$\leq \frac{(1 - \beta_{n} - \alpha_{n}\bar{\gamma})^{2} + \beta_{n} + \alpha_{n}\gamma\alpha}{1 - \beta_{n} - \alpha_{n}\gamma\alpha} \|x_{n} - \tilde{x}\|^{2} + \frac{2\alpha_{n}}{1 - \beta_{n} - \alpha_{n}\gamma\alpha} \langle \gamma f(\tilde{x}) - A\tilde{x}, J(x_{n+1} - \tilde{x}) \rangle$$

$$= \left[1 - \frac{2\alpha_{n}(\bar{\gamma} - \gamma\alpha)}{1 - \beta_{n} - \alpha_{n}\gamma\alpha}\right] \|x_{n} - \tilde{x}\|^{2} + \frac{\beta_{n}^{2} + 2\beta_{n}\alpha_{n}\bar{\gamma} + \alpha_{n}^{2}\bar{\gamma}^{2}}{1 - \beta_{n} - \alpha_{n}\gamma\alpha} \|x_{n} - \tilde{x}\|^{2}$$

$$+ \frac{2\alpha_{n}}{1 - \beta_{n} - \alpha_{n}\gamma\alpha} \langle \gamma f(\tilde{x}) - A\tilde{x}, J(x_{n+1} - \tilde{x}) \rangle$$

$$= \left[1 - \frac{2\alpha_{n}(\bar{\gamma} - \gamma\alpha)}{1 - \beta_{n} - \alpha_{n}\gamma\alpha}\right] \|x_{n} - \tilde{x}\|^{2} + \frac{2\alpha_{n}(\bar{\gamma} - \gamma\alpha)}{1 - \beta_{n} - \alpha_{n}\gamma\alpha}\left[\frac{\beta_{n}^{2} + 2\beta_{n}\alpha_{n}\bar{\gamma} + \alpha_{n}^{2}\bar{\gamma}^{2}}{2\alpha_{n}(\bar{\gamma} - \gamma\alpha)}M_{3} + \frac{1}{\bar{\gamma} - \gamma\alpha} \langle \gamma f(\tilde{x}) - A\tilde{x}, J(x_{n+1} - \tilde{x}) \rangle\right],$$

$$(5.1.32)$$

where M_3 is an appropriate constant such that $M_3 \ge \sup_{n\ge 0} \|x_n - \tilde{x}\|^2$. Put

$$j_{n} = \frac{2\alpha_{n}(\bar{\gamma} - \gamma\alpha)}{1 - \beta_{n} - \alpha_{n}\gamma\alpha} \text{ and } k_{n} = \frac{\beta_{n}^{2} + 2\beta_{n}\alpha_{n}\bar{\gamma} + \alpha_{n}^{2}\bar{\gamma}^{2}}{2\alpha_{n}(\bar{\gamma} - \gamma\alpha)} M_{3} + \frac{1}{\bar{\gamma} - \gamma\alpha} \langle \gamma f(\tilde{x}) - A\tilde{x}, J(x_{n+1} - \tilde{x}) \rangle,$$

$$||x_{n+1} - \tilde{x}||^2 < (1 - j_n)||x_n - \tilde{x}||^2 + j_n k_n. \tag{5.1.33}$$

It follows that from conditions (C1), (C2) and (5.1.29) that

$$\lim_{n \to \infty} j_n = 0, \quad \sum_{n=1}^{\infty} j_n = \infty \text{ and } \limsup_{n \to \infty} k_n \le 0.$$

Apply Lemma 2.2.10 to (5.1.33) to conclude $x_n \to \tilde{x}$ as $n \to \infty$. This completes the proof.

Setting $A \equiv I, \gamma = 1, f := u$, we have the following result.

Theorem 5.1.8. Let E be a strictly convex and 2-uniformly smooth Banach space which admits a weakly sequentially continuous duality mapping and has the smoothness constant K. Let $M_i: E \to 2^E$ be a maximal monotone mapping and $\Psi_i: E \to 2^E$

E a L_i -Lipchitzian and relaxed (c_i, d_i) -cocoercive mapping with $d_i > c_i L_i^2$. Let $\rho_i \in (0, \frac{d_i - c_i L_i^2}{K^2 L_i^2})$, respectively for each i = 1, 2. Let $\{T_n : E \to E\}_{n=1}^{\infty}$ be a countable family of uniformly ε -strict pseudo-contractions. Define a mapping $S_n : E \to E$ by

$$S_n x = (1 - \frac{\varepsilon}{K^2})x + \frac{\varepsilon}{K^2}T_n x \text{ for all } x \in C \text{ and } n \ge 1.$$

Assume that $\Omega := \bigcap_{n=1}^{\infty} F(T_n) \cap F(Q) \neq \emptyset$, where Q is defined as in Lemma 5.1.3. Let $x_1 = u \in E$ and $\{x_n\}$ a sequence generated by

$$\begin{cases}
z_{n} = J_{(M_{2},\rho_{2})}(x_{n} - \rho_{2}\Psi_{2}x_{n}), \\
y_{n} = J_{(M_{1},\rho_{1})}(z_{n} - \rho_{1}\Psi_{1}z_{n}), \\
x_{n+1} = \alpha_{n}u + \beta_{n}x_{n} + (1 - \beta_{n} - \alpha_{n})[\mu S_{n}x_{n} + (1 - \mu)y_{n}], \quad \forall n \geq 1,
\end{cases}$$
(5.1.34)

where $\mu \in (0,1)$, and $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in (0,1). Suppose that $\{S_n\}$ satisfies AKTT-condition. Let $S: E \to E$ be the mapping defined by $Sy = \lim_{n \to \infty} S_n y$ for all $y \in E$ and suppose that $F(S) = \bigcap_{n=1}^{\infty} F(S_n)$. If the control consequences $\{\alpha_n\}$ and $\{\beta_n\}$ satisfy the following restrictions

(C1)
$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1;$$

(C2)
$$\lim_{n\to\infty} \alpha_n = 0$$
 and $\sum_{n=1}^{\infty} \alpha_n = \infty$,

then $\{x_n\}$ converges strongly to \tilde{x} which solves the variational inequality:

$$\langle (I-f)\tilde{x}, J(\tilde{x}-z)\rangle \leq 0, z \in \Omega,$$

and (\tilde{x}, \tilde{y}) is a solution of general system of variational inequality problem (5.1.2) such that $\tilde{y} = J_{(M_2, \rho_2)}(\tilde{x} - \rho_2 \Psi_2 \tilde{x})$.

Remark 5.1.9. Theorem 5.1.7 mainly improves Theorem 2.1 of Qin et al. [68], in the following respects:

(a) From the class of inverse-strongly accretive mappings to the class of Lipchitzian and relaxed cocoercive mappings.

- (b) From a ε -strict pseudo-contraction to the countable family of uniformly ε -strict pseudo-contractions.
- (c) From a uniformly convex and 2-uniformly smooth Banach space to a strictly convex and 2-uniformly smooth Banach space which admits a weakly sequentially continuous duality mapping.

Further, if $\{T_n: E \to E\}$ be a countable family of nonexpansive mappings, then Theorem 5.1.7 is reduced to the following result.

Theorem 5.1.10. Let E be a strictly convex and 2-uniformly smooth Banach space which admits a weakly sequentially continuous duality mapping and has the smoothness constant K. Let $M_i: E \to 2^E$ be a maximal monotone mapping and $\Psi_i: E \to E$ a L_i -Lipchitzian and relaxed (c_i, d_i) -cocoercive mapping with $d_i > c_i L_i^2$. Let $\rho_i \in (0, \frac{d_i - c_i L_i^2}{K^2 L_i^2})$, respectively for each i = 1, 2. Let $\{T_n: E \to E\}_{n=1}^{\infty}$ be a countable family of nonexpansive mappings. Assume that $\Omega := \bigcap_{n=1}^{\infty} F(T_n) \cap F(Q) \neq \emptyset$, where Q is defined as in Lemma 5.1.3. Let $f: E \to E$ be an α -contraction, let $A: E \to E$ be a strongly positive linear bounded self adjoint operator with coefficient $\bar{\gamma}$ with $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$. Let $x_1 = u \in E$ and $\{x_n\}$ a sequence generated by

$$\begin{cases} z_n = J_{(M_2,\rho_2)}(x_n - \rho_2 \Psi_2 x_n), \\ y_n = J_{(M_1,\rho_1)}(z_n - \rho_1 \Psi_1 z_n), \\ x_{n+1} = \alpha_n \gamma f(x_n) + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A)[\mu T_n x_n + (1 - \mu)y_n], \quad \forall n \ge 1, \end{cases}$$
(5.1.35)

where $\mu \in (0,1)$, and $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in (0,1). Suppose that $\{T_n\}$ satisfies AKTT-condition. Let $T: E \to E$ be the mapping defined by $Ty = \lim_{n \to \infty} T_n y$ for all $y \in E$ and suppose that $F(T) = \bigcap_{n=1}^{\infty} F(T_n)$. If the control consequences $\{\alpha_n\}$ and $\{\beta_n\}$ satisfy the following restrictions

(C1)
$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1;$$

(C2)
$$\lim_{n\to\infty} \alpha_n = 0$$
 and $\sum_{n=1}^{\infty} \alpha_n = \infty$,

then $\{x_n\}$ converges strongly to \tilde{x} which solves the variational inequality:

$$\langle (A - \gamma f)\tilde{x}, J(\tilde{x} - z) \rangle \leq 0, z \in \Omega,$$

and (\tilde{x}, \tilde{y}) is a solution of general system of variational inequality problem (5.1.2) such that $\tilde{y} = J_{(M_2, \rho_2)}(\tilde{x} - \rho_2 \Psi_2 \tilde{x})$.

Remark 5.1.11. As in [33, Theorem 4.1], we can generate a sequence $\{T_n\}$ of nonexpansive mappings satisfying AKTT-condition i.e. $\sum_{n=1}^{\infty} \sup\{\|T_{n+1}z - T_nz\| : z \in B\} < \infty$ for any bounded subset B of E by using convex combination of a general sequence $\{S_k\}$ of nonexpansive mappings with a common fixed point. To be more precise, they obtained the following lemma.

Lemma 5.1.12. [33] Let C be a closed convex subset of a smooth Banach space E. Suppose that $\{S_k\}$ is a sequence of nonexpansive mappings of E into itself with a common fixed point. For each $n \in \mathbb{N}$, define $T_n : C \to C$ by

$$T_n x = \sum_{k=1}^n \beta_n^k S_k x, \quad \forall x \in E, \tag{5.1.36}$$

where $\{\beta_n^k\}$ is a family of nonnegative numbers with indices $n, k \in \mathbb{N}$ with $k \leq n$ such that

(i)
$$\sum_{k=1}^{n} \beta_n^k = 1$$
 for all $n \in \mathbb{N}$;

(ii)
$$\lim_{n\to\infty} \beta_n^k > 0$$
 for every $k \in \mathbb{N}$;

(iii)
$$\sum_{n=1}^{\infty} \sum_{k=1}^{n} |\beta_{n+1}^k - \beta_n^k| < \infty$$
.

Then

- (1) Each T_n is a nonexpansive mapping.
- (2) $\{T_n\}$ satisfies AKTT-condition.
- (3) If $T: C \to C$ is defined by

$$Tx = \sum_{k=1}^{\infty} \beta_n^k S_k x, \ \forall x \in C,$$

then $Tx = \lim_{n \to \infty} T_n x$ and $F(T) = \bigcap_{n=1}^{\infty} F(T_n) = \bigcap_{k=1}^{\infty} F(S_k)$.

Theorem 5.1.13. Let E be a strictly convex and 2-uniformly smooth Banach space which admits a weakly sequentially continuous duality mapping and has the smoothness constant K. Let $M_i: E \to 2^E$ be a maximal monotone mapping and $\Psi_i: E \to E$ a L_i -Lipchitzian and relaxed (c_i, d_i) -cocoercive mapping with $d_i > c_i L_i^2$. Let $\rho_i \in (0, \frac{d_i - c_i L_i^2}{K^2 L_i^2})$, respectively for each i = 1, 2. Let $\{S_k: E \to E\}_{k=1}^{\infty}$ be a countable family of nonexpansive mappings. Assume that $\Omega := \bigcap_{k=1}^{\infty} F(S_k) \cap F(Q) \neq \emptyset$, where Q is defined as in Lemma 5.1.3. Let $f: E \to E$ be an α -contraction, let $A: E \to E$ be a strongly positive linear bounded self adjoint operator with coefficient $\bar{\gamma}$ with $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$. Let $x_1 = u \in E$ and $\{x_n\}$ a sequence generated by

$$\begin{cases} z_{n} = J_{(M_{2},\rho_{2})}(x_{n} - \rho_{2}\Psi_{2}x_{n}), \\ y_{n} = J_{(M_{1},\rho_{1})}(z_{n} - \rho_{1}\Psi_{1}z_{n}), \\ x_{n+1} = \alpha_{n}\gamma f(x_{n}) + \beta_{n}x_{n} + ((1-\beta_{n})I - \alpha_{n}A)[\mu \sum_{k=1}^{n} \beta_{n}^{k}S_{k}x_{n} + (1-\mu)y_{n}], \quad \forall n \geq 1, \end{cases}$$

$$(5.1.37)$$

where $\{\beta_n^k\}$ satisfies conditions (i)-(iii) of Lemma 5.1.12, $\mu \in (0,1)$, and $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in (0,1). Suppose that $\{T_n\}$ satisfies AKTT-condition. Let $T: E \to E$ be the mapping defined by $Ty = \lim_{n\to\infty} T_n y$ for all $y \in E$ and suppose that $F(T) = \bigcap_{n=1}^{\infty} F(T_n)$. If the control consequences $\{\alpha_n\}$ and $\{\beta_n\}$ satisfy the following restrictions

(C1)
$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$$
;

(C2)
$$\lim_{n\to\infty} \alpha_n = 0$$
 and $\sum_{n=1}^{\infty} \alpha_n = \infty$,

then $\{x_n\}$ converges strongly to \tilde{x} which solves the variational inequality:

$$\langle (A - \gamma f)\tilde{x}, J(\tilde{x} - z) \rangle \le 0, z \in \Omega,$$

and (\tilde{x}, \tilde{y}) is a solution of general system of variational inequality problem (5.1.2) such that $\tilde{y} = J_{(M_2, \rho_2)}(\tilde{x} - \rho_2 \Psi_2 \tilde{x})$.

Proof. We write the iteration (5.1.37) as

$$\begin{cases} z_n = J_{(M_2,\rho_2)}(x_n - \rho_2 \Psi_2 x_n), \\ y_n = J_{(M_1,\rho_1)}(z_n - \rho_1 \Psi_1 z_n), \\ x_{n+1} = \alpha_n \gamma f(x_n) + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A)[\mu T_n x_n + (1 - \mu)y_n], \quad \forall n \ge 1, \end{cases}$$

where T_n is defined by (5.1.36). It is clear that each mapping T_n is nonexpansive. By Theorem 5.1.10 and Lemma 5.1.12, the conclusion follows.

The following example appears in [33] shows that there exists $\{\beta_n^k\}$ satisfying the conditions of Lemma 5.1.12.

Example 5.1.14. Let $\{\beta_n^k\}$ be defined by

$$\beta_n^k = \begin{cases} 2^{-k} & (k < n) \\ 2^{1-k} & (k = n), \end{cases}$$

for all $n, k \in \mathbb{N}$ with $k \leq n$. In this case, the sequence $\{T_n\}$ of mappings generated by $\{S_k\}$ is defined as follows: For $x \in C$,

$$T_1 x = S_1 x,$$

$$T_2 x = \frac{1}{2} S_1 x + \frac{1}{2} S_2 x,$$

$$T_3 x = \frac{1}{2} S_1 x + \frac{1}{4} S_2 x + \frac{1}{4} S_3 x,$$

$$T_4 x = \frac{1}{2} S_1 x + \frac{1}{4} S_2 x + \frac{1}{8} S_3 x + \frac{1}{8} S_4 x,$$

$$\vdots$$

$$T_n x = \frac{1}{2} S_1 x + \frac{1}{4} S_2 x + \frac{1}{8} S_3 x + \frac{1}{16} S_4 x + \dots + \frac{1}{2^{n-1}} S_{n-1} x + \frac{1}{2^{n-1}} S_n x.$$

5.2 Strong convergence theorems of viscosity iterative methods for a countable family of strict pseudo-contractions in Banach spaces

In this section, we consider a countable family $\{T_n\}_{n=1}^{\infty}$ of strictly pseudo-contractions, a strong convergence of viscosity iteration is shown in order to find a common fixed point of $\{T_n\}_{n=1}^{\infty}$ in either p-uniformly convex Banach space which admits a weakly continuous duality mapping or p-uniformly convex Banach space with uniformly Gâteaux differentiable norm.

Definition 5.2.1. A countable family of mapping $\{T_n : C \to C\}_{i=1}^{\infty}$ is called a family of uniformly λ -strict pseudo-contractions with respect to p, if there exists a constant $\lambda \in [0,1)$ such that

$$||T_n x - T_n y||^p \le ||x - y||^p + \lambda ||(I - T_n)x - (I - T_n)y||^p, \ \forall x, y \in C, \ \forall n > 1.$$

For $T:C\to C$ a nonexpansive mapping, $t\in(0,1)$ and $f\in\Pi_C$, $tf+(1-t)T:C\to C$ defines a contraction mapping. Thus, by the Banach contraction mapping principle, there exists a unique fixed point x_t^f satisfying

$$x_t^f = tf(x_t) + (1 - t)Tx_t^f. (5.2.1)$$

For simplicity we will write x_t for x_t^f provided no confusion occurs. Next, we will prove the following lemma.

Lemma 5.2.2. Let E be a reflexive Banach space which admits a weakly continuous duality mapping J_{φ} with gauge φ . Let C be a nonempty closed convex subset of E, $T:C\to C$ a nonexpansive mapping with $F(T)\neq\emptyset$ and $f\in\Pi_C$. Then the net $\{x_t\}$ defined by (5.2.1) converges strongly as $t\to 0$ to a fixed point \tilde{x} of T which solves the variational inequality:

$$\langle (I - f)\tilde{x}, J_{\varphi}(\tilde{x} - z) \rangle \le 0, z \in F(T). \tag{5.2.2}$$

Proof. We first show that the uniqueness of a solution of the variational inequality (5.2.2). Suppose both $\tilde{x} \in F(T)$ and $x^* \in F(T)$ are solutions to (5.2.2), then

$$\langle (I - f)\tilde{x}, J_{\varphi}(\tilde{x} - x^*) \rangle \le 0 \tag{5.2.3}$$

and

$$\langle (I-f)x^*, J_{\omega}(x^*-\tilde{x})\rangle \le 0. \tag{5.2.4}$$

Adding (5.2.3) and (5.2.4), we obtain

$$\langle (I-f)\tilde{x} - (I-f)x^*, J_{\omega}(\tilde{x} - x^*) \rangle \le 0. \tag{5.2.5}$$

Noticing that for any $x, y \in E$,

$$\langle (I - f)x - (I - f)y, J_{\varphi}(x - y) \rangle = \langle x - y, J_{\varphi}(x - y) \rangle - \langle f(x) - f(y), J_{\varphi}(x - y) \rangle$$

$$\geq \|x - y\|\varphi(\|x - y\|) - \|f(x) - f(y)\|\varphi(\|x - y\|)$$

$$\geq \Phi(\|x - y\|) - \alpha\Phi(\|x - y\|)$$

$$= (1 - \alpha)\Phi(\|x - y\|) \geq 0.$$
 (5.2.6)

From (5.2.5), we conclude that $\Phi(\|\tilde{x} - x^*\|) = 0$. This implies that $\tilde{x} = x^*$ and the uniqueness is proved. Below we use \tilde{x} to denote the unique solution of (5.2.2). Next, we will prove that $\{x_t\}$ is bounded. Take a $p \in F(T)$, then we have

$$||x_t - p|| = ||tf(x_t) + (1 - t)Tx_t - p||$$

$$= ||(1 - t)Tx_t - (1 - t)p + t(f(x_t) - p)||$$

$$\leq (1 - t)||x_t - p|| + t(\alpha||x_t - p|| + ||f(p) - p||).$$

It follows that

$$||x_t - p|| \le \frac{1}{1 - \alpha} ||f(p) - p||.$$

Hence $\{x_t\}$ is bounded, so are $\{f(x_t)\}$ and $\{T(x_t)\}$. The definition of $\{x_t\}$ implies that

$$||x_t - Tx_t|| = t||f(x_t) - Tx_t|| \to 0 \text{ as } t \to 0.$$
 (5.2.7)

If follows from reflexivity of E and the boundedness of sequence $\{x_t\}$ that there exists $\{x_{t_n}\}$ which is a subsequence of $\{x_t\}$ converging weakly to $w \in C$ as $n \to \infty$. Since J_{φ} is weakly sequentially continuous, we have by Lemma 2.1.43 that

$$\limsup_{n \to \infty} \Phi(\|x_{t_n} - x\|) = \limsup_{n \to \infty} \Phi(\|x_{t_n} - w\|) + \Phi(\|x - w\|), \text{ for all } x \in E.$$

Let

$$H(x) = \limsup_{n \to \infty} \Phi(\|x_{t_n} - x\|), \text{ for all } x \in E.$$

It follows that

$$H(x) = H(w) + \Phi(||x - w||), \text{ for all } x \in E.$$

Since

$$||x_{t_n} - Tx_{t_n}|| = t_n ||f(x_{t_n}) - Tx_{t_n}|| \to 0 \text{ as } n \to \infty.$$

We obtain

$$H(Tw) = \limsup_{n \to \infty} \Phi(\|x_{t_n} - Tw\|) = \limsup_{n \to \infty} \Phi(\|Tx_{t_n} - Tw\|)$$

$$\leq \limsup_{n \to \infty} \Phi(\|x_{t_n} - w\|) = H(w). \tag{5.2.8}$$

On the other hand, however,

$$H(Tw) = H(w) + \Phi(||T(w) - w||). \tag{5.2.9}$$

It follows from (5.2.8) and (5.2.9) that

$$\Phi(\|T(w) - w\|) = H(Tw) - H(w) \le 0.$$

This implies that Tw = w. Next we show that $x_{t_n} \to w$ as $n \to \infty$. In fact, since $\Phi(t) = \int_0^t \varphi(\tau) d\tau, \forall t \geq 0$, and $\varphi : [0, \infty) \to [0, \infty)$ is a gauge function, then for $1 \geq k \geq 0$, $\varphi(kx) \leq \varphi(x)$ and

$$\Phi(kt) = \int_0^{kt} \varphi(\tau) d\tau = k \int_0^t \varphi(kx) dx \le k \int_0^t \varphi(x) dx = k \Phi(t).$$

Following Lemma 2.1.43, we have

$$\Phi(\|x_{t_{n}} - w\|) = \Phi(\|(1 - t_{n})Tx_{t_{n}} - (1 - t_{n})w + t_{n}(f(x_{t_{n}}) - w)\|)
= \Phi(\|(1 - t_{n})Tx_{t_{n}} - (1 - t_{n})w\|) + t_{n}\langle f(x_{t_{n}}) - w, J(x_{t_{n}} - w)\rangle
\leq \Phi((1 - t_{n})\|x_{t_{n}} - w\|) + t_{n}\langle f(x_{t_{n}}) - f(w), J(x_{t_{n}} - w)\rangle
+ t_{n}\langle f(w) - w, J(x_{t_{n}} - w)\rangle
\leq (1 - t_{n})\Phi(\|x_{t_{n}} - w\|) + t_{n}\|f(x_{t_{n}}) - f(w)\|\|J(x_{t_{n}} - w)\|
+ t_{n}\langle f(w) - w, J(x_{t_{n}} - w)\rangle
\leq (1 - t_{n})\Phi(\|x_{t_{n}} - w\|) + t_{n}\alpha\|x_{t_{n}} - w\|\|J_{\varphi}(x_{t_{n}} - w)\|
+ t_{n}\langle f(w) - w, J(x_{t_{n}} - w)\rangle
= (1 - t_{n})\Phi(\|x_{t_{n}} - w\|) + t_{n}\alpha\Phi(\|x_{t_{n}} - w\|)
+ t_{n}\langle f(w) - w, J(x_{t_{n}} - w)\rangle
= (1 - t_{n}(1 - \alpha))\Phi(\|x_{t_{n}} - w\|)
+ t_{n}\langle f(w) - w, J(x_{t_{n}} - w)\rangle.$$
(5.2.10)

This implies that

$$\Phi(\|x_{t_n} - w\|) \le \frac{1}{1 - \alpha} \langle f(w) - w, J(x_{t_n} - w) \rangle.$$

Now observing that $x_{t_n} \rightharpoonup w$ implies $J_{\varphi}(x_{t_n} - w) \rightharpoonup 0$, we conclude from the last inequality that

$$\Phi(||x_{t_n}-w||)\to 0 \text{ as } n\to\infty.$$

Hence $x_{t_n} \to w$ as $n \to \infty$. Next we prove that w solves the variational inequality (5.2.2). For any $z \in F(T)$, we observe that

$$\langle (I-T)x_t - (I-T)z, J_{\varphi}(x_t - z) \rangle = \langle x_t - z, J_{\varphi}(x_t - z) \rangle + \langle Tx_t - Tz, J_{\varphi}(x_t - z) \rangle$$

$$= \Phi(\|x_t - z\|) - \langle Tz - Tx_t, J_{\varphi}(x_t - z) \rangle$$

$$> \Phi(\|x_t - z\|) - \|Tz - Tx_t\| \|J_{\varphi}(x_t - z)\|$$

$$\geq \Phi(\|x_t - z\|) - \|z - x_t\| \|J_{\varphi}(x_t - z)\|$$

$$= \Phi(\|x_t - z\|) - \Phi(\|x_t - z\|) = 0.$$
(5.2.11)

Since

$$x_t = tf(x_t) + (1-t)Tx_t,$$

we can derive that

$$(I-f)(x_t) = -\frac{1}{t}(I-T)x_t + (I-T)x_t.$$

Thus

$$\langle (I-f)(x_t), J_{\varphi}(x_t-z) \rangle = -\frac{1}{t} \langle (I-T)x_t - (I-T)z, J_{\varphi}(x_t-z) \rangle$$

$$+ \langle (I-T)x_t, J_{\varphi}(x_t-z) \rangle$$

$$\leq \langle (I-T)x_t, J_{\varphi}(x_t-z) \rangle. \tag{5.2.12}$$

Noticing that

$$x_{t_n} - Tx_{t_n} \to w - T(w) = w - w = 0.$$

Now replacing t in (5.2.12) with t_n and letting $n \to \infty$, we have

$$\langle (I-f)w, J_{\omega}(w-z)\rangle < 0.$$

So, $w \in F(T)$ is a solution of the variational inequality (5.2.2), and hence $w = \tilde{x}$ by the uniqueness. In a summary, we have shown that each cluster point of $\{x_t\}$ (at $t \to 0$) equals \tilde{x} . Therefore, $x_t \to \tilde{x}$ as $t \to 0$. This completes the proof.

Theorem 5.2.3. Let E be a real p-uniformly convex Banach space with a weakly continuous duality mapping J_{φ} , and C a nonempty closed convex subset of E. Let $\{T_n: C \to C\}$ be a family of uniformly λ -strict pseudo-contractions with respect to $p, \lambda \in [0, \min\{1, 2^{-(p-2)}c_p\})$ and $\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$. Let $f: C \to C$ be a k-contraction with $k \in (0,1)$. Assume that real sequences $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ in (0,1) satisfy the following conditions:

1.
$$\alpha_n + \beta_n + \gamma_n = 1$$
 for all $n \in \mathbb{N}$;

2.
$$\lim_{n\to\infty} \alpha_n = 0$$
 and $\sum_{n=0}^{\infty} \alpha_n = +\infty$;

3.
$$0 < \liminf_{n \to \infty} \gamma_n \le \limsup_{n \to \infty} \gamma_n < \xi$$
, where $\xi = 1 - 2^{p-2} \lambda c_p^{-1}$.

Let $\{x_n\}$ be the sequence generated by the following

$$\begin{cases} x_1 = x \in C, \\ x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n T_n x_n, & n \ge 1. \end{cases}$$
 (5.2.13)

Suppose that $\{T_n\}$ satisfies the AKTT-condition. Let T be a mapping of C into itself defined by $Tz = \lim_{n\to\infty} T_n z$ for all $z \in C$ and suppose that $F(T) = \bigcap_{n=1}^{\infty} F(T_n)$. Then the sequence $\{x_n\}$ converges strongly to \tilde{x} which solves the variational inequality:

$$\langle (I-f)\tilde{x}, J_{\omega}(\tilde{x}-z) \rangle \le 0, z \in F(T). \tag{5.2.14}$$

Proof. Rewrite the iterative sequence (5.2.13) as follows:

$$x_{n+1} = \alpha_n f(x_n) + \beta'_n x_n + \gamma'_n S_n x_n, \quad n \ge 1,$$
 (5.2.15)

where $\beta'_n = \beta_n - \frac{\gamma_n}{\xi}(1-\xi)$, $\gamma'_n = \frac{\gamma_n}{\xi}$ and $S_n := (1-\xi)I + \xi T_n$, I is the identity mapping. By Lemma 2.1.54, S_n is nonexpansive such that $F(S_n) = F(T_n)$ for all $n \in \mathbb{N}$. Taking any $q \in \bigcap_{n=1}^{\infty} F(T_n)$. From (5.2.15), it implies that

$$||x_{n+1} - q|| \leq \alpha_n ||f(x_n) - q|| + \beta'_n ||x_n - q|| + \gamma'_n ||S_n x_n - q||$$

$$\leq \alpha_n k ||x_n - q|| + \alpha_n ||f(q) - q|| + (1 - \alpha_n) ||x_n - q||$$

$$= \alpha_n (1 - k) \frac{1}{1 - k} ||f(q) - q|| + (1 - \alpha_n (1 - k)) ||x_n - q||$$

$$\leq \max \left\{ ||x_1 - q||, \frac{1}{1 - k} ||f(q) - q|| \right\}.$$

Therefore, the sequence $\{x_n\}$ is bounded, and so are the sequences $\{f(x_n)\}$, $\{S_nx_n\}$. Since $S_nx_n = (1 - \xi_n)x_n + \xi_nT_nx_n$ and $\liminf \xi_n > 0$, we know that $\{T_nx_n\}$ is bounded. We note that for any bounded subset B of C,

$$\sup_{z \in B} \|S_{n+1}z - S_n z\|$$

$$= \sup_{z \in B} [\|((1 - \xi_{n+1})z + \xi_{n+1}T_{n+1}z) - ((1 - \xi_n)z + \xi_n T_n z)\|]$$

$$\leq \|\xi_{n+1} - \xi_n\| \sup_{z \in B} \|z\| + \xi_{n+1} \sup_{z \in B} \|T_{n+1}z - T_n z\| + |\xi_{n+1} - \xi_n| \sup_{z \in B} \|T_n z\|$$

$$= \|\xi_{n+1} - \xi_n\| \sup_{z \in B} (\|z\| + \|Tz\|) + \xi_{n+1} \sup_{z \in B} \|T_{n+1}z - T_n z\|.$$

From $\sum_{n=1}^{\infty} |\xi_{n+1} - \xi_n| < \infty$ and $\{T_n\}$ satisfies AKTT-condition, we obtain that

$$\sum_{n=1}^{\infty} \sup_{z \in B} \|S_{n+1}z - S_n z\| < \infty,$$

that is the sequence $\{S_n\}$ satisfies AKTT-condition. Applying Lemma 2.2.9, we can take the mapping $S: C \to C$ defined by

$$Sz = \lim_{n \to \infty} S_n z, \ \forall z \in C. \tag{5.2.16}$$

Moreover, we have S is nonexpansive and

$$Sz = \lim_{n \to \infty} S_n z = \lim_{n \to \infty} ((1 - \xi_n)z + \xi_n T_n z) = (1 - \xi)z + \xi T z.$$

It is easy to see that F(S) = F(T). Hence $F(S) = \bigcap_{n=1}^{\infty} F(T_n) = \bigcap_{n=1}^{\infty} F(S_n)$. The iterative sequence (5.2.15) can be expressed as follows:

$$x_{n+1} = \beta'_n x_n + (1 - \beta'_n) y_n,$$

where

$$y_n = \frac{\alpha_n}{1 - \beta_n'} f(x_n) + \frac{\gamma_n'}{1 - \beta_n'} S_n x_n.$$
 (5.2.17)

We estimate from (5.2.17)

$$\|y_{n+1} - y_n\|$$

$$= \left\| \frac{\alpha_{n+1}}{1 - \beta'_{n+1}} f(x_{n+1}) + \frac{\gamma'_{n+1}}{1 - \beta'_{n+1}} S_{n+1} x_{n+1} - \frac{\alpha_n}{1 - \beta'_n} f(x_n) + \frac{\gamma'_n}{1 - \beta'_n} S_n x_n \right\|$$

$$\leq \frac{\alpha_{n+1}}{1 - \beta'_{n+1}} k \|x_{n+1} - x_n\| + \frac{\gamma'_{n+1}}{1 - \beta'_{n+1}} \|S_{n+1} x_{n+1} - S_n x_n\|$$

$$+\left|\frac{\alpha_{n+1}}{1-\beta'_{n+1}} - \frac{\alpha_{n}}{1-\beta'_{n}}\right| \|f(x_{n}) - S_{n}x_{n}\|$$

$$\leq \frac{\alpha_{n+1}}{1-\beta'_{n+1}} k \|x_{n+1} - x_{n}\| + \frac{\gamma'_{n+1}}{1-\beta'_{n+1}} [\|S_{n+1}x_{n+1} - S_{n+1}x_{n}\| + \|S_{n+1}x_{n} - S_{n}x_{n}\|]$$

$$+\left|\frac{\alpha_{n+1}}{1-\beta'_{n+1}} - \frac{\alpha_{n}}{1-\beta'_{n}}\right| \|f(x_{n}) - S_{n}x_{n}\|$$

$$\leq \frac{\alpha_{n+1}}{1-\beta'_{n+1}} k \|x_{n+1} - x_{n}\| + \frac{\gamma'_{n+1}}{1-\beta'_{n+1}} [\|x_{n+1} - x_{n}\| + \sup_{z \in \{x_{n}\}} \|S_{n+1}z - S_{n}z\|]$$

$$+\left|\frac{\alpha_{n+1}}{1-\beta'_{n+1}} - \frac{\alpha_{n}}{1-\beta'_{n}}\right| \|f(x_{n}) - S_{n}x_{n}\|. \tag{5.2.18}$$

Hence

$$||y_{n+1} - y_n|| - ||x_{n+1} - x_n|| \le \frac{\alpha_{n+1}}{1 - \beta'_{n+1}} k ||x_{n+1} - x_n|| + \frac{\gamma'_{n+1}}{1 - \beta'_{n+1}} \sup_{z \in \{x_n\}} ||S_{n+1}z - S_nz|| + \left| \frac{\alpha_{n+1}}{1 - \beta'_{n+1}} - \frac{\alpha_n}{1 - \beta'_n} \right| ||f(x_n) - S_nx_n||.$$
 (5.2.19)

Since $\lim_{n\to\infty} \alpha_n = 0$, and $\lim_{n\to\infty} \sup_{z\in\{x_n\}} \|S_{n+1}z - S_nz\| = 0$, we have from (5.2.19) that

$$\lim \sup_{n \to \infty} (\|y_{n+1} - y_n\| - \|x_{n+1} - x_n\|) \le 0.$$

Hence, by Lemma 2.1.56, we obtain

$$\lim_{n \to \infty} \|y_n - x_n\| = 0. ag{5.2.20}$$

From (5.2.17), we get

$$\lim_{n \to \infty} \|y_n - S_n x_n\| = \lim_{n \to \infty} \frac{\alpha_n}{1 - \beta_n'} \|f(x_n) - S_n x_n\| = 0, \tag{5.2.21}$$

and so it follows from (5.2.20) and (5.2.21) that

$$\lim_{n \to \infty} \|x_n - S_n x_n\| = 0. \tag{5.2.22}$$

It follows from Lemma 2.2.9 and (5.2.22), we have

$$||x_{n} - Sx_{n}|| \leq ||x_{n} - S_{n}x_{n}|| + ||S_{n}x_{n} - Sx_{n}||$$

$$\leq ||x_{n} - S_{n}x_{n}|| + \sup\{||S_{n}z - Sz|| : z \in \{x_{n}\}\}\}$$

$$\to 0 \text{ as } n \to \infty.$$
(5.2.23)

Since S is a nonexpansive mapping, we have from Lemma 2.1.54 that the net $\{x_t\}$ generated by

$$x_t = tf(x_t) + (1-t)Sx$$

converges strongly to $\tilde{x} \in F(S)$, as $t \to 0^+$. Next, we prove that

$$\limsup_{n \to \infty} \langle f(\tilde{x}) - \tilde{x}, J_{\varphi}(x_n - \tilde{x}) \rangle \le 0, \tag{5.2.24}$$

Let $\{x_{n_k}\}$ be a subsequence of $\{x_n\}$ such that

$$\lim_{k \to \infty} \langle f(\tilde{x}) - \tilde{x}, J_{\varphi}(x_{n_k} - \tilde{x}) \rangle = \lim_{n \to \infty} \sup \langle f(\tilde{x}) - \tilde{x}, J_{\varphi}(x_n - \tilde{x}) \rangle.$$
 (5.2.25)

If follows from reflexivity of E and the boundedness of sequence $\{x_{n_k}\}$ that there exists $\{x_{n_{k_i}}\}$ which is a subsequence of $\{x_{n_k}\}$ converging weakly to $w \in C$ as $i \to \infty$. Since J_{φ} is weakly continuous, we have by Lemma 2.1.43 that

$$\limsup_{i \to \infty} \Phi(\|x_{n_{k_i}} - x\|) = \limsup_{i \to \infty} \Phi(\|x_{n_{k_i}} - w\|) + \Phi(\|x - w\|), \text{ for all } x \in E.$$

Let

$$H(x) = \limsup_{i \to \infty} \Phi(\|x_{n_{k_i}} - x\|), \text{ for all } x \in E.$$

It follows that

$$H(x) = H(w) + \Phi(||x - w||), \text{ for all } x \in E.$$

From (5.2.23), we obtain

$$H(Sw) = \limsup_{i \to \infty} \Phi(\|x_{n_{k_i}} - Sw\|) = \limsup_{i \to \infty} \Phi(\|Sx_{n_{k_i}} - Sw\|)$$

$$\leq \limsup_{i \to \infty} \Phi(\|x_{n_{k_i}} - w\|) = H(w) \tag{5.2.26}$$

On the other hand, however,

$$H(Sw) = H(w) + \Phi(\|S(w) - w\|) \tag{5.2.27}$$

It follows from (5.2.26) and (5.2.27) that

$$\Phi(\|S(w) - w\|) = H(Sw) - H(w) \le 0.$$

This implies that Sw = w that is $w \in F(S) = F(T)$. Since the duality map J_{φ} is single-valued and weakly continuous, we get that

$$\limsup_{n \to \infty} \langle f(\tilde{x}) - \tilde{x}, J_{\varphi}(x_n - \tilde{x}) \rangle = \lim_{k \to \infty} \langle f(\tilde{x}) - \tilde{x}, J_{\varphi}(x_{n_k} - \tilde{x}) \rangle$$

$$= \lim_{i \to \infty} \langle f(\tilde{x}) - \tilde{x}, J_{\varphi}(x_{n_{k_i}} - \tilde{x}) \rangle$$

$$= \langle (I - f)\tilde{x}, J_{\varphi}(\tilde{x} - w) \rangle \leq 0$$

as required. Finally, we show that $x_n \to \tilde{x}$ as $n \to \infty$.

$$\Phi(\|x_{n+1} - \tilde{x}\|) = \Phi(\|\alpha_{n}(f(x_{n}) - f(\tilde{x})) + \beta'_{n}(x_{n} - \tilde{x}) + \gamma'_{n}(S_{n}x_{n} - \tilde{x}) + \alpha_{n}(f(\tilde{x}) - \tilde{x})\|)
\leq \Phi(\|\alpha_{n}(f(x_{n}) - f(\tilde{x})) + \beta'_{n}(x_{n} - \tilde{x}) + \gamma'_{n}(S_{n}x_{n} - \tilde{x})\|)
+ \alpha_{n}\langle f(\tilde{x}) - \tilde{x}, J_{\varphi}(x_{n+1} - \tilde{x})\rangle
\leq \Phi(\|\alpha_{n}k\|x_{n} - \tilde{x}\| + \beta'_{n}\|x_{n} - \tilde{x}\| + \gamma'_{n}\|x_{n} - \tilde{x}\|)
+ \alpha_{n}\langle f(\tilde{x}) - \tilde{x}, J_{\varphi}(x_{n+1} - \tilde{x})\rangle
= \Phi((1 - \alpha_{n}(1 - k))\|x_{n} - \tilde{x}\|) + \alpha_{n}\langle f(\tilde{x}) - \tilde{x}, J_{\varphi}(x_{n+1} - \tilde{x})\rangle
< (1 - \alpha_{n}(1 - k))\Phi(\|x_{n} - \tilde{x}\|) + \alpha_{n}\langle f(\tilde{x}) - \tilde{x}, J_{\varphi}(x_{n+1} - \tilde{x})\rangle. (5.2.28)$$

It follows that from condition (i) and (5.2.24) that

$$\lim_{n\to\infty}\alpha_n=0, \sum_{n=1}^{\infty}\alpha_n=\infty \text{ and } \limsup_{n\to\infty}\langle f(\tilde{x})-\tilde{x}, J_{\varphi}(x_{n+1}-\tilde{x})\rangle\leq 0.$$

Apply Lemma 2.2.10 to (5.2.28) to conclude $\Phi(\|x_{n+1} - \tilde{x}\|) \to 0$ as $n \to \infty$; that is, $x_n \to \tilde{x}$ as $n \to \infty$. This completes the proof.

If $\{T_n: C \to C\}$ is a family of nonexpansive mappings, then we obtain the following results:

Corollary 5.2.4. Let E be a real p-uniformly convex Banach space with a weakly continuous duality mapping J_{φ} , and C a nonempty closed convex subset of E. Let $\{T_n: C \to C\}$ be a family of nonexpansive mappings such that $\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$. Let $f: C \to C$ be a k-contraction with $k \in (0,1)$. Assume that real sequences $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ in (0,1) satisfy the following conditions:

1.
$$\alpha_n + \beta_n + \gamma_n = 1$$
 for all $n \in \mathbb{N}$;

2.
$$\lim_{n\to\infty} \alpha_n = 0$$
 and $\sum_{n=0}^{\infty} \alpha_n = +\infty$;

3.
$$0 < \liminf_{n \to \infty} \gamma_n \le \limsup_{n \to \infty} \gamma_n < 1$$
.

Let $\{x_n\}$ be the sequence generated by the following

$$\begin{cases} x_1 = x \in C, \\ x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n T_n x_n, & n \ge 1. \end{cases}$$

Suppose that $\{T_n\}$ satisfies the AKTT-condition. Let T be a mapping of C into itself defined by $Tz = \lim_{n\to\infty} T_n z$ for all $z \in C$ and suppose that $F(T) = \bigcap_{n=1}^{\infty} F(T_n)$. Then the sequence $\{x_n\}$ converges strongly \tilde{x} which solves the variational inequality.

$$\langle (I-f)\tilde{x}, J_{\varphi}(\tilde{x}-z)\rangle \leq 0, z \in F(T).$$

Corollary 5.2.5. Let E be a real p-uniformly convex Banach space with a weakly continuous duality mapping J_{φ} , and C a nonempty closed convex subset of E. Let $T: C \to C$ be a λ -strict pseudo-contraction with respect to $p, \lambda \in [0, \min\{1, 2^{-(p-2)}c_p\})$ and $F(T) \neq \emptyset$. Let $f: C \to C$ be a k-contraction with $k \in (0,1)$. Assume that real sequences $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ in (0,1) satisfy the following conditions:

1.
$$\alpha_n + \beta_n + \gamma_n = 1$$
 for all $n \in \mathbb{N}$;

2.
$$\lim_{n\to\infty} \alpha_n = 0$$
 and $\sum_{n=0}^{\infty} \alpha_n = +\infty$;

3.
$$0 < \liminf_{n \to \infty} \gamma_n \le \limsup_{n \to \infty} \gamma_n < \xi$$
, where $\xi = 1 - 2^{p-2} \lambda c_p^{-1}$.

Let $\{x_n\}$ be the sequence generated by the following

$$\begin{cases} x_1 = x \in C, \\ x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n T x_n, & n \ge 1. \end{cases}$$

Then the sequence $\{x_n\}$ converges strongly to \tilde{x} which solves the variational inequality:

$$\langle (I-f)\tilde{x}, J_{\varphi}(\tilde{x}-z)\rangle \leq 0, z \in F(T).$$

Theorem 5.2.6. Let E be a real p-uniformly convex Banach space with uniformly Gâteaux differentiable norm, and C a nonempty closed convex subset of E which has the fixed point property for nonexpansive mappings. Let $\{T_n : C \to C\}$ be a family of uniformly λ -strict pseudo-contractions with respect to p, $\lambda \in [0, \min\{1, 2^{-(p-2)}c_p\})$ and $\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$. Let $f: C \to C$ be a k-contraction with $k \in (0,1)$. Assume that real sequences $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ in (0,1) satisfy the following conditions:

1.
$$\alpha_n + \beta_n + \gamma_n = 1$$
 for all $n \in \mathbb{N}$;

2.
$$\lim_{n\to\infty} \alpha_n = 0$$
 and $\sum_{n=0}^{\infty} \alpha_n = +\infty$;

3.
$$0 < \liminf_{n \to \infty} \gamma_n \le \limsup_{n \to \infty} \gamma_n < \xi$$
, where $\xi = 1 - 2^{p-2} \lambda c_p^{-1}$.

Let $\{x_n\}$ be the sequence generated by the following

$$\begin{cases} x_1 = x \in C, \\ x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n T_n x_n, & n \ge 1. \end{cases}$$
 (5.2.29)

Suppose that $\{T_n\}$ satisfies the AKTT-condition. Let T be a mapping of C into itself defined by $Tz = \lim_{n\to\infty} T_n z$ for all $z \in C$ and suppose that $F(T) = \bigcap_{n=1}^{\infty} F(T_n)$. Then the sequence $\{x_n\}$ converges strongly to a common fixed point \tilde{x} of $\{T_n\}$.

Proof. It follows from the same argumentation as Theorem 5.2.3 that $\{x_n\}$ is bounded and $\lim_{n\to\infty} ||x_n - Sx_n|| = 0$, where S is a nonexpansive mapping defined by (5.2.16). From Lemma 2.1.55 that the net $\{x_t\}$ generated by $x_t = tf(x_t) + (1-t)Sx_t$ converges strongly to $\tilde{x} \in F(S) = F(T)$, as $t \to 0^+$. Obviously,

$$x_t - x_n = (1 - t)(Sx_t - x_n) + t(f(x_t) - x_n).$$

In view of Lemma 2.1.43, we calculate

$$||x_{t} - x_{n}||^{2} \leq (1 - t)^{2} ||Sx_{t} - x_{n}||^{2} + 2t\langle f(x_{t}) - x_{n}, J(x_{t} - x_{n})\rangle$$

$$\leq (1 - 2t + t^{2})(||x_{t} - x_{n}|| + ||Sx_{n} - x_{n}||)^{2}$$

$$+ 2t\langle f(x_{t}) - x_{t}, J(x_{t} - x_{n})\rangle + 2t||x_{t} - x_{n}||^{2}$$

and therefore

$$\langle f(x_t) - x_t, J(x_n - x_t) \rangle \le \frac{t}{2} \|x_t - x_n\|^2 + \frac{(1+t)^2 \|x_n - Sx_n\|}{2t} (2\|x_t - x_n\| + \|x_n - Sx_n\|).$$

Since $\{x_n\}$, $\{x_t\}$ and $\{Sx_n\}$ are bounded and $\lim_{n\to\infty}\frac{\|x_n-Sx_n\|}{2t}=0$, we obtain

$$\limsup_{n \to \infty} \langle f(x_t) - x_t, J(x_n - x_t) \rangle \le \frac{t}{2} M, \tag{5.2.30}$$

where $M = \sup_{n \ge 1, t \in (0,1)} {\{ \|x_t - x_n\|^2 \}}$. We also know that

$$\langle f(\tilde{x}) - \tilde{x}, J(x_n - \tilde{x}) \rangle = \langle f(x_t) - x_t, J(x_n - x_t) \rangle + \langle f(\tilde{x}) - f(x_t) + x_t - \tilde{x}, J(x_n - x_t) \rangle + \langle f(\tilde{x}) - \tilde{x}, J(x_n - \tilde{x}) - J(x_n - x_t) \rangle.$$

$$(5.2.31)$$

From the fact that $x_t \to \tilde{x} \in F(T)$, as $t \to 0$, $\{x_n\}$ is bounded and the duality mapping J is norm-to-weak* uniformly continuous on bounded subset of E, it follows that as $t \to 0$,

$$\langle f(\tilde{x}) - \tilde{x}, J(x_n - \tilde{x}) - J(x_n - x_t) \rangle \to 0$$
, for all $n \in \mathbb{N}$

and

$$\langle f(\tilde{x}) - f(x_t) + x_t - \tilde{x}, J(x_n - x_t) \rangle \to 0$$
, for all $n \in \mathbb{N}$.

Combining (5.2.30), (5.2.31) and two results mentioned above, we get

$$\limsup_{n \to \infty} \langle f(\tilde{x}) - \tilde{x}, J(x_n - \tilde{x}) \rangle \le 0. \tag{5.2.32}$$

From (5.2.15) and Lemma 2.1.43, we get

$$||x_{n+1} - \tilde{x}||^{2} \leq ||\alpha_{n}(f(x_{n}) - f(\tilde{x})) + \beta'_{n}(x_{n} - \tilde{x}) + \gamma'_{n}(S_{n}x_{n} - \tilde{x})||^{2} + 2\alpha_{n}\langle f(\tilde{x}) - \tilde{x}, J(x_{n+1} - \tilde{x})\rangle \leq (1 - \alpha_{n}(1 - k))||x_{n} - \tilde{x}||^{2} + 2\alpha_{n}\langle f(\tilde{x}) - \tilde{x}, J(x_{n+1} - \tilde{x})\rangle.$$
 (5.2.33)

Hence applying in Lemma 2.2.10 to (5.2.33), we conclude that $\lim_{n\to\infty} ||x_n - \tilde{x}|| = 0$.

Corollary 5.2.7. Let E be a real p-uniformly convex Banach space with uniformly Gâteaux differentiable norm, and C a nonempty closed convex subset of E which has the fixed point property for nonexpansive mappings. Let $\{T_n : C \to C\}$ be a family of nonexpansive mappings such that $\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$. Let $f: C \to C$ be a k-contraction with $k \in (0,1)$. Assume that real sequences $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ in $\{0,1\}$ satisfy the following conditions:

1.
$$\alpha_n + \beta_n + \gamma_n = 1$$
 for all $n \in \mathbb{N}$;

2.
$$\lim_{n\to\infty} \alpha_n = 0$$
 and $\sum_{n=0}^{\infty} \alpha_n = +\infty$;

3.
$$0 < \liminf_{n \to \infty} \gamma_n \le \limsup_{n \to \infty} \gamma_n < 1$$
.

Let $\{x_n\}$ be the sequence generated by the following

$$\begin{cases} x_1 = x \in C, \\ x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n T_n x_n, & n \ge 1. \end{cases}$$

Suppose that $\{T_n\}$ satisfies the AKTT-condition. Let T be a mapping of C into itself defined by $Tz = \lim_{n\to\infty} T_n z$ for all $z \in C$ and suppose that $F(T) = \bigcap_{n=1}^{\infty} F(T_n)$. Then the sequence $\{x_n\}$ converges strongly to a common fixed point \tilde{x} of $\{T_n\}$.

Corollary 5.2.8. Let E be a real p-uniformly convex Banach space with uniformly $G\hat{a}$ teaux differentiable norm, and C a nonempty closed convex subset of E which has the fixed point property for nonexpansive mappings. Let $T: C \to C$ be a λ -strict pseudo-contractions with respect to p, $\lambda \in [0, \min\{1, 2^{-(p-2)}c_p\})$ and $F(T) \neq \emptyset$. Let $f: C \to C$ be a k-contraction with $k \in (0,1)$. Assume that real sequences $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ in (0,1) satisfy the following conditions:

- 1. $\alpha_n + \beta_n + \gamma_n = 1$ for all $n \in \mathbb{N}$;
- 2. $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=0}^{\infty} \alpha_n = +\infty$;
- 3. $0 < \liminf_{n \to \infty} \gamma_n \le \limsup_{n \to \infty} \gamma_n < \xi$, where $\xi = 1 2^{p-2} \lambda c_p^{-1}$.

Let $\{x_n\}$ be the sequence generated by the following

$$\begin{cases} x_1 = x \in C, \\ x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n T x_n, & n \ge 1. \end{cases}$$
 (5.2.34)

Then the sequence $\{x_n\}$ converges strongly to a common fixed point \tilde{x} of $\{T_n\}$.