CHAPTER IV

HYBRID METHOD FOR VARIATIONAL
INEQUALITY PROBLEMS AND

EQUILIBRIUM PROBLEMS

4.1 A hybrid iterative scheme for variational inequality problems for

finite families of relatively weak quasi-nonexpansive mappings

In this section, we consider a hybrid projection algorithm basing on the
shrinking projection method for two families of relatively weak quasi-nonexpansive
mappings. We establish strong convergence theorems for approximating the com-
mon fixed point of the set of the common fixed points of such two families and
the set of solutions of the variational inequality for an inverse-strongly monotone

operator in Banach spaces.

Theorem 4.1.1. Let C be a nonempty, closed and convex subset of a 2-uniformly
convezr and uniformly smooth Banach space E, let A be an a-inverse-strongly
monotone mapping of C into E* with ||Ay|| < ||Ay — Aq|| for all y € C and
q € F. Let {T1,Ts,...,Tn} and {S51,Ss,...,Sn} be two finite families of closed
relatively weak quasi-nonezpansive mappings from C into itself with F # 0, where
B = ﬂil F(T,-)ﬁﬂf;l F(S;)NVI(A,C). Assume that T; and S; are uniformly con-

tinuous for alli € {1,2,...,N}. Let {z,} be a sequence generated by the following
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algorithm:

zo = x € C, chosen arbitrary,

Cy = C,z, = ll¢g, zo,

w, = McJ Y (Jz, — 1, AT,),

0 20 = I HanJTnoy + Bud TnZn + YnJ Snwn),
Yo = J N OnJz1 + (1 — 60)J2n),

Cn+1 = {u S Cn : ¢(U, yn.) S 6n¢(u> 171) 2t (1 —= 6n)[an¢(ua xn—l) 5 (1 o an)¢(u’ l‘n)]},

Tnt1 = HCn+1x17 Vn Z 17

(4.1.1)

where T,, = Ty(mod N)» Sn = Sn(mod N), and J is the normalized duality mapping
on E. Assume that {a},{Bn}, {1}, {0n} and {r,} are the sequences in [0,1]
satisfying the restrictions:

(C1) lim,, e 0n =0;

(C2) r, C [a,b] for some a,b with 0 < a < b < *a/2, where 1/c is the 2-uniformly

convezity constant of E;
(C83) an + Bn+vn =1 and if one of the following conditions is satisfied

(a) liminf, o 0,0, > 0 and liminf, . any, > 0 and

(b) lim, o @, = 0 and liminf, .o Bnyn > 0.

Then {z,} converges strongly to Ilpx,, where Ilg is the generalized progection from

C onto F.

Proof. By the same method as in the proof of Cai and Hu [27], we can show that

C,, is closed and convex. Next, we show F' C C, for alln > 1. In fact, F C C; =C
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is obvious. For any n € N, suppose that FF C C,. Then, for all ¢ € F' C C,, we

know from Lemma 2.1.66 that

$(g,wn) = ¢(q, e (JTa — TaATn))
< (g, I (JTn — TaAzy,))
= V(q,JTn — TaAz,)
< Vg, (Jzp — ThAZ,) + 1Ax,) — 2(T N (JTn — ThAZs) — ¢, ThAZy)
= V(q,Jzn) — 2ra{J " (JTn — TuAz,) — q, AZ,)
= ¢(q,Tn) — 2rn(Tn — ¢, ATn)

+ 2(J N Jzp — ThAT,) — Ty, —TnAz,). (4.1.2)
Since g € VI(A,C) and A is a-inverse-strongly monotone, we have

— 27T — @, AT,) = —2rp(Tn — q, AzTp — Aq) — 27(zn — q, Aq)

< —2ar,|| Az, — Ag|l*. (4.1.3)

Therefore, from Lemma 2.1.63 and the assumption that ||Ay| < ||Ay — Ag]| for all

y € C and q € F, we obtain that

2(.]_1(an — ThATy) — T, —ThAZ,) = 2(J—1(J$n — ThAZy,) — J N (Jzy), —TnAzy)

< 2 NIz — TaAz,) — I (Jza) || Irn Az

< 2N~ radn) — JI ) Azl
4

= Sz —radz,) = JzallllraAzal

= Az

< SrillAz, — Ag?. (11.4)

Substituting (4.1.3) and (4.1.4) into (4.1.2) and using the condition that r, < c’a/2,



we get

2

2
Haun) < 8o +20 (G 14z, = AdlP < glam). (419

Using (4.1.5) and the convexity of || - ||?, for each ¢ € F C C,, we obtain

#(q, 24)

IA

I Al

|

#(q, J N anI Tn_1 + B TnTs + Ynd Snwn))

llall® = 20:(g, JTn-1) — 26n(q; JTnZn) — 27n{d; J Snwn)
+ lenITn-1 + Brd TuZn + Yol Sawa|?

llgll* — 20n(q, JTn-1) — 26a(q, JTuTn) — 27n(q, J Snwn)
+ anl| JZna |I* + Ball ITazall® + vall I Spwall?

n®(q, Tn-1) + Bad(q, TnZn) + 1a (g, Sntn)

n®(q, Tn-1) + Brd(g, Tn) + (g, wn)

(@, Tn—1) + Bad(q, Tn) + 109(q, Tn)

n®(q, Tn-1) + (1 — ) (g, Ta)- (4.1.6)

It follows from (4.1.6) that

&(q,Yn)

IA

$(q, I (Ondm1 + (1 = 0n) T 20))

llgl® = 26n(q, J21) — 2(1 — 60)(g, Jzn) + |nT 21 + (1 — 8n) S 20)|I*

llgll® = 26n(g, J21) — 2(1 = 8,)(g, Jzn) + Sallzal|* + (1 = &) | zal”

ond(q, 71) + (1 — 6,)8(g; zn)

6n¢(‘1; 1121) + (1 s 5“)[an¢(Qa xn—l) . (1 - an)¢(qv xn)]' (4'1'7)

So, ¢ € Cpy1- Then by induction, FF C C, for all n > 1 and hence the sequence

{z.} generated by (4.1.1) is well defined. Next, we show that {z,} is a convergent

sequence in C. From z, = Il¢,z;, we have

(Tn —u, Jz1 — JTn) >0, Yu € C,. (4.1.8)
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It follows from F' C C, for all n > 1 that

(Tn — z,Jx1 — J2,) >0, VzEF.

From Lemma 2.1.31, we have

¢(.’En, xl) = ¢(HC".’L'1,$1) S ¢(U, xl) - ¢(u) xﬂ) S ¢('U,, IL']),

for each u € F C C, and for all n > 1. Therefore the sequence {¢(z,, )} is
bounded. Furthermore, since z, = ¢,z and z,41 = Ig,,, %1 € Cpy1 C Cp, we

have
d’(-’rn; -'L'l) S ¢(1:n+1,$1), for all n Z 1.

This implies that {¢(z,, )} is nondecreasing and hence lim, . ¢(Tn, 1) exists.

Similarly, by Lemma 2.1.31, we have, for any positive integer m, that

¢(xn+m7 In) = ¢("En+m7 chxl)
< ) Tngm, 1) — $(llc, 71, 71)
= ¢(Tpnym,T1) — O(Tn, 1), foralln > 1. (4.1.10)

The existence of lim, s ¢(T,, ;) implies that ¢(Zpim,Zn) — 0 as n — oo. From

Lemma 2.1.64, we have
|Znsm — Zall = 0, as n — oco.

Hence, {z,} is a Cauchy sequence. Therefore, there exists a point p € C such that

Tp, — P a8S N — 0O.

Now, we will show that p € "X, F(T;) NN, F(S;)) NVI(A,C).



(I) We first show that p € ﬂf’zl F(T;)n ﬂfil F(S;)

in (4.1.10), we have
lim ¢(Zn41,2,) =0.
It follows from Lemma 2.1.64 that

lim ||Zp4+1 — Za]| = 0.
n—oo

This implies that

lim ||z, — zo)| =0, forallle{1,2,...

The property of the function ¢ implies that

lim ¢(zns1,2n) =0, forallle{1,2,...

Since Tp41 € Chy1, We obtain
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. Indeed, taking m =1

(4.1.11)

(4.1.12)

(4.1.13)

(4.1.14)

¢($n+11 yn) S 6n¢($n+17xn) a7 (1 e 5“)[an¢(zn+h xn—l) + (1 o an)¢(wn+11xn)]‘

It follows from the condition (4.1.11) and (4.1.14) that

nh_l:{.lo ¢($n+l’ yn) =0.

From Lemma 2.1.64, we have
Hm ||Z,41 — yall = 0.
n—o0

Combining (4.1.12) and (4.1.15), we have

(4.1.15)

IZn = ynll < 120 = Tnsall + 2041 — yall — 0 a5 2 — 00. (4.1.16)
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Since J is uniformly norm-to-norm continuous on any bounded sets, we have

lim ||Jz, — Jy.|| = 0. (4.1.17)

n—oo
On the other hand, noticing

| Jyn — Jza|| = On]|Jz1 — J20]| — 0 as n — oo. (4.1.18)
Since J~! is uniformly norm-to-norm continuous on any bounded sets, we have

L flgn — 2] = 0. (4.1.19)
Using (4.1.12), (4.1.15) and (4.1.19) that

lim ||z, — 2z,|| =0. (4.1.20)

n—oo

Taking the constant 7 = sup,,5; {|Zn+1ll, Tnznll, | Snwnll}, we have, from Lemma
2.1.67, that there exists a continuous strictly increasing convex function g : [0, 00) —

[0, 00) satisfying the inequality (2.1.11) and g(0) = 0.

Case I. Assume that (a) holds. Applying (2.1.11) and (4.1.5), we can

calculate

¢(u1 zn) = ¢(u) J“l(anJ-’En—l - ﬁn‘]TnIn 1 'YnJSnwn))
= |ull® — 2en(u, Jzn-1) = 28u(u, JTutn) — 2¥n{, JSpwn)

=+ ”ant]xn—l o .BnJTnIn 1= ’YnJSnwnllz

<l = 20 (u, Jxn_1) — 280w, JTnTpn) — 290 (u, JSaw,)
+ | JZn1 1 + Ball I Tuznll® + Yall I Sawnl|?
— 0nfng([|JTn-1 — JTaznl))

< and(u, Tn-1) + Pud(U, Tntn) + 1d(U, Spwn)

I anﬁng(”']xn—l > JTnxn")
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< an¢(u7 xn—l) i ,Bn¢(u1 -'L'n) e 7n¢(u7 wn)
- anﬂng(”‘]xn—l Ta JTnxn")
< an¢(u’ xn——l) -+ ,Bn(P(U', xn) + 7ﬂ¢(u7 .’12,,)
Bt (%rn - a) 1Az, — AUl — anBag(|IZnes — JTazall)
S an¢(u7 xﬂ—l) + (1 = an)¢(ua xn) I 27‘11'711 (%rn i a) ”Azn w Au”2

r anﬁng("‘]fzn—l - JTnxn")- (4.1.21)
This implies that

nfrg(| JTn-1 — JTaza|) < anfd(u,ZTa1) — P(u, T,)]

+ ¢(u, zn) — (u, zn). (4.1.22)
We observe that

an[p(u, Tn_1) — d(u, z,)) + (u, T,) — ¢(u, 2,)

lllza-1l® = llzall® — 2(u, Jzn-1 = Jzn)]

IA

Hllzall® = llzall® = 2(u, Jon = T2n)

an(l|zn-1 = Zall(l2n-1ll + llzall) + 2wl J2n-1 — J2nll]

IN

+lzn = zall(lzall + llzall) + 2wl J2n — J2n]l-
It follows from (4.1.12), (4.1.17), (4.1.18) and (4.1.20) that
nl_lg’lo n[d(U, Tno1) — D(u, Tn)] + d(u, ) — P(u, z,) = 0. (4.1.23)
From lim inf,, . a8, > 0 and (4.1.22), we get

lim g(J|Jzpn-1 — JTnzx|) = 0.
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By the property of function g, we obtain that

nlggo |Jzrn-1 — JTnz,|| = 0. (4.1.24)
Since J! is uniformly norm-to-norm continuous on any bounded sets, we have

B g — Togall = lim 77 (J20s) = U Tz) 0. (41.25)
From (4.1.12.) and (4.1.25) , we have

nlLrIgo |lzn — Thzn] = 0. (4.1.26)
Noticing that

£ = Tati@all < 120 — Tasill + 1504t — ToriZnstll + [ Tari@nrs — Tntiall,

for all [ € {1,2,..., N}. By the uniformly continuity of 7;, (4.1.13) and (4.1.26),

we obtain

nlerOlo”:cn — Tz | =l for all { € {152, ., NV}. (4.1.27)
Thus

nango |zn — Tiza|| =0, forallle{1,2,...,N}. (4.1.28)

From the closeness of T;, we get p = Tip. Therefore p € NI, F(T;). In the same

manner, we can apply the condition liminf, o, @7, > 0 to conclude that
lim ||z, — Spw,|| = 0. (4.1.29)
n—o0

Again, by (C2) and (4.1.21), we have

2Vn (a — —;b) |Az, — Aul® < é[and)(u, Tno1) + (1 — 0n)d(u, Tn) — d(u, 2,)]
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= fan(@n 7 1) — B, 7)) + (s ) — ot 7))

It follows from (4.1.23) and the assumption liminf, .o ¥n > liminf, .o Bnyn > 0

that

lim inf || Az, — Aul| < 0.
Since liminf,_ .o || Az, — Aul| > 0, we have

nllrr{olo [|A:1:,.l — Aul| = 0. (4.1.30)
From Lemma 2.1.31, Lemma 2.1.66, and (4.1.4), we have

d’(wn;wn) = ¢(xn1HCJ_1(J$n-TnAxn))

< H(zn, JH(JTn — ThAT,))
= V(zn, JTp — Thdz,)
< V(@ (JTn — ThAZy) + ThAZ,)
— 20T Iz — TrAZL) — Ty, ToAn)
= ¢(Tn,Tn) + 2(J N (Jzp — ThAZ,) — Tn, —TnATy)
= 2J Y Jzy — TrAZs) — Tn; —TaAZy)
< %b“’qun — Aul®. (4.1.31)

It follows from (4.1.30) that
lim ¢(z,,w,) = 0. (4.1.32)
Lemma 2.1.64 implies that

lim ||z, — w,|| = 0. (4.1.33)
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Since J is uniformly norm-to-norm continuous on any bounded sets, we have
nh_'r{.lo |z, — Jw,| = 0. (4.1.34)
Combining (4.1.29) and (4.1.33), we also obtain
1}520 llwn — Spw,]| = 0. (4.1.35)
Moreover
lwn — wani]l < lwn — zall + 20 — Tatall + [|Tns1 — wasall-
By (4.1.33), (4.1.12), we have
T}Lngo lwn — wpia|l = 0. (4.1.36)
This implies that
rtl}—vnc}o [lwn — wap|| =0, forallle{l,2,...,N} (4.1.37)
Noticing that
lwn — Sny1wn|l < |wn — Wotll + 1 Wntt — SnttWntill + || Sttt — Snorwnll,

for all l € {1,2,...,N}. Since S; is uniformly continuous, we can show that
lim, o0 ||wn — Siwy|| = 0. From the closeness of S;, we get p = S;p. Therefore

p e NN, F(S;). Hence p € N, F(T:) NN, F(Sy).

Case II. Assume that (b) holds. Using the inequalities (2.1.11) and (4.1.5),

we obtain

¢(u1 Zn) =] ¢(u7 J—l(an‘]zn—l + IBnJTnxn + ’YnJSnwn))

= Jjul|® = 200 (u, JTn_1) — 2Bn{u, JTuTs) — 27a(u, JSnwy)
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+ "aann—l 1= :BnJTnxn + 7nJSnwn”2

= ||u|]2 — 200, (U, JTp_1) — 2B (t, JTnZp) — 2795 (1, JSnwn)
+ anll Izl + Ball S Tnzall* + Yall I Swwal
= Pa g1 Tnzn — J Snwal))

< nd(u, Tn-1) + Bad(u, TnZa) + Fad(u, Sptwn)

— B Yn9(| I Tnzn — JSnwnll)
and)('uw -'L'n-l) cl ﬁn¢(u7 xn) + ’Yﬂ¢(ua wn)

e ﬁn’)’ng(”‘]Tnxn = JSnwn")

INA

IN

and’(“r xn—l) in ﬁn¢(u’ xn) i '7n¢('u’v 5L‘n)

2
=+ 2Tn'Yn(E2—Tn — a)|| Az, — Au“2 — Batng(| I Tozsn — JSnwy||)

IN

2
an¢(ua xn—l) T (1 =3 an)¢(ua xn) =t 27‘11')'11(22‘7% = a)"Azn - Au”2

= ﬁn'}'ng("JTnxn G JSnwn”) (4138)

This implies that

Batng(1J Tz — JSpwall) < an[(u, za1) — ¢(u, Tn)] + S, Tn) — $(u, 20)
< anllzaall® = lzall® — 2(u, Ty — JT5)]
+llzall® = llzall® — 2(u, JTn — Jza)
< au[llZn-1 = Zall(Zn-all + llzall) + 2wl JZn-1 = Jzal]

+ |z = zall(Izall + lzall) + 2l J2n — Jzall-
It follows from (4.1.16), (4.1.19) and the condition lim inf, .. Bn¥» > 0 that
'};1{{.109({|JTnxn — JSawy]|) = 0.
By the property of function g, we obtain that

lim ||JT,z, — JSawy| = 0.
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Since J~! is uniformly norm-to-norm continuous on any bounded sets, we have
lm | Tz, — Sawn]| = lim [|J7H(JTazs) — J ' (JSpwy)]|| = 0. (4.1.40)
n—oo n—00

On the other hand, we can calculate

O(TaZnyzn) = O(TaZa,J H(anJTn-1+ BrdTaZn + Yud Sawn))
= ”Tnmn”2 - 2(Tn$n7 anjzn—l Al ﬁnJTnzn - ’YnJS'nwn)>

+ ”C!nJ.’L'n_l . ﬁnJTnIn i "/nJSnwn)HQ

< “Tnmn"2 e 2an(Tn$n, an) = 2.311(Tn$n, JTnxn> e 2'7n<Tn-'17na JSnwn)
M O‘rt”mn”2 - :Bn"Tnxn”2 Sl 'Yn”Sn'wn”z
< n®(TaZn, Tn) + 1a@(TnTn, Snwn)- (4.1.41)
Observe that
H(Tnn, Spws) = ”Trzxn“2 — U T Trsd Spwn) + ”Snwn”2

= |Tuznll? = 2{Tazns JTuzn) + 2{TaZn, JTnZn — J Spwn) + | Snwn |

IA

”Snwn”2 - ”Tnz:n”2 + 2| Tz || J Tntn — J Snw,||

A

| Snwn — TnZa|| (| Snwall + N T uull} + 2| Tnzn||l| J Tazn — J Snwal.

It follows from (4.1.39) and (4.1.40) that
lim ¢(Tzn, Sawn) = 0. (4.1.42)

Applying lim, . @, = 0 and (4.1.42) and the fact that {¢(Tnzn,z,)} is bounded
to (4.1.41), we obtain

lim (Tnzn, za) = 0. (4.1.43)
n—oo
From Lemma 2.1.64, one obtains

lim [|Tutn — 2| = 0. (4.1.44)
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We observe that
[Tazn — Znll < 1 Tatn — 2nll + ll2n — 2all-
This together with (4.1.20) and (4.1.44), we obtain
7}1_{20 | Tizn = zall= 0. (4.1.45)

Noticing that

”xn 5 Tn+l$n” L [lowis $n+l” + |l TasaZastll I na®ns — Tn+l$n",

for all I € {1,2,...,N}. By the uniformly continuity of 7;, (4.1.13) and (4.1.45),

we obtain

JLI’IOIO |n — Tnsizall =0, forallle {1,2,...,N}. (4.1.46)
Thus

1111_{& |zn — Tiza]| =0, forallle {1,2,...,N}. (4.1.47)

From the closeness of T}, we get p = T;p. Therefore p € N, F(T;). By the same

proof as in Case I, we obtain that

nh_r& |zn — wnl|l = 0. (4.1.48)
Hence w,, — p as n — oo for each ¢ € I and

lim || Jz, — Juwy|| = 0. (4.1.49)
Combining (4.1.40), (4.1.45) and (4.1.48), we also have

T}I_{I;o || Snwn — wal]| = 0. (4.1.50)

Moreover

lwn — wasall < lwn — Tall + |20 — Tnrll + | Zas1 — Wana|l-
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By (4.1.33), (4.1.12), we have
Tim [, — wa] = 0. (4.1.51)
This implies that
nh—»nolo lwn, —wnp]l =0, forallle{1,2,...,N}. (4.1.52)

Noticing that

lwn — Snt1wnll < llwn — wopll + lwntt — Snriwnsill + | Snsiwntrs — Sniwall,
for all I € {1,2,...,N}. Since S; is uniformly continuous, we can show that
limy, oo ||wn — Sywy|| = 0. From the closeness of S;, we get p = S;p. Therefore

p €N, F(S;). Hence p € X, F(T:) NN, F(S;).
(II) We next show that p € VI(C, A).
Let T C E x E* be an operator defined by :

Av + N¢g(v), e C; '
Ty = a (4.1.53)

0, v¢C.

By Lemma 2.1.69, T is maximal monotone and 7710 = VI(A,C). Let (v,w) €
G(T), since w € Tv = Av + N¢(v), we have w — Av € N¢(v). From z, =Il¢,x €

C, C C, we get
(v—Tp,w— Av) > 0. (4.1.54)
Since A is a-inverse-strong monotone, we have

(v — z,,w)

v

(v — z,, Av)
= (v —%,, Av — Az,) + (U — T,, Azy)

> (v — T, ATa). (4.1.55)
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On other hand, from w, = lgJ '(Jz, — r,Az,) and Lemma 2.1.65, we have

(v — Wy, Jw, — (JTn — TRAZ,) > 0, and hence

Jz, — Jw,

Tn

(v — wp,

— Az,) <0. (4.1.56)

Because A is 1 constricted, it holds from (4.1.55) and (4.1.56) that

(v —Zn,w) 2 (v—=2n,A%,) + (v —wp, M — Az,)

= (v —wp, Az,) + (Wp — Tn, AZp) — (v — wp, Azy)

+@_wm£&%£&)

Jz, — Jw,
—p=

= (Wp — Ty, AZy) + (v — wp,
n

v

—llwn = za|[-| Aza|

| Jzn — Jwnl|
g a

— |lv — wa| ,Vn € NU {0}. (4.1.57)

By taking the limit as n — oo in (4.1.57) and from (4.1.33) and (4.1.34), we have
(v — p,w) > 0 as n — oo. By the maximality of T we obtain p € T-'0 and hence

p € VI(A,C). Hence we conclude that

N N
pe(F(T)n()F(S:)NVI(AC).

i=1

Finally, we show that p € Ilpz;. Indeed, taking the limit as n — oo in (4.1.9), we

obtain
(p—2,Jr; —Jp) >0, VzeF (4.1.58)
and hence p = IIpz; by Lemma 2.1.65. This complete the proof. O

Remark 4.1.2. Theorem 4.1.1 improves and extends main results of liduka and
Takahashi [59], Xu and Ori [60], Qin, Cho, Kang and Zho [61], and Cai and Hu
[27] because it can be applied to solving the problem of finding the common ele-

ment of the set of common fixed points of two families of relatively weak quasi-
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nonexpansive mappings and the set of solutions of the variational inequality for an

inverse-strongly monotone operator.

Strong convergence theorem for approximating a common fixed point of
two finite families of closed relatively weak quasi-nonexpansive mappings in Banach

spaces may not require that E is 2-uniformly convex. In fact, we have the following

theorem

Corollary 4.1.3. Let C be a nonempty, closed and convez subset of a uniformly
convez and uniformly smooth Banach space E. Let {T1,Tz,...,Tn} and {S1,Sa, - -, Sn}

be two finite families of closed relatively weak quasi-nonerpansive mappings from
C into itself with F # 0, where F := (X, F(T;)) N Y, F(S;). Assume that T;
and S; are uniformly continuous for alli € {1,2,...,N}. Let {x,} be a sequence
generated by the following algolithm.:

xo =z € C, chosen arbitrary,

Cy = C,z1 = llg, %o,

Zn = J Y otn I Zn—q FPadTnZn + YL Fnltn);

Yp = J N0z + (1 — 0p)J 20),

Coasi = {u € Cr = d(u, ) < Snd(u, 1) + (1 — 8n)[0n (1, Tr1) + (1 — an)d(u, za)|},

L Tny1 = HCn+1x17 Vn Z 11

(4.1.59)

where T, = Th(mod N)> Sn = Sn(mod N), and J is the normalized duality mapping on
E. Assume that {cw,}, {8}, {1} and {6.} are the sequences in [0, 1] satisfying the

restrictions:

(C1) By, . O =05
(C2) ap + Bn+ 7 =1 and if one of the following conditions is satisfied

(a) liminf, .o 0B, > 0 and liminf, . any, > 0 and
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(b) lim, . a, =0 and liminf,,_,o Bryn > 0.

Then {z,} converges strongly to Ilpx,, where Il is the generalized projection from

C onto F.

Proof. Put A = 0in Theorem 4.1.1. Then, we get that w,, = z,,. Thus, the method
of the proof of Theorem 4.1.1 gives the required assertion without the requirement

that F is 2-uniformly convex. O

Remark 4.1.4. Corollary 4.1.3 improves Theorem 3.1 of Cai and Hu [27] from a
finite family of of relatively weak quasi-nonexpansive mappings to two finite families

of relatively weak quasi-nonexpansive mappings.

If E = H, a Hilbert space, then E is 2-uniformly convex (we can choose
¢ = 1) and uniformly smooth real Banach space and closed relatively weak quasi-
nonexpansive map reduces to closed weak quasi-nonexpansive map. Furthermore,
J = I, identity operator on H and Il¢ = P, projection mapping from H into C.

Thus, the following corollaries hold.

Corollary 4.1.5. Let C be a nonempty, closed and convex subset of a Hilbert
space H. Let {T1,T>,...,Tn} and {S1,Ss,...,Sn} be two finite famalies of closed
weak quasi-nonerpansive mappings from C into itself with F # 0, where F :=
N, F(T) N ﬂf;l F(S;)NVI(A,C) with ||Ay| < ||Ay — Agq|| for all y € C and

q € F. Assume that T; and S; are uniformly continuous for all i € {1,2,...,N}.



87

Let {z,} be a sequence generated by the following algorithm:

,

9 = x € C, chosen arbitrary,

C, =C,z, = Pg,xp,

wy, = Po(z, — mhAzy,),

Zn = (0nZn-1 + BnTnZn + YnSnwy),

Yn = (021 + (1 = 6n)2n),

Cnt1 = {1 € Cn : |lu — yall? < Sallu — 21| + (1 = &) eallu — zaa|I?

+(1 — ap)llu — zn|%},

Tpy1 = PCn+1$11 Vn Z la
\

where T,, = Tr(mod N)» Sn = Sn(mod N), and J is the normalized duality mapping
on E. Assume that {an}, {Bu}, {1n}, {0n} and {r,} are the sequences in [0,1]

satisfying the restrictions:

(C1) lim,,_,, 65, = 0;

(C2) T, C [a,b] for some a,b with 0 < a < b < c*a/2, where 1/c is the 2-uniformly

convezity constant of E;
(C8) an + B+ vn =1 and if one of the following conditions is satisfied

(a) liminf, o anfn > 0 and liminf, . any, > 0 and

(b) lim, ., a, = 0 and lim inf,,_,o Bn¥n > O-

Then {z,} converges strongly to Prz,, where Pp is the metric projection from C

onto F.
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4.2 Convergence theorems based on the shrinking projection method

for variational inequality and equilibrium problems

In this section, we introduce a hybrid projection algorithm based on the
shrinking projection method for two relatively weak nonexpansive mappings. We
prove strong convergence theorem which approximate the common element in the
fixed points of two such mappings, the solution set of the variational inequality and

the solution set of the equilibrium problem in Banach spaces.

In [62,15], Alber introduced the functional V : E* x E — R defined by

Vig,z) = l¢l® - 2(,z) + |l=Il”,

The follow:ing properties of the generalized projection operator Il¢ and V'

are useful for our paper. (See, for example, [16])
(i) V: E* x E — R is continuous.
(i1) V(¢,z) =0 if and only if ¢ = Jz.

(iii) V(JOc(9),z) < V(¢,z) for all ¢ € E* and = € E.

(iv) The operator Il is J fixed at each point z € C, i.e., llg(Jz) = .

(v) If E is smooth, then for any given ¢ € E*, z € C, z € [Ic(¢) if and only if
(¢ — Jz,z —y) >0, forally € C.

(vi) The operator Il¢ : E* — C is single valued if and only if £ is strictly convex.

(vii) If E is smooth, then for any given point ¢ € E*, = € Ilc(¢), the following

inequality holds
V(Jz,y) <V($,y) - V(g,z) Vyel.

(viii) V(¢,z) is convex with respect to ¢ when z is fixed and with respect to =

when ¢ is fixed.
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(ix) If E is reflexive, then for any point ¢ € E*, Il¢(¢) is a nonempty, closed,

convex and bounded subset of C.

Lemma 4.2.1. [63] Let C be a closed and convez subset of a uniformly smooth,
strictly convex, and reflexive Banach space E, and let f be a bifunction from C xC
to R which satisfies conditions (A1) — (A4). For allT > 0 and x € E, define the

mapping
1
Tx& {z eC: f(zy)+ ;(y —z,Jz—Jz) >0, Vye€ C}. (4.2.1)
Then, the following hold:

(1) T, is single-valued;
(2) T, is a firmly nonezpansive-type mapping (64, that is, for all z,y € E,

(Trx — Ty, JTrx — JTy) < (Trz —Try,Jz — Jy); (4.2.2)

(8} F{T;) = F(T,) = DR
(4) EP(f) is closed and convex.

Theorem 4.2.2. Let E be a uniformly convezr and uniformly smooth Banach space
and C be a nonempty closed and convex subset of E. Let f be a bifunction from
C x C to R satisfying (A1) — (A4). Assume that A is a continuous operator of C
into E* satisfying conditions (2.8.4) and (2.3.5) and S,T : C — C are relatively
weak nonezpansive mappings with F := F(S)NF(T)NVI(A,C)NEP(f) # 0. Let



90

{z,} be a sequence generated by the following manner:

(

zog = x € Cchosen arbitrary, Cy = C,

zn = He(andzn + BTz, + Y JSTy),

Yn = J 1 (Ondzp + (1 — 8,) (I 2, — BAZ,)),

{ (4.2.3)
u, € C such that f(u,,y)+ i(y — Up, Jup — Jyn) >0, VyeC,

Cn+l = {Z € Cn : ¢(Z, un) S ¢(zaxn)}a

Tpy1 = H¢H+IJ$ Vn > 0.

\
Assume that {a,}, {Bn}, {n} and {0,} are the sequences in [0,1] satisfying the
restrictions:

(CI) an+ﬂn+’7n =1;

(C2) 0 < §p=0 1, B sup, b, s <L

(C3) {r,} C [a,00) for some a > 0; and

(C4) liminf, .o a6, > 0,iminf,_ ;. o7, > 0.

Then {z,} converges strongly to Ilpz.

Proof. We divide the proof into five steps.
Step 1. Ilpz and Il¢,,, = are well defined.

From Lemma 2.3.4, we know that VI(A,C) is closed and convex. By the
same argument as in the proof of [65, p. 260], one can show that F(T") N F(S) is
closed and convex. From Lemma 4.2.1 (4), we also have that EP(f) is closed and
convex. Hence F is a nonempty, closed and convex subset of C. Consequently,
[1px is well defined.

Clearly, Cy = C is closed and convex. Suppose that Cy, is closed and convex
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for some k € N. For all z € Cy4, one obtains that
$(2,un) < (2, Tn)
is equivalent to
2((z, Jzx) — (2, Jur)) < |zl — Jluell®.
It is easy to see that Ci,; is closed and convex. Then, for all n > 0, C, is closed

and convex. Hence Il¢,, = is well defined.
Step 2. F C C, for all n € NU {0}.

We observe that F' C Cy = C is obvious. Suppose F' C C} for some k € N.
Let w € F C Cy, then, from the definitions of ¢ and V, property (iii) of V, Lemma
2.1.70, conditions (2.3.4) and (2.3.5), we have

d(w,Nc(Jzn — BAz,)) = V(JUc(Jzn — BAz,), w)

< V(Jzn — BAzyw)

= ||Jzn — BAZ||2 — 2(J2n — BAzn, w) + |w]?

< |zl = 26(Azn, TN (J 20 — BAzy))
—2(J 20 — BAzg, w) + |Jw]|?

< | zll? = 2(J 20, w) + |Jw]]?

= ¢(w,2a), (4.2.4)

for each n € NU {0}. From Lemma 4.2.1(2), one has that T, is a relatively
nonexpansive mapping. Therefore, by properties (viii) and (iii) of the operator V'

and (4.2.4), we obtain

¢(w1uk) == ¢(w1Trkyk)
< ¢(’LU, yk)

= V(Jykv w)

IN

0V (Jzp, w) + (1 — &)V (Je(J 2z — BAz), w)
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= op(w, k) + (1 — o) p(w, He(J 2z — BAz))

< Sp(w, ze) + (1 — )d(w, 2¢)

= &o(w,zi) + (1 — &)V (J 2k, w)

< Grp(w, zx) + (1 — &)V (e Jzx + B T + v ST, w)

= &d(w,zi) + (1 = &) p(w, J N arJzx + BTk + 1 Szi))
= &d(w,zx) + (1 — &)[llw]|® — 20w, Jzx) — 28w, JTzx)

— 2'7k(w, JS.’L'k> + ”Olkak + BrJ Ty + ’)’kJSZIk“z]

IA

Skp(w, zk) + (1 — &) [llwl|® - 200w, Jzx) — 26w, JTzx)

— 2w, JSzk) + ol Jze||* + Bell STzl + el J S|

= Sep(w, zx) + (1 — ) awd(w, zi) + Brdp(w, Tzk) + ved(w, Sze)]
< So(w, zk) + (1 — &) p(w, zk)

= ¢(w,$k), (425)
which shows that w € Cjy;. This implies that F' C C, for all n > 0.
Step 3. {z,} is a convergent sequence in C.

Since z, = lI¢,Jr and F C C,, we have V(Jz,z,) < V(Jz,w) for each
w € F. Therefore, {V(Jz,7,)} is bounded. Moreover, from the definition of V,
we have that {z,} is bounded. Since z,41 = Il¢,,,Jz € Cnyy and z, = ¢, Jz,
we have V(Jz,z,) < V(Jz,Tny1) for each n € NU {0}. Therefore {V(Jz,z,)} is

nondecreasing. Hence

lim V(Jz,z,) exists.

n—o0

By the construction of C,, we have that C, C C,, and =, = Il¢,, Jz € C,, for any

positive integer m > n. From property (vii) of the operator Ilc, we have

Vi(idza,zm) < VI3 2,) =V(JZ:2); (4.2.6)
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for each n € NU {0} and any positive integer m > n. This implies that

V(Jzp,Tm) — 0 as n,m — oo. (4.2.7)
The definition of ¢ implies that

¢(Tm,Ty) = 0 as n,m — oo. (4.2.8)
Applying Le@ma 2.1.64, we obtain

|Zm —zn]l = 0 as n,m — oco. (4.2.9)

Hence {z,} is a Cauchy sequence. The completeness of a Banach space E and the

closeness of C imply that lim,, .., z, = p, for some p e C.

Step 4. We show that p € F.
(I) First we show that p € F/(S) N F(T).
Take m =n+ 1 in (4.2.7), one arrives that
lim. V(Jxs, Ti+s) = 0.

n—o0

By the definition of ¢, we have

nlgxol0 L ni1:%n) = 0. (4.2.10)
Using Lemma 2.1.64, we obtain that

nlirgo |Zat1 — za]| = 0. (4.2.11)

Note that z,4; = ¢, ,,JZ € Cni1 then ¢(Tni1, un) < G(Tny1,Tn)-

It follows from (4.2.10) that lim,_,co ¢(Zn+1,Un) = 0.
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Using Lemma 2.1.64, we obtain
Jim (|74 = un] = 0. (4.2.12)
Combining (4.2.15) with (4.2.12), one sees that
lim ||z, — u,|| = 0. (4.2.13)
n—co
It follows fr.om T, — p as n — oo that
Up, — P aS M — 00. (4.2.14)

On the other hand, since J is uniformly norm-to-norm continuous an bounded sets,

one has
lim J|Jz, — Jua| = 0. (4.2.15)

Since {z,} is bounded, {Jz,}, {JTz,} and {JSz,} are also bounded. Since E is a
uniformly smooth Banach space, one knows that E* is a uniformly convex Banach
space. Let r = sup,>o{|[Jznll, |[JTzn|l, ||/ Sz, |} Therefore Lemma 2.1.67 implies
that there exists a continuous strictly increasing convex function g : [0, 00) — [0, 00)
satisfying ¢(0) = 0 and inequality (2.1.11). It follows from the property (iii) of the
operator V, (4.2.4) and the definition of S and T', that

¢(p,z) = V(Jzn,p)
< V(opd Ty + BndTTp + YnJ ST, D)
= ¢(p,J Ty + BudTTy + Y STn)
= |lpll* — 2an(p, Jzn) — 2Ba{p, JTTp) — 27n(p, JSzn)
+ lanJ Zn + Brd Tp + Yo STal|?
< Ipll* = 2en(p, Jz0) — 262(p, JTTn) — 27{p, JSTs)

+ | Jzall® + Ball I T2al|* + 7all JSzall® — anBug (1T T2 — JZall)
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= 00D, Tn) + Bud(D, TT0) + 1 (P, SZ0) — 0nBrg(| JTxn — Jz0|)

< 0(p,zn) — anBrg(|J Tz — Jznl))- (4.2.16)

From property (viii) of the operator V, (4.2.4) and (4.2.16), we obtain

o(p,un) = ¢(p,Tr.n)
< 6(p,yn)
= V(Jyn,p)
52V (JZn,p) + (1 — 8,)V (U (J2n — BAz,), D)

0nd(p, Tn) + (1 — 62)8(p, Tc(J 20 — BAZn))

IA

= 5n¢(p, -'L'n) A (1 . 5n)¢(pv Zn)
S 6n¢(p7 zn) ar (1 i 5n)[¢(p: zn) N anﬂng(”JTxn L= an“)]
= ¢(P1 zn) G (1 = 6n)anﬂng(”JT$’ﬂ . an”)
Therefore,
(1 - 5ﬂ)anﬁng(”JTxn .y an”) < ¢(p’ xn) - ¢(p7 un)‘ (4217)

On the other hand, we have

¢(p7 xn) - d)(p) un) = 2<Jun - anvP) g ”xﬂll2 i “u’ﬂ”2
= 2(Jup = J0,p) + (zall = el lznll + lluall)

< 20 Jun — Jzalllwll + llzn — wnll([|2all + llunl)-
It follows from (4.2.13) and (4.2.15) that
nh_)ngo((p(p’ mn) - ¢(p1 un)) =1 (4'2'18)

From the assumptions limsup,,_, 8, < 1,liminf, . apB, > 0, (4.2.17) and (4.2.22)
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we have

Jln;og(IIJTxn — Jz,||) =0. (4.2.19)
It follows from the property of g that

nlg{.lo |JTz, — Jz,|| = 0. (4.2.20)
Since J ! i.s also uniformly norm-to-norm continuous on bounded sets, we have

JE&”zn——TmJ|=7E2;HJ_RLQI—¢T4JTxJ|=(l (4.2.21)
In a similar way, we can apply the condition lim inf,, ., v, > 0 to get

nh—{& fzw— Szail = 0. (4.2.22)
Since =, — p, we have p € F(S) N F(T) = F(S) N F(T). Moreover,

Sz, —»p as n—oo0 and Tz, —»p as n — 00. (4.2.23)

(Il) p € EP(f).

From (4.2.5), we know that ¢(u,y,) < ¢(u, z,,).

From u, = T, y, and Lemma 4.2.1(2), one has

d)(un;yn) = ¢(Trnym yn)
$(w,yn) — ¢(w, Tr,.Yn)
< ¢(w,zn) — $(w, Tr,yn)
(

d(w, z,) — d(w, uy).

IN
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It follows from (4.2.18) that ¢(u,,y,) — 0 as n — oo.

Applying Lemma 2.1.64, we obtain

[ln — yu|l — 0 as n — oo. (4.2.24)
Since J is uniformly norm-to-norm continuous on bounded sets, one has

nlgxolo [|Jun — Jya]| = 0. (4.2.25)

From the assumption that r, > a, one sees

Ju, — Jyn
o I = Jyall _

n—o0 ’rn

0. (4.2.26)
Observe that u,, = T}, y., one obtains
o) rin<y e Ty = B VyeO (4.2.27)
From (A2), one arrives that
ot~ Tyl

1 i
Hy - un“—r—— = ;‘(y — Unp, ']un =3 Jyn> > -f(unay) =3 j_(y’un)’ Vy eC.

n n

Take n — oo in the above inequality we get from (A4) and (4.2.14) that

fly,p) <0, VyeC.

Forall0 <t <1 and y € C, define y;, = ty + (1 — t)p. Note that y,p € C, one
obtains y, € C, which yields that f(y;,p) < 0. It follows from (A1) that

0 = flyou) <tf(yoy) + (1 —)f(y,p) < tf(ye,y)-

That is,

flyny) = 0. (4.2.28)
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Let ¢ | 0, from (A3), we obtain f(p,y) > 0, for all y € C. This implies that
p € EP(f).

(ITI) p e VI(A,C).
From (4.2.13) and (4.2.24) we have
Jim |z — yall = 0. (4.2:29)
Since J is ;miformly norm-to-norm continuous on bounded set, we have
r}g{.lo | Jyn — Jz,|| = 0. (4.2.30)

Since || Jyn — JTu|| = (1 — 8n)||JHc(J 20 — BAZn) — JTy|| and limsup,, o 0n < 1,

we have
lim ||JT¢g(Jz, — BAZ,) — Jz,|| = 0.
n—oo
Since J~! is also uniformly norm-to-norm continuous on bounded set, we have

ITlc(Jzn — BAzn) — Zp|| = lim |J (I 2 — BAZn) — J x| =0.

(4.2.31)

From properties (iii) and (ii) of the operator V, we derive that

¢(xm zn)

V(Jzn, Tn)

V(anJ Ty + BndTZp + Y STn, Tn)

IN

= ¢(xn, J (anJTn + BndTTn + 1 JSTs))

= |1znll* = 20n{Zn, JT0) — 2Bn{(Tn, JTxy)

— 29T n, JSZL) + {londTn + B/ T2y + 'y,,JSaan2

IA

znll” = 20(Tn, JTa) — 2Bn(Tn, JTTn)
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— 29 (Tn, JST,) + ap||Jz. | + Ball ITz,||* + Yull TSz ||

= nd(Tn, Tn) + Pud(Tn, TTn) + Ynh(Tn, STn)-
By the continuity of the function ¢ and (4.2.23), we have
lim (2, 20) = 0.
From Lemma 2.1.64, we have
Jl_{rolo "xn — z|| =0. (4.2.32)
Using inequalities (4.2.31) and (4.2.32) we obtain

IMc(Jzn — BAZ) — 2zl < Tle(J2n — BAZ) = Za|

+ ||zn — 2|l = O. (4.2.33)

Since z, — p we get that z, — p. By the continuity of the operator J, A and Il¢,

we have
lim [|Tlc(J2, — BAzn) — Te(Jp — BAP)|| = 0. (4.2.34)
Note that

IMc(J2n — BAzn) —pll < [Tc(J2n — BAZ) — zall

+lza —gll = 0, as n— oo. (4.2.35)

Hence, it follows from the uniqueness of the limit that p = Ilc(Jp — BAp). From
Lemma 2.3.6, we have p € VI(A,C). By cases I, II and III, we conclude that
peF.

Step 5. p=1lpJz.
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Since p € F, then from property(vii) of the operator Ilc, we have
V(JUpJz,p) + V(Jz,dpJz) < V(Jz,p). (4.2.36)

On the other hand, since z,41 = ll¢,,,Jz, and F' C Cpyy for each n € NU {0},

then it follows from property (vii) of the operator Il that
V(Jl'n.H, HFJIL') + V(JIL', Z,H,.]) < V(J.’II, HFJl') (4237)
Moreover, by the continuity of the operator V', we get that

lim V(Jz,Zn41) = V(Jz,p). (4.2.38)

n—0o0

Combining (4.2.36), (4.2.37) with (4.2.38), we obtain that V(Jz,p) = V(Jz, pJz).
Therefore, it follows from the uniqueness of IIpJx that p = IIpJz. This completes

the proof. &

Remark 4.2.3. The following sequences of parameters are examples which support

our main result:

11 1 —
= P = = d n = = —_—
T Lkl Rl s e o

n
2n+1

r, =n+3 and 9, =

for alln € N.

Setting S = T in Theorem 4.2.2, we obtain the following result.

Corollary 4.2.4. Let E be a uniformly convez and uniformly smooth Banach space
and C be a nonempty, closed and convex subset of E. Let f be a bifunction from
C x C to R satisfying (A1) — (A4). Assume that A is a continuous operator of
C into E* satisfying conditions (2.3.4) and (2.3.5) and T : C — C is a relatively
weak nonezpansive mapping with F := F(T)NVI(A,C)N EP(f) # 0. Let {z,}
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be a sequence generated by the following manner:

(

T9 = x € Cchosen arbitrary, Cy = C,

zn = He(anJzn + (1 — an)JTz,),

Yn = J Y 0pJzp + (1 — 6,)J (I 2, — BAZ,)),

u, € C such that f(un,y)+ i(y — Uy, JUu, — Jy,) >0, VyeC,
Cnt1 = {2z € Cu : ¢(z,un) < ¢(2,7a)},

o1 =g, Jz YR =>0.

(4.2.39)

Assume that {a,} and {0, } are the sequences in [0, 1] satisfying the restrictions:

(C1) 0 0.1, hmamp;, .., 0 = L;

(C2) {r,} C [a,00) for some a > 0; and

(C3) 0 < a, <1 and liminf, o an(l — a,) > 0.

Then {z,} converges strongly to pz.

Corollary 4.2.5. Let E be a uniformly convex and uniformly smooth Banach space

and C be a nonempty, closed and convex subset of E. Assume that A is an continu-

ous operator of C into E* satisfying conditions (2.3.4) and (2.3.5) and T : C — C

is a relatively weak nonezpansive mapping with F := F(T)NVI(A,C)NEP(f) # 0.

Let {z,} be a sequence generated by the following manner:

4

\

x9 = z € Cchosen arbitrary, Cy = C,

zn = He(anJz, + (1 — an)JTzy,),

Un = J N 0nJxn + (1 — 8,)Jc(J 2, — BAz,)), (4.2.40)
Crr = {2z € Co : ¢(z,yn) < d(2,2a)},

Tt =lle, o JJT 210,

Assume that {a,,} and {0, } are the sequences in [0, 1] satisfying the restrictions:
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(C1) 0 <6, < 1,limsup,_,, 0, <1,

(C2) 0 < o, <1 and liminf, o an(l — a,) > 0.
Then {z,} converges strongly to llgz.

Proof. Setting S = T, f(z,y) = 0 forall z,y € C and r, = 1 foralln > 0
in Theorem 4.2.2, we obtain that {z,} defined by (4.2.40) converges strongly to
pr. ) Od

Now, we present two examples of mappings which are relatively weak non-

expansive mappings and can be found in Kim and Lee’s results [66].

Example 4.2.6. [66, Example 3.13] Let U denote the unit ball in the space E = I7,
where 1 < p < co. Obviously, E is uniformly convex and uniformly smooth. Let

T : E — FE be defined by
T = (0, 13:12, A2x2, /\3.’E3, e )

for all x = (z;,%2,%3,...) €U, where )\, =1— ;1; for n > 2 (hence [[,2, \n = %)
Therefore,
(1). F(T) = {0=(0,0,0,...)}

(2). T is relatively nonexpansive and hence it is relatively weak nonexpansive.

Next, consider an example where F'(T) is not singleton.

Example 4.2.7. [66, Example 3.14] Let E = [P, where 2 < p < 00, and C = {z =
(z1,Ta,...) € X;0 <z, <1}. Then C is a closed convex subset of X. Note that

C is not bounded. Let S : C — C be defined by
Sz = (21,0, 23, \aT3, o4, - - -)

for all z = (z;,%2,23,...) € C, where A, =1 — ;}5 for n > 2 as in Example 4.2.6.

Then
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(1). F(S) ={p=(p1,0,0,...): 0<p < 1}
(2). S is relatively nonexpansive and hence it is relatively weak nonexpansive.

Remark 4.2.8. We observe that 0 = (0,0,...,) is a common fixed point of the

mapping T in Example 4.2.6 and the mapping S in Example 4.2.7.





