CHAPTER II

PRELIMINARIES

In this chapter, we give some notations, definitions, and some useful results

that will be used in the later chapter.

2.1 Normed spaces and Banach spaces.

Definition 2.1.1. [10] Let X be a linear space over the field K (R or C). A function
Il -]l : X — K is said to be a norm on X if it satisfies the following conditions:

1) llzll > 0,Vz € X;

2) llzll =0 &z =0;

3) lz +yll < ll=ll + llyll, Yz, y € E;

4) ||az|| = |af||z||,Vz € E and Va € K.

We use the notation || - || for norm.

Definition 2.1.2. [10] Let (X, || - ||) be a normed space.

1) A sequence {r,} C X is said to converge strongly in X if
there exists z € X such that nllrgo llzn —z|| = 0. That is, if for any € > 0 there exists
a positive integer N such that ||z, — z|| < e,Vn > N. We often write nlg{.lo B =
or T, — T to mean that z is the limit of the sequence {z,}.

2) A sequence {z,} C X is said to be a Cauchy sequence if for
any € > 0 there exists a positive integer N such that ||z, — z,|| <€,V m,n > N.
That is, {z,} is @ Cauchy sequence in X if and only if |z, —z,|| — 0 as m,n — oo.

3) A sequence {z,} C X issaid to be a bounded sequence if there

exists M > 0 such that ||z,|| < M,Vn € N.

Definition 2.1.3. [10] A normed space X is called to be complete if every Cauchy

sequence in X converges to an element in X.



Definition 2.1.4. [10] A complete normed linear space over field K is called a

Banach space over K

Definition 2.1.5. [10] Let X and Y be linear spaces over the field K.

1) A mapping T : X — Y is called a linear operatorif T'(z+y) =
Tz + Ty and T(az) = aTz,Vz,y € X, and Va € K.

2) A mapping T : X — K is called a linear functional on X if

T is a linear operator.

Definition 2.1.6. [10] Let X and Y be normed spaces over the field K and T :
X — Y a linear operator. T is said to be bounded on X, if there exists a real

number M > 0 such that ||T(z)|| < M||z|,Vz € X.

Definition 2.1.7. [10] Let X and Y be normed spaces over the field K, T : X — Y
an operator and zo € X. We say that T is continuous at z if for every € > 0 there
exists & > 0 such that ||T(z) — T(zo)|| < € whenever ||z — zo]| < 6 and z € X. If

T is continuous at each z € X, then T is said to be continuous on X.

Definition 2.1.8. [11] Let X be a normed space, {z,} C X and f : X — (—00,00].
Then f is said to be

1) lower semicontinuous on X if for any zo € X,
f(zo) < liminf, .« f(z,) whenever z,, — z.

2) upper semi (or hemi) continuous on X if for any zo € X,
limsup,, . f(z.) < f(zo) whenever z,, — z.

3) weakly lower semicontinuous on X if for any zy € X,
f(zo) < liminf,_, f(z,) whenever z, — zo.

4) weakly upper semicontinuous on X if for any zo € X,

limsup,,_,, f(z.) < f(zo0) whenever z,, — zo.

Definition 2.1.9. [10] Let X be a normed space. A mapping T : X — X is said

to be Lipschitzian if there exists a constant k£ > 0 such that for all z,y € X,

Tz — Tyl < kllz —yl|- (2.1.1)



The smallest number k for which (2.1.1) holds is called the Lipschitz constant of

T and T is called a contraction (nonezpansive mapping) if k € (0,1) (k=1).

Definition 2.1.10. [10] An element = € X is said to be

1) a fized point of a mapping T : X — X provided T'r = z.

2) a common fized point of two mappings S,T : X — X pro-
vided Sz = x = T'z. The set of all fixed points of T is denoted by F(T').

Theorem 2.1.11. (Banach contraction principle, [10]) Every contraction mapping

T defined on a Banach space X into itself has a unique fized point z* € X.

Definition 2.1.12. [10] Let X be a normed space. Then the set of all bounded

linear functionals on X is called a dual space of X and is denoted by X*.

Definition 2.1.13. [10] A normed space X is said to be reflezive if the canonical
mapping G : X — X** (i.e. G(z) = g, for all z € X where g.(f) = f(z) for all

f € X*) is surjective.
Definition 2.1.14. [11] A Banach space X is said to be strictly convez if || 52| < 1

for all z,y € X with ||z|| =|ly]| =1 and z # y

Definition 2.1.15. [12] A Banach space X is said to be uniformly convez if for
each 0 < £ < 2, there is § > 0 such that Vz,y € X, the condition ||z| = ||ly|| = 1,

and ||z — y|| > e imply [|[%5¥]| < 1-4.

Definition 2.1.16. [12] Let X be a Banach space. Then the modulus of convez-
ity of E is § : (0,2] — [0, 1] defined as follows:

8() = inf {1 ~

r+y
2

Nzl <1, Iyl < L, llz — ol = a}.

Theorem 2.1.17. [12] Let X be a Banach space. Then X is uniformly convez if
and only if () > 0 for all € € (0,2].

Definition 2.1.18. [11] Let X be a Banach space and S = {z € X : ||z = 1}.

Then X is said to be smooth if the limit

e+ tyl —
t—0 t

(2.1.2)



exists for all z,y € S. It is also said to be uniformly smooth if the limit (2.1.2) is

attained uniformly for z,y € S.

Remark 2.1.19. [11] 1) X is uniformly convex if and only if X* is uniformly
smooth.

2) X is smooth if and only if X* is strictly convex.

Definition 2.1.20. [11] Let X* be dual space of a Banach space X. The mapping
J : X — X* defined by

J(z) = {z* € X : (z*,z) = ||z||* = ||=*||*}, for all z € X,
is called the duality mapping of X.

Lemma 2.1.21. [11] Let X be a strictly convez, smooth, and reflerive Banach
space, and let J be the duality mapping from X into X*. Then J~! is also single-

valued, one-to-one, and surjective, and it is the duality mapping from X* into X.
Lemma 2.1.22. [13] Let X be a reflezive Banach space and X* be strictly convez.
(1) The duality mapping J : X — X* is single-valued, surjective and bounded.

(12) If X and X* are locally uniformly convez, then J is a homeomorphism, that

is, J and J~! are continuous single-valued mappings.

Definition 2.1.23. [14] Let p be a fixed real number with p > 1. A Banach
space X is said to be p-uniformly convez if there exists a constant ¢ > 0 such that

d(g) > ce? for all € € (0,2].

Definition 2.1.24. [11] For each p > 1, the generalized duality mapping J, : X —
2X" is defined by

Jpo(z) = {z" € X* : {z,2") = |l=|”, ll="|| = l|=”~"} (2.1.3)

forall z € X.



Remark 2.1.25. [11] 1) J = J; is called the normalized duality mapping. If X is
a Hilbert space (the next section), then J = I, where I is the identity mapping.
2) If X is uniformly smooth, then J is uniformly norm-to-norm

continuous on each bounded subset of E.

Definition 2.1.26. [11] Let S(E) = {z € E : ||z|| = 1} denote the unit sphere of

a Banach space F. A Banach space F is said to have

e a Gateaur differentiable norm (we also say that E is smooth), if the limit

t =
L lz e+ tyll =

i @19

exists for each z,y € S(F);

e a uniformly Gateauz differentiable norm , if for each y in S(E), the limit

(2.1.4) is uniformly attained for z € S(E);

e a Fréchet differentiable norm, if for each z € S(E), the limit (2.1.4) is attained

uniformly for y € S(E);

e a uniformly Fréchet differentiable norm (we also say that E is uniformly

smooth), if the limit (2.1.4) is attained uniformly for (z,y) € S(E) x S(E).
Definition 2.1.27. [11] A Banach space E is said to have Kadec-Klee property if
a sequence {z,} of E satisfying that z,, = z € E and ||z,|| — ||z||, then =, — z.

It is known that if E is uniformly convex, then F has the Kadec-Klee prop-

erty.

Definition 2.1.28. [15] Let X be a smooth Banach space. The function ¢ :
X x X — R is defined by

¢(z,y) = llal* — 2(z, Jy) + llylI” (2.1.5)

for all z,y € X.



Remark 2.1.29. (1) (lyll - llzll* < #(32) < (lyll + =), for all 5,y € X.
(2) o(z,y) = d(z,2) + d(2,9) + 2(x — 2,Jz — Jy), for all z,y,z € X.

(3) ¢(z,y) = (z,Jz — Jy) + (y — =, Jy) < llzlllJz — Jyll + lly — =zl|[|}y]], for all
r,y€ X.

(4) In a Hilbert space H, we have ¢(z,y) = ||z — y||* for all z,y € H.

Definition 2.1.30. [16] Let C' be a nonempty closed convex subset of a smooth,
strictly convex, and reflexive Banach space X, for any z € X, there exists a point
zo € C such that ¢(z, z) = minyec ¢(y, ). The mapping Il¢ : X — C defined by

Ilcz = xo is called the generalized projection.

The following are well-known results.

Lemma 2.1.31. [17] Let E be a reflexive, strictly convex and smooth Banach space,

let C be a nonempty closed convez subset of E and let x € E. Then

oy, lez) + ¢(llcz, 7) < By, )
for ally € C.

Lemma 2.1.32. [16] Let C be a nonempty closed convex subset of a smooth Banach
space X, let x € X, and let xyg € C. Then, zo = licz if and only if (xo — y, Jz —
Jxo) 2 0 for ally € C.

Definition 2.1.33. [17] Let X be reflexive Banach space with its dual X* and K
be a nonempty, closed and convex subset of X. The operator 7 : X* — K defined

by
(") ={ee K : V(z",2) = 1glf( V(z*,y)}, for all z* € X*, (2.1.6)
Yy

is said to be a generalized projection operator. For each ¢ € X*, the set mx(z*) is

called the generalized projection of x* on K.
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Lemma 2.1.34. [17] Let X be a reflezive Banach space with its dual X* and K be

a nonempty closed convex subset of X, then the following properties hold:

(i) The operator my : X* — 2X is single-valued if and only if X is strictly convez.

(11) If X is smooth, then for any given ¢ € X*,z € ngz* if and only if (x* —
J(z),z—y) >0, Vye K.

(1z) If X is strictly convez, then the generalized projection operator mg : X* — K

18 continuous.

Definition 2.1.35. [18] Let C be a nonempty closed convex subset of a smooth,
strictly convex, and reflexive Banach space X, let T" be a mapping from C into
itself, and let F'(T') be the set of all fixed points of 7. Then a point p € C is said
to be an asymptotic fired point of T if there exists a sequence {z,} in C converging
weakly to p and lim,, ., ||z, — Tz,|| = 0. We denote the set of all asymptotic fixed
points of T' by F(T).

Definition 2.1.36. [18] A mapping T from C into itself is called relatively nonez-
pansive mapping if the following conditions are satisfied:

(R1) F(T) is nonempty;

(R2) ¢(u,Tz) < ¢(u,z) for all uw € F(T) and z € C;

(R3) F(T) = F(T).

Definition 2.1.37. [18] A mapping T from C into itself is called relatively weak
nonezpansie if F(T) = F(T) and ¢(p, Tz) < ¢(p, z) for all z € C and p € F(T).

Definition 2.1.38. [18] A mapping T from C into itself is called relatively weak
quasi-nonezpansive if F(T) # 0 and ¢(p, Tt) < ¢(p,z) forall z € C and p € F(T).

Definition 2.1.39. [18] A mapping T : C — E* is said to be relazed n-§ monotone
if there exist a mapping n : C x C — FE and a function £ : E — R positively

homogeneous of degree p, that is, £(tz) = tP£(2) for all t > 0 and z € E such that

(Tz — Ty, 7z, y) = E(x—y), Vr,yel,
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Definition 2.1.40. [11] A sequence {z,} in a normed space is said to converge
weakly to some vector z if lim f(z,) = f(z) holds for every continuous linear
n—00

functional f.

Definition 2.1.41. [11] Let X be a normed space and let C' be a convex subset
of X. A function f : C — (—o00,00| is convez on X if for any z;,z, € X and

t €[0,1],
f(tzy + (1 —t)zs) <tf(zy) + (1 —1t)f(z2)

Definition 2.1.42. [19] A Banach space X is said to satisfy Opial’s condition if
any sequence {z,} in C, z, — = as n — oo implies that limsup,_, [|T. — z|| <

limsup,,_, ||» — y|| for all y € C with y # z.

Lemma 2.1.43. [20] Assume that a Banach space E has a weakly continuous
duality mapping J, with gauge .
(i) For all z,y € E, the following inequality holds:

(llz +yll) < 2(llzll) + (y, Jo(z +y))-
In particular, in a smooth Banach space E, for all z,y € E,
lz +yl* < llzll* +2{y, J(z + y))-

(1) Assume that a sequence {z,} in E converges weakly to a point x € E.

Then the following identity holds:

lim sup ®(|1z, — yll) = limsup &(|lz, — /) + ®(lly — zll), Va,y € E.
Theorem 2.1.44. [21] Let C be a nonempty convex subset of a smooth Banach
space E and let z € E and y € C. Then the following are equivalent:

(a) y is a best approzimation to x: y = Pcx.

(b) y is a solution of the variational inequality:

(y—2z,J(x—y)) >0forallzeC,
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where J is a duality mapping. The mapping Pc : E — C defined by Pex = y 1s

called the metric projection from E onto C.

Lemma 2.1.45. [13] Let E be a uniformly convez Banach space, let {an} be a
sequence of real numbers such that 0 < b < o, <c <1 for alln > 1, and let {z,}
and {y,} be sequences in E such that limsup,,_, ||z.|| < d, limsup,,_, [yl < d

and lim, o, ||anZn + (1 — @n)ynl| = d. Then lim, . ||z, — ya|| = 0.

Lemma 2.1.46. [22] Let C be a bounded, closed and convez subset of a uniformly
conver Banach space E. Then there exists a strictly increasing, convex and contin-

uous function v : [0,00) — [0,00) such that v(0) = 0 and

(“ Z Ai .’ZI, i/\iT.’L'i
i=1

foralln €N, {x;,72,...,T,} CC, {A1,A2,-.., A} C[0,1] with Y, \i =1 and

)< max_(llz; — zill - T — Tael)

1<j<k<n

nonezxpansive mapping T of C into E.

Definition 2.1.47. [23] Let {S,} be a sequence of mappings of C' into itself such
that (), F(Sn) # 0. Then {S,} is said to satisfy the NST-condition if for each

bounded sequence {z,} C C,
lim ||z, — Spza|| =0

implies wy,(zn) C (e F(Sn), where wy(2,) is the set of all weak cluster points of

{z}-

Lemma 2.1.48. [24] Let C be a nonempty, closed and convez subset of a uniformly
conver Banach space E and let {S,} be a family of nonezpansive mappings of C
into itself such that F = (oo, F(S,) # 0. Let {85} be a family of nonnegative

numbers with indices n,k € N with k < n such that

(1) Sop_BE =1 for every n € N;

(ii) lim,_o, 3% > 0 for every k € N
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and let T, = ol + (1 — an) Y 1, BESK for alln € N, where {a,} C [a,b] for some
a,b € (0,1) with a < b. Then, {T,} is a family of nonexpansive mappings of C
into itself with (o, F(T,) = F and satisfies the NST-condition.

Definition 2.1.49. [17] Let C be a nonempty, closed and convex subset of a Hilbert
space H. A mapping T : C — C is said to be A-strictly pseudocontractive mapping

if there exists a constant 0 < A < 1, such that

ITz - Tyl?> < llz—yl® + AT = T)z — (I =Tyl (2.1.7)

for all z,y € C.

Lemma 2.1.50. [25] Let E be a real 2-uniformly smooth Banach space andT : E —
E a \-strict pseudo-contraction. Then S := (1 —\/K?)I + \/K>T is nonezpansive
and F(T) = F(S).

Definition 2.1.51. [17] A countable family of mapping {T,, : C — C}2, is called a
family of uniformly e-strict pseudo-contractions, if there exists a constant € € [0,1)

such that
ITz — Tuyll? < llz — yll? +ll( = T)a — (I — Ty, Yo,y €C, Y >1.

Lemma 2.1.52. [26] Let E be a real 2-uniformly smooth Banach space with the

best smoothness constant K. Then the following inequality holds:
lz +yl? < ll=l” + 2y, Jz) + 2| Ky|l>, Vz,y € E.

Lemma 2.1.53. [27] Assume A is a strongly positive linear bounded operator on a
smooth Banach space E with coefficienty > 0 and 0 < p < ||A||™'. Then ||[I—pA|| <
1- p7.

Lemma 2.1.54. [28] Let E be a real p-uniformly convex Banach space and C a

nonempty closed convex subset of E. let T : C — C be a A-strict pseudocontraction
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with respect to p, and {&,} a real sequence in [0,1]. If T,, : C — C is defined by
Tor = (1 —&)x+&Tx, Vo € C, then for all z,y € C, the inequality holds

1Toz — Tayll” < llz = ylI” — (wp(én)ep — &MU = Tz — (I =Ty,

where ¢, is a constant in [29, Theorem 1]. In addition, if 0 < A < min{1, 27621,
§=1-2""2)c!, and &, € [0,£], then |Thz — Tyl < [lz — yl|, for all z,y € C.

Lemma 2.1.55. [30,31] Let C be a nonempty closed convex subset of a Banach
space E which has uniformly Gateauz differentiable norm, T : C — C a nonez-
pansiwe mapping with F(T) # 0 and f : C — C a k-contraction. Assume that
every nonempty closed convex bounded subset of C has the fized points property for
nonexpansive mappings. Then there erists a continuous path: t — x;, t € (0,1)

satisfying x, = t f(z,) + (1 —t)T'z;, which converges to a fized point of T ast — 0.

Lemma 2.1.56. [32] Let {z,} and {y.} be bounded sequences in a Banach space
E and {B,} a sequence in [0,1] with 0 < liminf,, . B, < limsup, 0, < 1.

Suppose that 11 = (1 — Bp)yYn + Buxn for alln > 0 and

lim sup(||yn+1 — yn” ™1 ”xn+l = mn”) <0.

n—o0

Then limp, o0 [|yn — za|| = 0.

Definition 2.1.57. [33] Let {S,} be a family of mappings from a subset C of
a Banach space E into E with N2, F(S,) # 0. We say that {S,} satisfies the
AKTT-condition if for each bounded subset B of C,

ZSIGJB || Sn+12 — Spzl|| < o0. (2.1.8)

Lemma 2.1.58. [34] Let E be a strictly convez Banach space. Let Ty and Ty be
two nonexpansive mappings from E into itself with a common fized point. Define
a mapping S by

Sz=AT1z+(1—- ATz, Vz€E,

where X is a constant in (0,1). Then S is nonezpansive and F(S) = F(T;)NF(T3).
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Lemma 2.1.59. [35] Let C be a nonempty closed convex subset of reflexive Banach
space E which satisfies Opial’s condition, and suppose that T : C — E s nonez-
pansive. Then the mapping I —T is demiclosed at zero, i.e., T, =z, T,—Tz, — 0

implies x = T'x.

Definition 2.1.60. Let M : E — 2F be a multi-valued maximal accretive map-

ping. The single-valued mapping J(a,) : F — E defined by
J(M,p)(u) =+ pM)_l(’u), VueE

is called the resolvent operator associated with M, where p is any positive number

and [ is the identity mapping.

Lemma 2.1.61. [36] The resolvent operator Jiu,,) associated with M is single-

valued and nonexpansive for all p > 0

Lemma 2.1.62. [37] If E is a reflexive, strictly conver and smooth Banach space,

then llg = J~L.

Lemma 2.1.63. [38,39] Let E be a 2-uniformly convezr Banach, then for all z,y

from any bounded set of E and jx € Jx,jy € Jy,
. c? 2
(& —y,jz = gy) 2 Sllz —yll (2.1.9)
where % is the 2-uniformly convezity constant of F.

Lemma 2.1.64. [40] Let E be a uniformly convex and smooth Banach space and
let {yn}, {za} be two sequences of E such that either {y,} or {z,} is bounded. If

lim,, 0 @(Yn, 2n) = 0, then lim,_ ||yn — .|| = 0.

Lemma 2.1.65. [17] Let C be a nonempty closed convez subset of a smooth Banach
space E and x € E. Then, xo = ¢z if and only if (xo — y, Jz — Jzo) > 0 for any
yeC.

Let E be a reflexive strictly convex, smooth and uniformly Banach space

and the duality mapping J from E to E*. Then J~! is also single-valued, one to
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one, surjective, and it is the duality mapping from E* to E. We need the following

mapping V which studied in Alber [17],
V(z,z*) = ||2|* - 2(z,z") + ||z]* (2.1.10)

for all z € E and z* € E*. Obviously, V(z,z*) = ¢(z,J ' (z*)). We know the

following lemma:

Lemma 2.1.66. [40] Let E be a reflezive, strictly convex and smooth Banach space,

and let V be as in (2.1.10). Then
V(z,z*) +2(J Y (z*) — z,¥") < V(z,z" + ")
for allz € E and z*,y* € E*.

Lemma 2.1.67. [41] Let E be a uniformly convez Banach space and B.(0) =
{z € E :||z|| <7} be a closed ball of E. Then there ezists a continuous strictly

increasing convez function g : [0,00) — [0,00) with g(0) = 0 such that
Iz + py + 42l < Ml + llyll? + vl — Mgl — wl), (2.1.11)

for all z,y,z € B,(0) and A\, u,y € [0,1] with A+ p+v=1.

An operator A of C into E* is said to be hemicontinuous if for all z,y € C,
the mapping F of [0,1) into E* defined by F(t) = A(tz + (1 — t)y) is continuous
with respect to the weak* topology of E*. We denote by N¢(v) the normal cone

for C at a point v € C, that is
Ne(v) = {z* € E* : (v —y,z%) > 0,Vy € C}.

Definition 2.1.68. [17] Let E be a Banach space with the dual space E* and let K
be a nonempty subset of E. Let T : K — E* and np : K x K — E be two mappings.
The mapping T : K — E* is said to be n-hemicontinuous if, for any fixed z,y € K,
the function f : [0,1] — (—00, 00) defined by f(t) = (T((1 —t)z + ty,n(z,y)) is

continuous at 0%.
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Lemma 2.1.69. [42] Let C be a nonempty closed convex subset of a Banach space
E and A a monotone, hemicontinuous operator of C into E*. Let T C E x E* be

an operator defined as follows:

Av + N¢(v), veC,
0, vé¢C.

Fu=

Then T is mazimal monotone and T~'0 = VI(A,C).

Lemma 2.1.70. [43] Let E be a uniformly convex and uniformly smooth Banach

space. We have
¢+ @l < lloll* +2(D, J (¢ + @), V¢ P€EE"

Lemma 2.1.71. [44] Let E be a strictly convex Banach space and C be a closed
convez subset of E. Let S1,Ss,...,Sy : C — C be a finite family of nonexpansive
mappings of C into itself such that the set of common fized points of Si,Sz,...,Sn

s nonempty. Let T1,T5,...,Tn : C — C be mappings given by

T;=(01-— o) +a;S;, foralli=1,2,...,N, (2.1.12)

where I denotes the identity mapping on C. Then, the finite family {T\,T>,...,Tn}
satisfies the following : NN, F(T;) = NI, F(S;) and

ﬂ,’ilF(T,) = F(TNTN_lTN_2 = Tl) = F(TlTN N Tz) — F(TN_lTN_2 2 'TlTN).

Lemma 2.1.72. [45](Demiclosedness Principle) Let X be a uniformly conver Ba-
nach space, let C be a nonempty closed convez subset of X and let T : C — X be
a nonezpansive mapping. Then, the mapping (I — T) is demiclosed on C, i.e., if
{z,} is weakly convergent to x and {(I — T)(zn)} is strongly convergent to y, then
(I-T)z=y.

Definition 2.1.73. [21] Let C be a nonempty closed convex subset of Banach

space E. Given a mapping ¥V : C — E.
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1. ¥ is said to be accretive if
(Vz — Uy, J(z—y)) =20
for all z,y € C.
2. ¥ is said to be a-strongly accretive if there exists a constant « > 0 such that
(¥z — Ty, J(z —y)) 2 allz — y||?
for all z;y € C.

3. U is said to be a-inverse-strongly accretive or a-cocoercive if there exists a

constant « > 0 such that
(Yo — Ty, J(z — y)) > || Pz — Ty|?
forall z,y € C.
4. U is said to be a-relazed cocoercive if there exists a constant o > 0 such that
(Vz — Wy, J(z — y)) > —a|| Tz — Vy|
for all z,y € C.

5. U is said to be (a, f)-relazed cocoercive if there exists positive constants «

and [ such that
(Y — Uy, J(z - y)) > (—a)[| ¥z — Ly* + Bllz - y*
for all z,y € C.

Definition 2.1.74. [11] Let D be a subset of C and P be a mapping of C into D.

Then P is said to be sunny if
P(Pz + t(z — Pz)) = Pz,

whenever Pz + t(x — Px) € C forx € C and t > 0.
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Definition 2.1.75. [11] A mapping P of C into itself is called a retraction if
P? = P. If a mapping P of C into itself is a retraction, then Pz = z for all
z € R(P), where R(P) is the range of P. A subset D of C is called a sunny
nonexpansive retract of C if there exists a sunny nonezrpansive retraction from C

onto D.

Lemma 2.1.76. [46] Let B be a nonempty subset of a Hausdorff topological vector
space X and let G : B — 2X be a KKM mapping. If G(z) is closed for all z € B

and is compact for at least one x € B, then (),.5 G(z) # 0.

Definition 2.1.77. [21] Let 7* be the norm topology of X* generated by the norm
Il - Il (of X*). Then there exists a topology denoted by o(X*, X) on X* such that
(X", X) C 7*. The topology o(X*, X) is called the weak® topology on X*.

2.2 Inner product spaces and Hilbert spaces.

Definition 2.2.1. [10] The real-valued function of two variables (-,-) : X x X — R
is called inner product on a real vector space X if it satisfies the following conditions:

1) {az + By, z) = alz,z) + By, z) for all z,y,2 € X and all
real number o and g;

2) (z,y) = (y,z) for all z,y € X; and

3) (z,z) > 0 for each z € X and (z,z) = 0if and only if z = 0.

A real inner product space is a real vector space equipped with an inner product.

Remark 2.2.2. [10] Every inner product space is a normed space with respect to

the norm ||z|| = z,z)|?,z,y € X.

Definition 2.2.3. [10] A Hilbert space is an inner product space which is complete

under the norm induced by its inner product.

Definition 2.2.4. [10] A sequence {z,} in a Hilbert space H is said to converge
weakly to a point z in H if lim, .(z,,y) = (z,y) for all y € H. The notation

T, — z 1s sometimes used to denote this kind of convergence.
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Lemma 2.2.5. [47] An inner product and the corresponding norm satisfy the

Schwarz inequality and the triangle inequality as follows.

(i) we have

I(z, )| < llzllllyll (Schwarz inequality)

(i1) That norm also satisfies

= +yll < lizll + Iyl (Triangle inequality)

Definition 2.2.6. A mapping B : H — H is called strongly positive bounded linear

operator on H if there is a constant ¥ > 0 with property
(Bz,z) > 7||z||* for all z € H. (2.2.1)

Definition 2.2.7. Let C be a subset of an inner product space X. A mapping

A : C — C is said to be monotone if
(Az — Ay,z—y) >0, Vx,y e C.

Definition 2.2.8. [10] A mapping A : C — H is called a-inverse-strongly monotone

if there exists a positive real number a such that

(Az — Ay, z —y) > a||Az — Ay||*,Vz,y € C.

It is clear that any a-inverse-strongly monotone mapping is %-Lipschitz

continuous.

Lemma 2.2.9. 33| Suppose that {T,,} satisfies AKTT-condition. Then, for each
y € C, {T,y} converses strongly to a point in C. Moreover, let the mapping T be
defined by

Ty = lim T,y for ally € C.

Then for each bounded subset B of C, lim,_,oosup,¢cp ||Tz — Thz|| = 0.



21

Lemma 2.2.10. [26] Assume that {a,} is a sequence of nonnegative real numbers

such that

Uni1 S (1 - '7n)an -+ 5117

where {7,} is a sequence in (0,1) and {5,} is a sequence such that

(8) 2omei Tn = 005

(b) limsup,_,o 0n/Yn <0 01 Y o2 |6a] < 00.

Then lim,, o, a, = 0.
Definition 2.2.11. A mapping F : H — H is called §-strongly monotone if there
exists a positive constant § such that

(Fz — Fy,z —y) > é||lz — y||>,Vz,y € H. (2.2.2)

Definition 2.2.12. A mapping F : H — H is called \-strictly pseudo-contractive

if there exists a positive constant A such that

(Fz— Fy,z—y) < |z -yl = Mi(x —y) — (Fz — Fy)|[2.Vz,y € H. (22.3)

The following lemma can be found in [48, Lemma 2.7]. For the sake of the

completeness, we include its proof in a Hilbert space’version.
Lemma 2.2.13. Let H be a real Hilbert space and F : H — H a mapping.
(i) If F 1is 0-strongly monotone and \-strictly pseudo-contractive with 6 + A > 1,

then I — F 1is contractive with constant /(1 — d)/A.

(i) If F is 0-strongly monotone and \-strictly pseudo-contractive with 6 + X > 1,
then for any fired number 7 € (0,1), I — 7F 1is contractive with constant

1—7(1 - VI —8)/N).
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Proof. (i) For any z,y € H, we have
M(I=F)z—(I-F)y|? < llz—y|*~ (Fz—Fy,z—y) < (1-9)||lz—~yl>,Vz,y € H.

Thus

—0
I(I - F)z— (I - F)y|| < lz —yll, for all z,y € H.

Since 6 + A > 1, we have 152 € (0,1). Hence I — F is contractive with constant

JA =)/

(i1) Since I — F is contractive with constant /(1 — d)/A, we have for any
€ (0,1),

le—y—r(Fz - Fy)l| = |l(1-7)—-y)+7[I-F)z— (- Fyl

IN

(1~T)II$—yII+TIII F)fv—(l Fyyl|

(1—Tl|$—y|I+T\/ III—yll
1
(1—7’(1— T))”x—y” for all z,y € H.

Hence I — 7F is contractive with constant 1 — 7(1 — /(1 — d)/]). a

IN

Lemma 2.2.14. Let S1,S,,...,Sy : C — C be a finite family of asymptotically

nonezpansive mappings with sequences {1+ k in)

p(n)} T'CSpectively’ suCh that kt(('r:L)) - 0

as n — oo. Then, there exists a sequence {h,} C [0,00) with h, — 0 as n — oo
such that

1S58z — SEVy|| < (1 + ha)llz — yll, ¥,y € C,

where p(n) = j+ 14 jN <n < (j+1)N,j =1,2,... and n = jN +i(n);i(n) €
{1,2,...,N}.

Proof. Define the sequence {h,} by h, = max{k;((:)) 1 < i(n) < N} and the

result follows immediately. O
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Lemma 2.2.15. [49] Let C be a nonempty closed convezx subset of a real Hilbert
space H. Let the mapping A : C — H be a-inverse strongly monotone and v > 0

be a constant. Then, we have
I = rA)z — (I = r AP < llz — yl> + r(r — 20)[| Az — Ay||?,Vz,y € C.
In particular, if 0 < r < 2a, then I —rA is nonezpansive.

Lemma 2.2.16. [50] Let S be an asymptotically nonexpansive mapping defined on
a bounded closed conver subset C of a Hilbert space H. If {z,} is a sequence in C

such that z, — z and ||Sz, — z,|| — 0 as n — oo, then x € F(S).

Lemma 2.2.17. [51] Assume {a,} is a sequence of nonnegative real numbers such

that

a1 < (1 —an)ap +0non+Ym, n>0

where {an}, {0} and {y,} are nonnegative real sequences satisfying the following

conditions

(i) {an} = [0’ 1]7 Zf:l Qp = OO;

(i) limsup,,_,., 0, < 0;

() Yoy T <05,

Then, lim,,_,o, a, = 0.

Definition 2.2.18. Let H be a real Hilbert space. A family S := {T'(s) : 0 <
s < 0o} of mappings of H into itself is called a nonezpansive semigroup on H if it

satisfies the following conditions:

(i) T(0)z = z for all z € H;

(ii) T(s+t) =T(s)T(t) for all 5, > 0;

(iii) [|T'(s)z —T(s)yll < ||z — y|| for all z,y € H and s > 0;
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(iv) for all z € H, s + T(s)z is continuous.

We denote by F(T'(s)) = {z € C : T(s)z = z} the set of fixed points of T'(s)
and by F(S) the set of all common fixed points of S, i.e. F(S) = Ns>oF (T'(s)). It
is known that F'(S) is closed and convex.

Lemma 2.2.19. [52] Let C be a nonempty bounded closed convex subset of Hilbert
space H and let (T(s))s>0 be a nonexpansive semigroup on C. Then, for every
h >0,

= 0.

%/0 T(s)ar:ds—T(h)—tl-/0 T(s)zds

lim sup
t—+00 pcC

Lemma 2.2.20. [47]For all z,y € H, the inequality ||z + y||* < ||z||> + 2(y,z + y)
holds.

We recall that, if C is a closed convex subset of real Hilbert space H, the
metric projection Pc : H — C is the mapping defined as follows: for each z € H,

Pcz is the only point in C with the property that ||z — Poz|| = inf,ec ||z — y||-

Lemma 2.2.21. [45] Let C be a nonempty closed convex subset of a real Hilbert
space H and let Pc be the metric projection from H onto C. Giwen x € H and

2€C,z=Pcx if and only if (x — z,y — 2) <0 for ally € C.

Lemma 2.2.22. [53] Let H be a Hilbert space and let A : H — H be a strongly
positive linear bounded self-adjoint operator with coefficient ¥ > 0. If0 < p <

A", then ||I — pAl| < 1 - p7.

Lemma 2.2.23. [53] Let C be a nonempty closed conver subset of a real Hilbert
space H, let f : H — H be an a-contraction (0 < a < 1) and let A be a strongly
positive linear bounded operator with coefficient 5. Then, for every 0 < v < z,

(A —7f) is a strongly monotone with coefficient (¥ — ay), i.e.

-y, (A=)~ (A-1f)y) = (F—ra)lz—yl?, VzyeH.
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2.3 Equilibrium problems and variational inequality problem.

Definition 2.3.1. Let C be a nonempty closed éonvex subset of a real Hilbert
space H. Let f be a bifunction of C' x C into R. The equilibrium problem is to

find z € C such that
f(z,y) >0forally e C. (2.3°1)

The set of solutions of (2.3.1) is denoted by EP(f).

For solving the equilibrium problem for a bifunction f : C x C — R, let

us assume that f satisfies the following conditions:

(A1) f(z,z)=0forall z € C;
(A2) f is monotone, that is, f(z,y) + f(y,z) <0 for all z,y € C;

(A3) forall z,y,z € C,

limsup f(tz + (1 —t)z,y) < f(z,y); (2.3.2)
t10
(A4) for all x € C, f(z,-) is convex and lower semicontinuous.

For example, let A be a continuous and monotone operator of C' into E* and define
f(z,y) = (Az,y — z),Vz,y € C.
Then, f satisfies (A1)-(A4).

Lemma 2.3.2. [8] Let C be a closed and convex subset of a smooth, strictly conver,
and reflexive Banach spaces E, let f be a bifunction from C x C to R satisfying
(A1) — (A4), and let r > 0 and x € E. Then, there exists z € C such that

1
fy)+—{y—2Jz—J2) 20, VyeC. (2.3.3)



26

Lemma 2.3.3. [54] Let C be a nonempty closed and convez subset of a real Hilbert
space H and G : C x C — R a function satisfying the condition (E1)-(E4). For
r>0andz € H, A mapping T, : H — C defined by
1
T (z)= {z eC:G(z,y)+—-({y—2z,z—z) >0,Vy € C}, T € H.

T

Then :
(i) T; is single-valued;
(i) T, is furmly nonezpansive, i.e.
|Toz — Tyl? < (T,x — Ty, z —y), Vz,y€ H;
(1i) F(T;) = EP(G);
(iv) EP(G) is closed and convez.

Lemma 2.3.4. [37] Let E be a uniformly convex and uniformly smooth Banach
space, let C' be a nonempty, closed and convez subset of E. Suppose A is an operator

of C into E* and that there ezists a positive number (3 such that

(Az, J ' (Jz — BAz)) >0, for allz € C, (2.3.4)
and

(Az,y) <0, VzeC, yeVI(ACQ). (2.3.5)

Then VI(A,C) is closed and conver.

Definition 2.3.5. Let A : C — E* be an operator. We consider the following

variational inequality:

Find z € C, such that (Az,y —z) >0, forallyeC. (2.3.6)
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A point o € C is called a solution of the variational inequality (2.3.6) if for every
y € C, (Azg,y — z¢) > 0. The solution set of the variational inequality (2.3.6) is
denoted by VI(A,C).

Lemma 2.3.6. [37] Let E be a reflexive, strictly convezx and smooth Banach space
with dual space E*. Let A be an arbitrary operator from Banach space E to E* and
B an arbitrary fized positive number. Then x € C C E 1is a solution of variational

inequality (2.3.6) if and only if x is a solution of the operator equation in E

z = lc(Jz — BAz).






