T140088

โรคยอดไหม้ของถั่วลิสงซึ่งเกิดจากเชื้อ peanut bud necrosis virus (PBNV) เป็นปัญหา หนึ่งซึ่งมีผลกระทบต่อการผลิตถั่วลิสงเมล็ดโตในประเทศไทย โดยเฉพาะถั่วลิสงที่ปลูกในฤดูแล้ง ถั่วลิสงที่เป็นโรคเมื่อระยะแรกของการเจริญเติบโตมักตายและไม่ให้ผลผลิต การใช้สารเคมีป้อง กันกำจัดเพลี้ยไฟไม่มีประสิทธิภาพในการควบคุมโรค การใช้พันธุ์ต้านทานเป็นวิธีสำคัญในการ ควบคุมโรคยอดไหม้ ดังนั้นการปรับปรุงพันธุ์ถั่วลิสงให้ต้านทานโรคยอดไหม้จึงมีความสำคัญ อย่างมาก การศึกษานี้มีวัตถุประสงค์เพื่อ (i) ประมาณค่าความสามารถในการรวมตัวทั่วไป (general combining ability-GCA) และความสามารถในการรวมตัวเฉพาะ (specific combining ability-SCA) สำหรับลักษณะความต้านทานต่อโรคยอดใหม้และลักษณะทางการเกษตร (ii) ประเมินค่าความสามารถในการถ่ายทอดลักษณะแบบกว้างสำหรับลักษณะความต้านทานโรคยอด ไหม้และลักษณะทางการเกษตร และ (iii) ศึกษาสหสัมพันธ์ระหว่างลักษณะความต้านทานต่อโรค ยอดไหม้และลักษณะทางการเกษตร ได้ทำการทดลองในสภาพไร่ 2 การทดลอง การทดลองที่ 1 ทำในที่นาเกษตรกรซึ่งมีประวัติการเป็นโรคยอดไหม้รุนแรง ในสภาพให้น้ำชลประทานหลังการ เก็บเกี่ยวข้าวในจังหวัดกาฬสินธุ์ ระหว่างเดือนมกราคมถึงเดือนพฤษภาคม พ.ศ. 2544 การ ทดลองที่ 2 ดำเนินการในสภาพไร่อาศัยน้ำฝนที่หมวดพืชไร่ คณะเกษตรศาสตร์ มหาวิทยาลัย ขอนแก่นในระหว่างเดือนมิถุนายนถึงเดือนกันยายน พ.ศ. 2544 เพื่อประเมินลักษณะทางการ เกษตร ใช้แผนการทดลองสุ่มสมบูรณ์ภายในกลุ่ม (randomized complete block design-RCBD) มี 10 ซ้ำ ในทั้งสองการทดลอง สิ่งทดลองประกอบด้วยถั่วลิสงพันธุ์พ่อต้านทานต่อโรคยอดไหม้ 4 พันธุ์ (IC 10, IC 34, ICGV 86031 และ ICGV 86388) พันธุ์แม่ผลผลิตสูง 4 พันธุ์ (KK 60-3, KKU 72-1, KKU 72-2 และ Luhua 11) ลูกผสมชั่วที่ 2 จำนวน 16 คู่ผสมที่ได้จากการผสมพันธุ์แบบ M x N mating design ของพันธุ์พ่อแม่และพันธุ์อ่อนแอเปรียบเทียบมาตรฐาน 2 พันธุ์ (Tainan 9 และ ข้อมูล ความรุนแรงของโรค และเปอร์เซ็นต์ต้น เป็นโรค 5 ครั้งในระหว่างการ เจริญเติบโต และสร้างพื้นที่ใต้กราฟแสดงพัฒนาการของโรค (area under disease progress curve-

T 140088

AUDPC) สำหรับลักษณะทางการเกษตรบันทึกข้อมูล น้ำหนักฝักต่อต้น น้ำหนักเมล็ดต่อต้น จำนวนฝักต่อต้น จำนวนเมล็ดต่อฝัก ขนาดเมล็ด และเปอร์เซ็นต์กะเทาะ

ผลการทดลองพบว่า พันธุ์พ่อแม่ต้านทานและอ่อนแอมีการแสดงออกของความต้านทาน แตกต่างกันทางสถิติทั้งการประเมินโดยเปอร์เซ็นต์ต้นที่เป็นโรค คะแนนความรุนแรงของโรค และ พื้นที่ใต้กราฟ พันธุ์ IC 10, IC 34 และ ICGV 86388 เป็นพันธุ์ต้านทานต่อโรคยอดไหม้ ในขณะที่ พันธุ์ Luhua 11 และ KKU 72-1 เป็นพันธุ์ที่มีลักษณะทางการเกษตรดี

สำหรับเปอร์เซ็นต์ต้นที่เป็นโรค คะแนนความรุนแรงของโรค และพื้นที่ใต้กราฟ พบว่า GCA effects มีนัยสำคัญทางสถิติซึ่งสะท้อนถึงความสำคัญของยีนที่แสดงออกแบบเป็นผลบวกใน ถั่วลิสงประชากรนี้ ในขณะที่ SCA effects ไม่มีนัยสำคัญ แสดงว่ายีนที่แสดงออกแบบไม่เป็นผล บวกไม่มีความสำคัญ พันธุ์ IC 10 และ IC 34 รวมตัวกับพันธุ์อื่น ๆ ได้ดี จึงเป็นพันธุ์ที่ควรแนะนำ ใช้เป็นแหล่งของความต้านทานต่อโรคยอดไหม้ สำหรับลักษณะทางการเกษตร GCA effects มีนัย สำคัญในทุกลักษณะ SCA effects มีนัยสำคัญสำหรับลักษณะน้ำหนักฝึกต่อต้น น้ำหนักเมล็ดต่อ ต้น และจำนวนฝึกต่อต้น โดยทั่วไปพันธุ์ Luhua 11 มีความสามารถในการรวมตัวทั่วไปดี คู่ผสม KKU 72-2 X ICGV 86031 มีค่าประมาณ SCA สูงที่สุดสำหรับลักษณะจำนวนฝึกต่อต้น น้ำหนัก ฝึกต่อต้น และน้ำหนักเมล็ดต่อต้น

ค่าประมาณความสามารถในการถ่ายทอดลักษณะคะแนนความรุนแรงของโรคประเมิน เมื่อ 60 วันหลังปลูกมีค่าต่ำ และหลายคู่ผสมมีค่าประมาณความสามารถในการถ่ายทอดลักษณะ สูงขึ้นเมื่อประเมินที่ 70 วันหลังปลูก แต่ไม่สูงพอสำหรับการคัดเลือกที่มีประสิทธิภาพ ค่าประมาณ ความสามารถในการถ่ายทอดลักษณะทางการเกษตรแตกต่างกันในระหว่างคู่ผสมและลักษณะทาง การเกษตรและโดยทั่วไปมีค่าประมาณต่ำ แต่อย่างไรก็ตาม มีหลายคู่ผสมมีค่าประมาณความ สามารถในการถ่ายทอดลักษณะจำนวนฝักต่อต้นสูง คู่ผสม KK 60-3 X ICGV 86388 มีค่า ประมาณความสามารถในการถ่ายทอดลักษณะสูงสำหรับลักษณะน้ำหนักฝักต่อต้น (0.54) จำนวน ฝักต่อต้น (0.63) และเปอร์เซ็นต์กะเทาะ (0.65) และคู่ผสม Luhua 11 X ICGV 86031 มีค่า ประมาณความสามารถในการถ่ายทอดลักษณะสูงสำหรับลักษณะน้ำหนักฝักต่อต้น (0.54) น้ำหนัก เมล็ดต่อต้น (0.54) และ จำนวนฝักต่อต้น (0.65) ลักษณะเปอร์เซ็นต์ต้นที่เป็นโรค คะแนนความ รุนแรงของโรค และ พื้นที่ใต้กราฟมีสหสัมพันธ์ต่อกันสูงแต่ทั้งสามลักษณะมีสหสัมพันธ์ต่ำกับ ลักษณะทางการเกษตรทุกลักษณะ ลักษณะทางการเกษตรที่มีสหสัมพันธ์ต่อกันสูงคือ จำนวนฝัก ต่อต้น น้ำหนักฝักต่อต้น และน้ำหนักเมล็ดต่อต้น

Abstract

TE140088

Peanut bud necrosis disease (PBND) caused by peanut bud necrosis virus (PBNV) is, among other factors, a major constrain of the production of large-seeded peanut in Thailand especially in dry season. Infected plants at early growth stage usaully die and yield no pod. Chemical control of thrips vector is not effective. The use of resistant cultivars has been proven to be an important component of the disease control. Therefore, the development of PBNV resistant cultivars of peanut has assumed importance. The objectives of this study were to (i) estimate general combining ability (GCA) and specific combining ability (SCA) effects for PBNV resistance parameters and agronomic traits, (ii) evaluate broad sense heritability for PBNV resistance parameters and agronomic traits and (iii) investigate phenotypic correlations among PBNV resistance parameters and agronomic traits. Two separate but similar field experiments were conducted. One experiment was carried out on farmer's field after rice under irrigated conditions in Kalasin province during January to May 2001, where PBND was prevalent in previous years. Another experiment was undertaken at experimental farm of Khon Kaen University under rainfed conditions with supplemented irrigation during June to September 2001, where agronomic traits were evaluated. A randomized complete block design with 10 replications was used for each experiment and treatments consisted of 4 PBNV resistance male parents (IC 10, IC34, ICGV 83031 and ICGV 86388), 4 high yield female parents (KK 60-3, KKU 72-1, KKU 72-2 and Luhua 11), 16 F₂ crosses from M x N mating design and 2 susceptible checks (Tainan 9 and JL 24). For disease assessment at 5 diffrerent dates during growth period, observations were made on disease score and disease incidence (percent infected plants). Area under disease progress curve (AUDPC) was also calculated. For agronomic traits, data were

recorded on pod weight/plant, seed weight/plant, pod number/plant, seed number/pod, seed size and shelling percentage.

The results showed that significant differences were found between susceptible group and resistant group of peanut lines as identified by disease incidence, disease score and AUDPC. IC 10, IC 34, ICGV 86031 and ICGV 86388 were identified as good genotypes for resistance to PBNV, while Luhua 11 and KKU 72-1 are good genotypes for agronomic traits.

The significant GCA effects observed for disease incidence, disease score and AUDPC reflected the importance of additive gene actions in this population. Lack of significant SCA effects revealed the absence of non-additive gene actions. IC 10 and IC 34 (giving high negative GCA estimates) were identified as good general combiners for PBNV resistance traits and could be used as source of PBNV resistance. GCA effects for all agronomic traits were also significant. SCA effects were significant only for pod weight/plant, seed weight/plant and pod number/plant. In general, Luhua 11 (giving high positive GCA estimates) was the best general combiner for agronomic traits. Cross KKU 72-2 X ICGV 86031 showed highest SCA estimates for pod weight/plant and seed weight/plant and pod number/plant.

Estimates of heritability for PBND score were low at 60 days after sowing (DAS) and seemed to be improved at 70 DAS. However, the heritability estimates were not high enough for effective selection. Estimates of heritability for agronomic traits varied over crosses and traits and generally low. However, many crosses showed high heritability estimates for pod number/plant. Cross KK 60-3 X ICGV 86388 showed high heritability estimates for pod weight/plant (0.54), pod number/plant (0.63) and shelling percentage (0.65) and Luhua 11 X ICGV 86031 had high heritability estimates for pod weight/plant (0.54), seed weight/plant (0.54) and popd number/plant (0.65). Strong associations were found among PBNV resistance parameters but they had low correlation with all agronomic traits. High correlation coefficients were found among pod weight/plant, seed weight/plant and pod number/plant.