

บรรณที่ รัชตภูมิ 2551: การเพิ่มประสิทธิภาพของการส่งต่อระหว่างจุดเชื่อมต่อภายในเครือข่ายและไร้สายด้วยการใช้ข้อมูลประวัติการเคลื่อนที่ ปริญญาวิศวกรรมศาสตรมหาบัณฑิต (วิศวกรรมคอมพิวเตอร์) สาขาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์ ประธานกรรมการที่ปรึกษา: รองศาสตราจารย์อนันต์ พลเพิ่ม, Ph.D.

52 หน้า

เครือข่ายไร้สาย 802.11 ได้ถูกนำมาใช้งานแพร่หลาย เนื่องจากมีอิสระในการเคลื่อนที่, ค่าใช้จ่ายของอุปกรณ์ที่ต่ำและไม่เสียค่าบริการเพิ่มเติม นอกเหนือนี้ยังมีความเร็วที่สูงกว่าเทคโนโลยีไร้สายอื่นๆ เช่น GPRS หรือ CDMA เป็นต้น จากการออกแบบเริ่มต้นที่มุ่งเพื่อใช้งานรับส่งข้อมูลที่ไม่ใช่แบบเวลาจริง ซึ่งทนทานต่อการหน่วง (delay) และการพร่า (jitter) แต่เนื่องจากในปัจจุบันมีความนิยมในการใช้งาน VoIP (Voice over Internet Protocol) หรือ การประชุมทางไกล ซึ่งมีการรับส่งข้อมูลแบบเวลาจริง ซึ่งไม่ต่อการพร่าหรือการสูญเสียของข้อมูล ทำให้กระบวนการกับคุณภาพของเสียงหรือภาพที่ผู้ใช้งานได้รับ จากการส่งต่อเมื่อสถานีเคลื่อนที่ผ่านจากจุดเชื่อมต่อหนึ่งไปยังอีกจุดเชื่อมต่อหนึ่ง และเนื่องจากขั้นตอนการตรวจสอบซึ่งเป็นขั้นตอนแรกของการส่งต่อเป็นขั้นตอนที่ใช้เวลามากที่สุด จึงทำให้เวลารวมของขั้นตอนการส่งต่อมากจนกระบวนการกับข้อมูลประเภทเวลาจริง นอกเหนือนี้วิธีเลือกจุดเชื่อมต่อแบบเดิมพิจารณาเลือกจุดเชื่อมต่อที่มีค่าความแรงสัญญาณสูงที่สุด ซึ่งในบางกรณีไม่ใช่ทางเลือกที่ดีที่สุด ทำให้เกิดการส่งต่อมากเกินความจำเป็น ทำให้ยังเพิ่มโอกาสที่จะเกิดการกระบวนการกับบริการ

วิทยานิพนธ์ชุดบันทึกนำเสนอวิธี Receive signal strength Slope with Neighbor Graph (RSNG) เพื่อลดเวลาที่ใช้ในการกระบวนการส่งต่อแบบเดิม โดยใช้การตรวจหาล่วงหน้าเพื่อวัดค่าความแรงสัญญาณที่เปลี่ยนแปลงไป ทำให้ทราบแนวโน้มการเคลื่อนที่ของสถานีร่วมกับกราฟเพื่อนบ้านที่เก็บค่าน้ำหนักของความเป็นไปได้ในการส่งต่อไปยังจุดเชื่อมต่อรอบข้าง ซึ่งสร้างจากประวัติการส่งต่อของแต่ละสถานีร่วมกัน เพื่อนำมาใช้เลือกจุดเชื่อมต่อที่เหมาะสมที่สุด จึงสามารถลดเวลาจากขั้นตอนการตรวจหาร่วมทั้งเพิ่มความถูกต้องในการเลือกจุดเชื่อมต่อเมื่อเทียบกับวิธีการแบบเดิม

นภก กก ท.ก.ก.
ลายมือชื่อผู้สืบ
ลายมือชื่อผู้สืบ

ลายมือชื่อประธานกรรมการ

13 / พค. / 2551

Uthawit Ratchatapoom 2008: Improving Handoff Performance of Wireless LAN with Movement Path History. Master of Engineering (Computer Engineering), Major Field: Computer Engineering, Department of Computer Engineering. Thesis Advisor: Associate Professor Anan Phonphoem, Ph.D. 52 pages.

The IEEE 802.11 Wireless LAN is now widely deployed. It offers user's mobility with low-cost devices and without monthly fee. Furthermore, it can transfer data faster than other current wireless technologies such as GPRS and CDMA. Originally, WLAN is designed for supporting bulk data transfer which is not affected by delay and jitter. Due to the popularity of VoIP or video conference which is sensitive to delay and jitter, the quality of voice and sound becomes critical, especially when stations handoff from an access point to the others. The first and most time consuming in the handoff process is the probing process. Traditional handoff processes will handle this problem by selecting the highest signal strength from an access point, which might not be an optimal solution. Also, the mechanism may cause unnecessary handoffs which affect the application's quality of service.

In this research, a new mechanism called "Received Signal Strength Slope with Neighbor Graph (RSNG)" has been proposed. The objective is to reduce the handoff time caused by the traditional handoff process. The mechanism uses the pre-scanning technique to determine the change of signal strength level corresponded to the moving direction of a station. The mechanism also implements the neighbor graph technique that maintains the handoff history for predicting the next suitable access point. The results have shown that the proposed mechanism can reduce the handoff time and correctly predict the next suitable access point with high probability.

อานัน พอนฟู
Student's signature

Thesis Advisor's signature

13 ' May ' 2008