

ทำการศึกษาการตอบสนองของสตรอเบอร์ต่อการใส่เชื้อรากอับสกูลาร์ในคอร์ไรชา โดยปลูกด้วยต้นสตรอเบอร์ที่ได้จากการเพาะเลี้ยงเนื้อเยื่อ 3 พันธุ์ ได้แก่ พันธุ์พระราชทานเบอร์ 50 โถโยโนกะ และเนียวโซ แต่ละสายพันธุ์ของสตรอเบอร์ใส่เชื้อรากอับสกูลาร์ในคอร์ไรชา 2 ชนิด คือ D₃ และ KN เปรียบเทียบกับการไม่ใส่เชื้อ หลังจากการปลูกจนพ่นปุ๋ย 2 ชนิด ได้แก่ ปุ๋ยเคมีในอัตรา ¼ เท่าของอัตราแนะนำ และปุ๋ยน้ำหมักจากปลาที่เลือดจาก 100 เท่า ทำการปลูกในกระถางทดลอง โดยใช้ดินที่มีปริมาณของฟอสฟอรัสต่ำผสานกับแกลบที่ผ่านการอบย่างด้วยสารเคมีบาร์ชามิจิ วางแผนการทดลองแบบ 3x3 factorial in RCBD ทำ 4 ชั้น สำหรับการทดลองในพื้นที่เกย์ตระกร ได้ทำการผลิตไหสตรอเบอร์โดยใส่หัวเชื้อรากอับสกูลาร์ในคอร์ไรชา D₃ และ KN ในอัตรา 500 ศปอร์ต่อไหส และไม่ใส่เชื้อ ใช้วัสดุรับไหสที่เป็นดินจากแหล่งผลิตไหสและดินที่มีฟอสฟอรัสต่ำ นำไหสที่ได้จากการผลิตดังกล่าวไปปลูกในไร่เกย์ตระกรอ่างฝาด จังหวัดเชียงใหม่ 4 แห่ง เพื่อศึกษาการผลิตผลสด การปลูกในสภาพไร่ปุ๋ย 2 ระดับ คือ ใส่ปุ๋ยในอัตราที่เกย์ตระกรใช้และใส่ยี่ห้ออัตรา 12 กก. N ต่อไร่ ผลการทดลองพบว่า สตรอเบอร์ที่ปลูกในกระถางซึ่งใช้ดินที่มีปริมาณฟอสฟอรัสต่ำและผ่านการอบย่างด้วยเชื้อในดิน การใส่เชื้อ D₃ และ KN ทำให้สตรอเบอร์พันธุ์พระราชทานเบอร์ 50 มีความหนาแน่นในการติดเชื้อในรากดีกว่าการไม่ใส่เชื้อย่างมีน้ำยำสำคัญ แต่ไม่ทำให้สตรอเบอร์พันธุ์นึนน้ำหนักแห้ง การสะสนมในโตรเจน ฟอสฟอรัสและโปเตสเซียมของส่วนที่อยู่เหนือดินแตกต่างจากการไม่ใส่เชื้อในทุกระดับของการใส่ปุ๋ย สำหรับพันธุ์โถโยโนกะ การใส่หัวเชื้อทั้ง 2 ชนิดให้ผลไม่แตกต่างกันและการใส่หัวเชื้อทั้ง 2 ชนิดทำให้สตรอเบอร์มีความหนาแน่นในการติดเชื้อในรากมากกว่าการไม่ใส่เชื้อย่างมีน้ำยำสำคัญ ส่วนการใส่ปุ๋ยไม่มีอิทธิพลต่อการติดเชื้อ แต่ทำให้ต้นสตรอเบอร์มีน้ำหนักแห้งและการสะสนมในโตรเจน ฟอสฟอรัสและโปเตสเซียมเพิ่มขึ้น การใช้หัวเชื้อทั้งสองชนิดให้ผลดีกว่าการไม่ใส่เชื้อต่อมีการใส่ปุ๋ยหรือใส่เชื้อร่วมกับการใส่ปุ๋ยเคมีในอัตรา ¼ เท่าของอัตราแนะนำ ส่วนการใส่ปุ๋ยน้ำหมัก การใช้หัวเชื้อทั้งสองชนิดให้ผลไม่แตกต่างจากการไม่ใส่เชื้อ ในการพืชของพันธุ์เนียวโซ การใช้เชื้อได้ผลดีกว่าการไม่ใส่เชื้อย่างมีน้ำยำสำคัญต่อมีการใส่เชื้อร่วมกับการใส่ปุ๋ยน้ำหมักเท่านั้น โดยการใช้เชื้อ D₃ ให้ผลดีกว่าเชื้อ KN ในเรื่องของความหนาแน่นในการติดเชื้อในราก แต่ไม่ทำให้น้ำหนักแห้งและการสะสนมไปเตสเซียมของส่วนที่อยู่เหนือดินเมื่อใส่เชื้อทั้ง 2 ชนิดแตกต่างกัน และเชื้อทั้ง 2 ชนิดให้ผลดีกว่าการไม่ใส่เชื้อย่างมีน้ำยำสำคัญ

สำหรับผลการทดลองในพื้นที่เกย์ตระกร พบว่า การใช้ดินที่มีฟอสฟอรัสต่ำเป็นวัสดุรองไหสร่วมกับการใส่เชื้ออาบสกูลาร์ในคอร์ไรชา ทำให้ความหนาแน่นในการติดเชื้อรากอับสกูลาร์ในคอร์ไรชาในรากไหสเพิ่มขึ้นจากการไม่ใส่เชื้อประมาณ 4.5-5 เท่า และเมื่อใช้ดินในพื้นที่ผลิตไหสเป็นวัสดุปลูก การใส่เชื้อทำให้ความหนาแน่นในการติดเชื้อเพิ่มขึ้น 2.5-2.7 เท่า ส่วนผลผลิตผลสดของสตรอเบอร์ในพื้นที่ของเกย์ตระกรในอ่างฝาด พบว่า ความแตกต่างอย่างมีน้ำยำสำคัญของผลผลิตผลสดขึ้นอยู่กับพื้นที่ที่ใช้ทดสอบมีน้ำยำสำคัญ แต่วิธีการผลิตไหสไม่ทำให้ผลผลิตแตกต่างในทางสถิติไม่ว่าจะใช้ปุ๋ยในอัตราของเกย์ตระกรหรืออัตราแนะนำ

The responses of strawberry to arbuscular mycorrhizal fungi inoculation were evaluated by pot experiment and on-farm trial. Tissue cultured planlets of strawberry cultivars Royal Project no. 50, Toyonoka and Nyoho were grown in pots containing mixing of Basamid G fumigated mixture of low P soil and rice husk. Two mycorrhizal inoculi D₃ and KN were inoculated to each strawberry cultivars. Uninoculation of the fagus was investigated as a control treatment. Chemical fertilizer at $\frac{1}{4}$ of the recommended rate and 100 times diluted organic liquid fertilizer made from fermented fish were applied. Experimental design was 3x3 factorial in RCBD with 4 replications. On-farm trials were conducted in two steps ; runner and fruit production. Strawberry runners were produced at one of farmer field at Bor Kaew village, Samerng district Chiang Mai province. The soil from the farmer's at Bor Kaew and low P soil were used for runner producing. Each soil was inoculated with D₃ and KN arbuscular mycorrhizal inoculants at 500 spores per runner. Uninoculated with mycorrhizal fungi was a control treatment. The runners obtained were used for

fruit production in 4 different locations in Fang district, Chiang Mai Province. The treatments fertilizer were applied according to the farmer's practice of each farmer and urea at 12 kg N/rai for fruit production trial. Results found that the Royal Project no.50 cultivar, D₃ and KN inoculation increased significantly the percentage of intensity of root colonization by arbuscular mycorrhizal fungi compared to uninoculated control treatment but no significant effects of mycorrhizal inoculated treatments on shoot dry weight and N, P and K uptake were observed for all fertilizer levels. For Toyonoka cultivar, there was no significant difference between D₃ and KN treatments but both treatments had better root colonization by mycorrhiza fungi than uninoculated one. The fertilizer treatments had no significant influences on root colonization of mycorrhizal fungi in this cultivar but there were significant interaction effect between fertilizer and mycorrhizal treatments on shoot dry weight and N, P and K uptake of shoot. Significant beneficial effects of D₃ and KN treatments on dry weight and N, P and K uptake of shoot of Toyonoka cultivar as compared to uninoculated control were observed when only mycorrhizal fungi were inoculated or in combination with chemical fertilizer at $\frac{1}{4}$ of the recommended rate. When the bioextract of fish was used there was no significant difference between mycorrhizal treatments and uninoculated control on shoot and N, P and K uptake of shoot. In the case of Nyoho cultivar, the significant beneficial effects of mycorrhizal inoculation could be observed only when the bioextract was applied. D₃ inoculation treatment produced effect better than KN on root colonization intensity. However, D₃ and KN treatments did not differ significantly to each other for the effects on dry weight and K uptake of shoot and both treatments were significantly better than uninoculated control.

The on-farm trial indicated that arbuscular mycorrhizal inoculation together in the soil with low P increased the intensity of root colonization about 4.5-5 times over that of uninoculated control and about 2.5-2.7 times when the soil from the runner producing area was used. Due to wide variation among the tested fields, the significant differences of the total fresh fruit yields among the farmers' fields were observed. However, there were no significant effects of different runner producing methods on fruit yield of strawberry under both fertilizer application.