TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF FIGURES	ii
LIST OF ABBREVATIONS	iv
INTRODUCTION	1
OBJECTIVES	4
LITERATURES REVIEW	5
MATERIALS AND METHODS	26
RESULTS	40
DISCUSSION	76
CONCLUSION	80
LITERATURE CITED	81
APPENDICES	91
Appendix A	92
Appendix B	94
Appendix C	97
Appendix D	99
Appendix E	102
Appendix F	106
Appendix G	111
Appendix H	114
Appendix I	117
Appendix J	119
Appendix K	123
CIRRICULUM VITAE	

LIST OF FIGURES

Figure		Page
1	Domestic duck	6
2	Structure of TCR complex	15
3	Structure of filamentous phage	19
4	Agarose gel electrophoresis of total RNA extracted from duck	41
	PBMC	
5	The nucleotide sequences of forward and reverse primers	43
6	Agarose gel electrophoresis of PCR product	44
7	Agarose gel electrophoresis of DNA plasmid	46
8	The chromatogram of DNA insert from pGEM T-easy	48
9	Nucleotide sequences of DNA insert	49
10	A BLAST search across multiple DNA databases by using	
	BLASTN software	50
11	Multiple sequence aligment of CD3ε encoding DNA sequences	
	from JM 109 E. coli clone	51
12	A BLAST search across multiple amino acid databases by using	
	BLASTP software	52
13	Multiple sequence aligment of CD3ε protein from DH5α E. coli	
	clone	53
14	The plasmid pattern of pTrcHis2A containing CD3ε digested with	
	Kpn I and Hind III endonuclease sites	55
15	SDS-PAGE-patterns of CD3ε recombinant protein	57
16	The Western blot-pattern of CD3ε recombinant protein	58
17	The SDS-PAGE-patterns of CD3ε recombinant protein purification	60
	by using affinity column	
18	The Western blot analysis of CD3ε recombinant protein incubated	
	with HRP-conjugated nickel probe	61

LIST OF FIGURES (Continued)

Figure		Page
19	Mass spectra of protein at 22 kDa obtain from MALDI-TOF	
	analysis	63
20	The amino acid sequences of CD3ε recombinant protein from	
	MALDI-TOF analysis	64
21	Agarose gel electrophoresis of PCR product in screening of	
	HB2151 E. coli clone carrying scFv gene	66
22	The Western blot analysis of ScFv recombinant protein incubated	
	with HRP-conjugated anti-E tag	67
23	ScFv ELISA results of ScFv antibodies from HB2151 <i>E. coli</i> clones	
	against the soluble part of CD3ε recombinant protein	69
24	Western blot analysis of ScFv antibodies incubated with the soluble	
	part of CD3ε recombinant protein	70
25	The Western blot analysis of ScFv antibodies incubated with lysate	
	of duck PBMC	72
26	Chart indicated OD ₄₉₂ of polyclonal antibodies against CD3ε	
	recombinant protein versus reciprocal titers of polyclonal	
	antibodies.	74
27	The Western blot analysis of polyclonal antibody incubated with	
	the soluble part of CD3ε recombinant protein.	75
Appendi	x Figure	
I1	The nucleotide sequences of R1 and R2 primers	118
J1	pGEM®-T Easy Vector circle map	120
J2	pTrcHis2 Vector circle map	121
J3	pCANTAB 5E Vector circle map	122
K1	Transmembrane region of <i>Anas platvrhychos</i> CD3s	124

LIST OF ABBREVIATIONS

 $\times g$ = Acceleration gravity

 $^{\circ}$ C = Degree(s) Celsius

 $\mu g = Microgram(s)$

 $\mu l = Microliter(s)$

 $\mu m = Micrometer(s)$

B cell = Bursa produced cell

bp = Base pair(s)

BSA = Bovine serum albumin

cDNA = Complementary deoxyribonucleic acid

CDR = Complementary determining region

DC = Dendritic cell

DDW = Deionized distilled water

DEPC = Diethylpyrocarbonate

DNA = Deoxyribonucleic acid

dNTP = Deoxynucleotide triphosphate

DW = Distilled water

EDTA = Ethylenediamine tetraacetic acid

ELISA = Enzyme linked-immunosorbent assay

et al = et alli

FACS = Fluorescent-activated cell sorting

Fc = Fragment of crystallized

g = Gram(s)

LIST OF ABBREVIATIONS (Continued)

HPAI = Highly pathogenic avian influenza

HRP = Horseradish peroxidase

ICR = Institute cancer research

IPTG = Isopropyl-1-thio- β -D-galactopyranoside

kDa = Kilodalton(s)

kg(s) = Kilogram(s)

L(l) = = Liter(s)

LB = Luria Bertani (broth)

M = Mole

MALDI-TOF = Matrix-assisted laser desorption/ionization Time of

flight

mAmp = Milliampere(s)

mg = Milligram(s)

MHC = Majorhistocompatability

min = Minute(s)

ml = Milliliter(s)

mm = Millimeter(s)

mM = Millimolar(s)

Mr = Relative molecular mass

mRNA = Messenger ribonucleic acid

MW = Molecular weight

NC = Nitrocellulose membrane

LIST OF ABBREVIATIONS (Continued)

ng = Nanogram(s)

NK-T cell = Natural killer cell

nm = Nanometer(s)

OD = Optical density(-ies)

PB = Phosphate buffer

PBS = Phosphate buffered saline

PBS-T = Phosphate buffered saline containing Tween-20

PCR = Polymerase chain reaction

pH = Negative logarithm of hydrogen ion activity

PMFs = Peptide mass fingerprint

PPD = p-Phenylene-diamine dihydrochloride

RNA = Ribonucleic acid

RNase = Ribonuclease

rpm = Round(s) per minute

RT-PCR = Reverse transcription polymerase chain reaction

ScFv = Single Chain Variable Fragment

SDS = Sodium dodecyl sulfate

SDS-PAGE = Sodium dodecyl sulfate-polyacrylamide gel

electrophoresis

T cell = Thymus produced cell

TCR = T cell receptor

TEMED = N, N, N', N', -tetramethylenediamine

LIST OF ABBREVIATIONS (Continued)

 $U/\mu l$ = Unit(s) per microliter

U/g = Unit(s) per gram

UDW = Ultrapure distilled water

V = Volts

v/v = Volume by volume

VH = Heavy chain variable domain

VL = Light chain variable domain

w/v = Weight by volume

w/w = Weight by weight