

THESIS APPROVAL

GRADUATE SCHOOL, KASETSART UNIVERSITY

Master of Engineering (Chemical Engineering) DEGREE

Chemical Engineering Chemical Engineering DEPARTMENT FIELD Plastic pyrolysis with gas recycling in a fluidized bed reactor TITLE: Mr. Waranyou Tuntanatewin NAME: THIS THESIS HAS BEEN ACCEPTED BY THESIS ADVISOR Associate Professor Sunun Limtrakul, D.Sc. THESIS CO-ADVISOR Associate Professor Terdthai Vatanatham, Ph.D. DEPARTMENT HEAD Associate Professor Phungphai Phanawadee, D.Sc.) APPROVED BY THE GRADUATE SCHOOL ON DEAN

Associate Professor Gunjana Theeragool, D.Agr.)

THESIS

PLASTIC PYROLYSIS WITH GAS RECYCLING IN A FLUIDIZED BED REACTOR

WARANYOU TUNTANATEWIN

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering (Chemical Engineering) Graduate School, Kasetsart University 2010

Waranyou Tuntanatewin 2010: Plastic Pyrolysis with Gas Recycling in a Fluidized Bed Reactor. Master of Engineering (Chemical Engineering), Major Field: Chemical Engineering, Department of Chemical Engineering. Thesis Advisor: Associate Professor Sunun Limtrakul, D.Sc. 164 pages.

A pyrolysis process is a thermal degradation in absence of oxygen/air. Plastic pyrolysis may be a process for disposal of plastic waste with recovery of valuable liquid fuel-range hydrocarbons. However, pyrolysis is a high endothermic reaction, which is required heat supply to the system. A partial oxidation is an exothermic reaction. Therefore, combining pyrolysis with partial oxidation reaction is one of the challenges for saving energy in a plastic pyrolysis process. Recycling of the product gas is proposed to reduce inert gas usage and energy requirement. In the experiments of a semi batch reactor, the results showed that the presence of partial oxidation and gas recycling increases the temperature rising of 5-30 $^{\circ}C$ leading to reduction of liquid product by 5.80 %. On the other hand, the yield of gasoline increases by 8.35 %. A fluidized bed reactor was also introduced to test the applicability. The effects of LPG and air feed rates for combustion and plastic feed rate on the bed temperature were studied. Increasing of LPG and air feed rates increases the average reactor temperature. In addition, the effects of feed rate of secondary air for partial oxidation and feed rate of gas recycling on bed temperature profiles, production rate and product distribution were studied. Addition of partial oxidation has a significant effect on the reactor temperature and production rate. Increase of partial oxidation increases the system temperature in the range of $5-10^{\circ}C$. The present of partial oxidation can save energy of 0.70 %. Gas recycling can reduce the inert gas usage of 34.28 % and save the energy input of 5.47 %.

Student's signature

Thesis Advisor's signature

___/___/___

ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude and deep appreciation to my advisor, Assoc. Prof. Dr. Sunun Limtrakul for all the guidance, supervision, comments, discussions and invaluable suggestions throughout this project. She also gives me many good opportunities. This work would not be accomplished without her help. I would like to thank Assoc. Prof. Therdthai Vatanatham for supporting experimental equipment, valuable comments and guidance.

I am extremely grateful to Assoc. Prof. Dr. Muenduen Phisalaphong and Assist. Prof. Dr. Manop Charoenchaitrakool for their helpful suggestions and corrections of this work.

I deeply thank to the Kasetsart University Research and Development Institute (KURDI), Department of Chemical Engineering, Kasetsart University and the National Center of Excellence for Petroleum, Petrochemical and Advanced Materials for financial support.

Additional thanks extend to Ms. Patarawan Klomkum and all colleagues in both Assoc. Prof. Dr. Sunan's research group and Assoc. Prof. Therdthai's research group for their warm friendship, suggestion and all supports. They always make me enjoy my life during study in this program.

My deepest appreciation goes to my parents for their unconditional love, understanding and pride in having me as an engineer in the family and also financial support.

> Waranyou Tuntanatewin April 2010

TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	xii
INTRODUCTION	1
OBJECTIVES	3
LITERATURE REVIEW	4
MATERIALS AND METHODS	24
Materials	24
Methods	27
RESULTS AND DISCUSSION	34
CONCLUSION	91
LITERATURE CITED	92
APPENDICES	94
Appendix A The temperature profile in semi-batch reactor	95
Appendix B The temperature profiles in fluidized bed reactor	104
Appendix C The liquid product distribution in condenser	147
Appendix D The calculation of the production rate of liquid product	152
Appendix E The calculation of production rate of gas product	154
Appendix F The production rate and distribution of gas and	
liquid product	160
CURRICULUM VITAE	164

LIST OF TABLES

Table Page 1 8 The explanation of plastic pyrolysis mechanism 2 9 Decomposition mechanisms and monomeric yields of some polymer 3 Product distributions of thermal cracking 10 4 Product distribution in plastics pyrolysis or Thermal cracking (%wt. of feed) 11 Reactor types and their characteristics 13 5 6 Summary of pyrolysis processes for plastic waste, auto shredder residues, tires and other wastes carried out with different fluidized bed reactors. 15 7 Lists the operating conditions used in the cited experiments, i.e. polymer type, reactor size, reactor temperature, bed material type and size, fluidizing agent, fluidization velocity. 18 24 8 Adjustment procedure for volt transformer 9 Summary on the operating condition for investigation of their effects on PP pyrolysis in a semi-batch reactor. 29 10 Summary on the operating condition for investigation 32 the effect of PP pyrolysis in the fluidized-bed reactor. 11 Heat of combustion of liquid fuel 74 12 74 Heat produced by each of liquid species 13 Heating values of fuel gas 76 14 Heat produced by each of gas species 76 15 Heat produced by each of liquid products without gas recycling 85 and with gas recycling plus energy saving 16 Heat produced by each of gas species without gas recycling and with gas recycling plus energy saving 86

LIST OF TABLES (Continued)

Appendix Table

A1	The system without reaction	86
A2	The system with pyrolysis reaction	87
A3	The system with pyrolysis combined with partial oxidation	
	at 5.22 ml/s	89
A4	The system with pyrolysis combined with partial oxidation	
	at 8.51 ml/s	89
A5	The system with pyrolysis combined with partial oxidation	
	at 11.78 ml/s	90
A6	The system with pyrolysis combined with gas recycling	
	at 5.85 ml/s	91
A7The	e system with pyrolysis combined with gas recycling	
	at 8.27 ml/s	92
A8	The system with pyrolysis combined with gas recycling	
	at 10.70 ml/s	94
B1	The system with 5.22 l/min of LPG by fixing air feed rate	
	at 300 l/min	95
B2	The system with 7.31 l/min of LPG by fixing air feed rate	
	at 300 l/min	96
B3	The system with 9.50 l/min of LPG by fixing air feed rate	
	at 300 l/min	98
B4	The system with 10.23 l/min of LPG by fixing air feed rate	
	at 300 1/min	100
B5	The system with 100 l/min of air by fixing LPG feed rate	
	at 7.31 l/min	102
B6	The system with 200 l/min of air by fixing LPG feed rate	
	at 7.31 l/min	103

Copyright by Kasetsart University All rights reserved

iii

LIST OF TABLES (Continued)

Appendix Table

B7	The system with 300 l/min of air by fixing LPG feed rate	
	at 7.31 l/min	105
B8	The system with 400 l/min of air by fixing LPG feed rate	
	at 7.23 l/min	107
B9	The variation of system temperature after $50 g$ of plastic feeding	109
B10	The variation of system temperature after $80 g$ of plastic feeding	111
B11	The variation of system temperature after $100 g$ of plastic feeding	109
B12	The variation of system temperature after $120 g$ of plastic feeding	115
B13	The system temperature with fixing the bed temperature at 450 $^{\circ}$ C	117
B14	The system temperature with fixing the bed temperature at 480 $^{\circ}$ C	121
B15	The system temperature with air 25 l/min for partial oxidation	125
B16	The system temperature with air 50 l/min for partial oxidation	129
B17	The system temperature with air 100 l/min for partial oxidation	133
C1	Liquid product distribution in semi-batch reactor	138
C2	Liquid product distribution at bed temperature of 450 and 480 ^{o}C	139
C3	Liquid product distribution at various secondary air feed	
	rates for partial oxidation	142
C4	Liquid product distribution in case with and without partial	
	oxidation for energy saving	143
E1	The peak area of each gas components	147
E2	The standard equation of each gas components	148
E3	The mol of each gas components	149
E4	Weight of each gas components per 1 ml of gas sample	150
E5	The mass flow rate of each gas components	150
F1	Summary of the production rate and distribution of gas and	
	liquid at fixed bed temperature of 450 and 480 $^{\circ}C$	152

Copyright by Kasetsart University All rights reserved

iv

LIST OF TABLES (Continued)

Appendix TablePageF2Summary gas and liquid product distribution at various
secondary air feed rates153F3Summary gas and liquid product distribution in case of
with and without partial oxidation154

Copyright by Kasetsart University All rights reserved

v

LIST OF FIGURES

Figure

Page

1	Schematic illustration of Gray-King apparatus	6
2	Schematic diagram of the gasification apparatus	7
3	Product from thermal cracking of plastic waste at each temperature	12
4	Different steps that a polymer particle undergoes after	
	the injection into a fluidized-bed pyrolyser	22
5	Stages of plastic particles in the fluidized bed	23
6	Schematic diagram of the semi-batch reactor	25
7	Schematic diagram of the fluidized bed	26
8	The thermogram of PP degradation by DSC-TGA	34
9	Temperature profile of the system with a stream of nitrogen only	
	without reaction	35
10	Comparison of temperature profiles of the systems with pyrolysis	
	and without reaction	36
11	The enlarge picture of the comparison of temperature	
	profiles of the systems with pyrolysis and without reaction	37
12	Temperature profile for pyrolysis combined with partial oxidation	38
13	Temperature profile for pyrolysis combined with partial	
	oxidation at 5.22 ml/s compare with temperature profiles	
	of the systems with pyrolysis and without reaction	39
14	The enlarge picture of the temperature profile for pyrolysis	
	combined with partial oxidation at 5.22 ml/s compare with	
	the temperature profiles of the systems with pyrolysis and	
	without reaction	39
15	Temperature profile for pyrolysis combined with partial	
	oxidation at 8.51 ml/s compare with temperature profiles	
	of the systems with pyrolysis and without reaction	
	Actual and estimated concentration and temperature	40

Figure

16	The enlarge picture of the temperature profile for pyrolysis	
	combined with partial oxidation at 8.51 ml/s compare with	
	the temperature profiles of the systems with pyrolysis and	
	without reaction	41
17	Temperature profile for pyrolysis combined with partial	
	oxidation at 11.78 ml/s compare with temperature profiles	
	of the systems with pyrolysis and without reaction	41
18	The enlarge picture of the temperature profile for pyrolysis	
	combined with partial oxidation at 11.78 ml/s compare with	
	the temperature profiles of the systems with pyrolysis and	
	without reaction	42
19	The effect of gas recycling on temperature variation	43
20	Temperature profile for pyrolysis combined with gas	
	recycling at 5.85 ml/s compare with temperature profiles	
	of the systems with pyrolysis and without reaction	44
21	The enlange picture of the temperature profile for	
	pyrolysis combined with gas recycling at 5.85 ml/s compare	
	with temperature profiles of the systems with pyrolysis and	
	without reaction	45
22	Temperature profile for pyrolysis combined with gas	
	recycling at 8.27 ml/s compare with temperature profiles	
	of the systems with pyrolysis and without reaction	46
23	The enlange picture of the temperature profile for pyrolysis	
	combined with gas recycling at 8.27 ml/s compare with	
	temperature profiles of the systems with pyrolysis and	
	without reaction	46

Figure Page 24 Temperature profile for pyrolysis combined with gas recycling at 10.70 ml/s compare with temperature 47 profiles of the systems with pyrolysis and without reaction 25 The enlange picture of the temperature profile for pyrolysis combined with gas recycling at 10.70 ml/s compare with temperature profiles of the systems with pyrolysis and without reaction 48 49 26 The product distribution of semi-batch reactor 27 The effect of partial oxidation and gas recycling on the liquid product distribution 51 28 Temperature profile for the variation LPG feed rate by 53 fixing air feed rate at 300 l/min 29 The average temperature at various LPG feed rates. 53 30 Distribution of combustion product at various LPG feed rates. The air feed rate is kept constant at 300 l/min 54 31 Volumetric flow rate of combustion gas product at various 55 LPG feed rates. The air feed rate is kept constant at 300 l/min 32 The temperature profile for the variation air feed rate by fixing LPG feed rate at 7.31 L/min 56 33 The average temperature at various air feed rates. The LPG feed rate is kept constant at 7.31 l/min 57 34 Distribution of combustion product at various air feed rates. The LPG feed rate is kept constant at 7.31 l/min 58 35 Volumetric flow rate of combustion gas product at various air feed rates. The LPG feed rate is kept constant at 7.31 l/min 58

viii

Figure		Page
36	Temperature profile in the system with plastic feeding	
	(A) 50 g, (B) 80 g, (C) 100 g and (D) 120 g, time for plastic	
	feeding is 2 min	60
37	The time average temperature at various plastic feed rates.	
	The LPG and air feed rate is kept constant at 7.31 and 300 l/min,	
	respectively.	61
38	Temperature profile in the system with plastic feeding	
	at different bed temperature	62
39	The time average temperature at various bed temperature	63
40	Pyrolysis product distribution at different bed temperature	64
41	Production rate of gas product at different bed temperature	64
42	Production rate of liquid product at different bed temperature	65
43	The time average temperature at various secondary air feed rates	67
44	The time average temperature in the area near the distributor	
	at various secondary air feed rates	67
45	Pyrolysis product distribution at various secondary air feed rates	69
46	Production rate of gas product at various secondary air feed rates	69
47	Production rate of liquid product at various secondary air feed rates	70
48	Pyrolysis product distribution in the system with and without partial	
	oxidation. The percent by weight of product is based on total	
	feed weight	72
49	Production rate of gas product in the system with and without	
	partial oxidation. The numbers show the production rates in	
	g/min of each species	72
50	Production rate of liquid product in case of with and without	
	partial oxidation	73

ix

Figure		Page
51	(A) The amount of energy supplied to the system and	
	(B) the time average temperature with and without partial	
	oxidation	74
52	Weight of nitrogen used as fluidizing gas in the system	
	with and without gas recycling	78
53	The time average temperature with and without gas recycling	78
54	The time average temperature in the area near the distributor	
	with and without gas recycling Production rate of gas	
	product by variation remaining oxygen	79
55	Pyrolysis product distribution in the system with and	
	without gas recycling	80
56	Production rate of gas product in the systems with and	
	without partial gas recycling	80
57	Production rate of liquid product in the systems with and	
	without partial oxidation	81
58	Pyrolysis product distribution in the system without gas	
	recycling and with gas recycling plus energy saving	82
59	Production rate of gas product in the systems without	
	gas recycling and with gas recycling plus energy saving	83
60	Production rate of liquid product in the systems without	
	gas recycling and with gas recycling plus energy saving	83
61	(A) The amount of energy supplied to the system and	
	(B) the time average temperature without gas recycling	
	and with gas recycling plus energy saving	84
62	The time average temperature of the reactor with and	
	without quenching	

Figure		Page
63	Pyrolysis product distribution in the system with and	88
	without product quenching	
64	Production rates of gas products in the systems with	89
	and without quenching	
65	Production rates of liquid products in the system with and without	
	quenching	90

LIST OF ABBREVIATIONS

ASTM	=	American Society for Testing and Materials
BFB	=	Bubbling fluidized bed reactor
CFB	=	Circulating Fluidized Bed
DSC	=	Differential scanning calorimetry
ER	æ.Þ	Equivalence ratio
F	÷ .	Fixed carbon
FC	=	Elutriable fines
HDPE		High density polyethylene
ID	= 3	Inner diameter
LDPE	=	Low density polyethylene
LPG	÷	Liquid petroleum gas
MPW		Municipal plastic waste
РЕ	J.	Polyethylene
PET	-	Polyethylene terephthalate
PMMA	'yk'	Poly methyl metacrylate
PP	보기	Polypropylene
PS	=	Polystyrene
PVC		Poly(vinyl chloride)
Q	=	Plastic feed rate
SBR	=	Styrene butadienerubber
Т	=	Temperature
TGA	=	Thermogravimetric Analysis
U	=	Velocity
U_{mf}	=	Minimum fluidizing velocity
V	=	Velocity

PLASTIC PYROLYSIS WITH GAS RECYCLING IN A FLUIDIZED BED REACTOR

INTRODUCTION

Currently, world plastic production from industrial and municipal is increasing significantly. As a consequence, the eradication of plastic waste has become an extreme problem with high environmental impact. The most common way to handle plastic waste is landfills and incineration.

Landfilling of plastic waste is not a solution, essentially because it has been increasingly difficult to find suitable places for building technically adequate landfills. This is due to the resistance imposed by the nearby populations and since there is the danger of leaching and soil impregnation, with the subsequent contamination of underground waters. Furthermore, it is still not well established what the long-term effects of their degradation could lead to. On the other hand, this process does not allow the recovery of the organic content of plastic waste, which is even more important due to the small lifetime of known petroleum reserves (Pinto et al., 1999).

Incineration of plastic waste to produce heat may be a possibility, but its organic content would totally be destroyed and converted only into CO_2 and H_2O . In addition, depending on its nature, combustion may produce pollutants like light hydrocarbons, nitrous and sulphur oxides, dusts, dioxins and other toxins, which have a highly negative impact on the environment. An alternative approach to upgrade plastic waste and its further use could be achieved through pyrolysis reaction.

Pyrolysis or thermal cracking has been paid to recycling of waste polymer to recover value added products or energy via the production of high-value petrochemical feedstock. It has been investigated at laboratory and pilot plant, and some semi-commercial installations have been built for the treatment of plastic waste (Murty *et a.l*, 1996; Ding et al, 1997; Horvat and Ng, 1996; Cardona and Corma, 2000; Wong and Broadbelt, 2001; Ucar *et al.*, 2002) This process consists of the thermal degradation of the wastes in the absence of oxygen/air. Plastics pyrolysis may provide for disposal of plastic waste with recovery of valuable gasoline-range hydrocarbons. In pyrolysis, the polymeric materials are heated to high temperatures, so their macromolecular structures are broken down into smaller molecules and a wide range of hydrocarbons are formed. The decomposition product of pyrolysis can be used as liquid fuel instead gasoline or used as feedstock in high quality plastic production. The product of pyrolysis is separated into 3 types namely gas, liquid and residuals. The components of liquid part are paraffins, olefins, naphthenes and aromatics (Derbirmas, 2004).

However, the pyrolysis reaction is an extremely endothermic reaction, which is required supply heat to its system. Therefore, the partial oxidation reaction is one of the greatest challenges for saving energy which is required for pyrolysis reaction. Because the partial oxidation is an exothermic reaction, some heat is generated to compensate the endothermic reaction in pyrolysis system. Moreover, the productions of large amounts of char and tars, which are difficult to handle, are reduced.

The fluidized bed is particularly suitable for pyrolysis since it provides very good heat and material transfer rates thus constant temperature can be obtained. It provides largely uniform products has no moving parts in the hot region, and can be a wholly closed system due to easy sealing (Kaminsky *et al.*, 2004). A fluidizing gas is required to obtain the fluidization condition. In this work nitrogen gas is used for fluidizing particles. Recycling gas outlet of the fluidized bed reactor to reuse is proposed to reduce the inert gas consumption.

OBJECTIVES

This research work aims to develop a fluidized bed reactor with gas recycling for plastic pyrolysis. The scopes of the research are listed as follows:

1. The partial oxidation of plastic and recycling gas will be studied to minimize the energy consumption into the reactor.

2. The effect of operating conditions on the reactor performance such as plastic feed rate, temperature will be studied.

Places and duration

PlaceChemical Engineering at Kasetsart University BangkenPeriod of timeSince January 2006 to April 2010

Benefits

1. Plastic pyrolysis in a fluidized bed reactor with gas recycling will be understood.

2. The information of the saving energy of plastic pyrolysis in a fluidized bed reactor with gas recycling by using partial oxidation reaction is useful for development of pyrolysis system.

3. This work can be used to develop the chemical and petrochemical processes in the future.

LITERATURE REVIEW

1. Sources of plastic waste

Plastic waste can be classified as industrial and municipal plastic waste according to their origins; these groups have different qualities and properties and are subjected to different management strategies (Demirbas, 2004).

1.1 Industrial plastic waste

Industrial plastic waste is those arising from the plastics manufacturing and processing industry. Usually they are homogeneous or heterogeneous plastic resins, relatively free of contamination and available in fairly large quantities. Recycling technologies for industrial plastic waste are currently based on pelletization and molding into low grade plastic products; the recycled products have poor mechanical and color qualities and a lower market value. The reclaimed product outputs of Japan in the early 1980s already amounted to some 15% of total industrial plastic waste. Thus for industrial plastic waste, repelletization and remolding seem to be a simple and effective means of recycling. But when plastic waste are heterogeneous or consist of mixed resins, they are unsuitable for reclamation. In this case thermal cracking into hydrocarbons may provide a suitable means of recycling, which is termed chemical recycling.

1.2 Municipal plastic waste

Municipal plastic waste normally remains a part of municipal solid waste as they are discarded and collected as household wastes. Plastics usually account for about 7% of the total MSW by weight and much more by volume. In order to recycle municipal plastic waste, separation of plastics from other household wastes is required. Although MSW separation technologies have been studied extensively, it is still not possible to classify MSW mechanically and obtain marketable fractions. So waste separation at the household is required with regard to recycling of municipal plastic waste. If household wastes are separately disposed into three parts: (1) combustibles such as paper, kitchen waste, textiles, and wood, (2) incombustibles

such as metals, glass, ceramics, and (3) plastics, then the collected plastics will be mixed plastic waste with major components of PE, PP, PS, PVC, etc. For mixed plastics some mechanical separation equipment is currently available. For example, using a wet separation process mixed plastics can be separated into two groups: those with a density greater than water such as PS and PVC, and those with a density lower than that of water such as PE, PP and expanded PS. The latter group is much larger than the first group. Consequently, recycling of municipal plastic waste should deal with plastic mixtures of PE, PP and PS, provided that the above separation procedures are practiced. Typical distribution of such plastic mixture will be three parts PE, one part PP and one part PS. More investigations are needed to identify the sources and properties of plastic waste, and their suitability for various recycling methods such as repelletization, remolding and pyrolysis (Lee, 2007).

2. The procedure of plastic waste recycling

2.1 Mechanical recycling

Mechanical recycling of plastic waste is the simplest and relatively cheap recycling method. The steps of mechanical recycling are as follows:

The large plastic parts are cut by saw or shears for further processing and then chopped into small flakes. The contaminants (e.g. paper) is separated from plastic in cyclone separator. Different types of plastics are separated in a floating tank according to their density. The flakes are also washed and dried. The flakes are fed into an extruder where they are heated to melting state and forced through the die converting into a continuous polymer product (strand). The strands are cooled by water and cut into pellets, which may be used for new polymer products manufacturing.

2.2 Chemical recycling

Chemical or feedstock recycling is a process, in which a plastic polymer is broken down into its constituents - monomers. This process is called depolymerization. The monomers may be then used as raw material for manufacturing a new polymer. Chemical recycling (feedstock recycling) is more expensive than mechanical recycling.

There is a range of chemical recycling methods:

2.2.1 Pyrolysis, chemical decomposition of polymers induced by heat in the absence of oxygen.

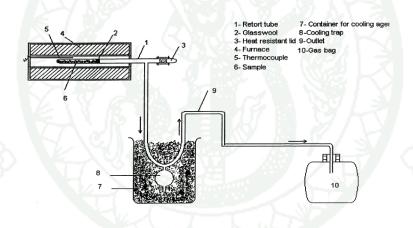


Figure 1 Schematic illustration of Gray-King apparatus

Source: Kiran *et al.* (2000)

Pyrolysis processes are generally classified into low, medium and high temperatures based on the range of temperatures used to destroy the plastic structure. The corresponding temperatures defining the pyrolysis states are with the following temperature ranges less than or equal to 600°C, 600–800°C and greater than 800°C (Kaminsky, 2004). The products obtained from pyrolysis of plastics depend on the type of plastics, feeding arrangement, residence time, temperatures employed, reactor type and condensation arrangement. 2.2.2 Gasification, conversion of polymers into a mixture of carbon monoxide (CO) and hydrogen.

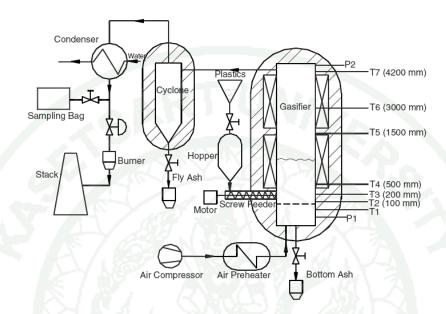


Figure 2 Schematic diagram of the gasification apparatus

Source: Xiao et al. (2007)

The gasification process can convert solid or liquid hydrocarbon feed stocks into a synthesis gas that is suitable for use in electricity production or for the manufacture of chemicals, hydrogen or transportation fuels. Air gasification of plastic waste uses air as a gasifying agent to convert plastics to combustible gas to obtain high energetic utilization efficiency and low emission of pollutants.

The advantage of using air instead of oxygen as the gasifying agent is to simplify the gasification process and reduce operating and maintenance cost because air separation to obtain oxygen is a more complex and expensive process (Xiao et al, 2007). On the other hand, in the case of gasification using air, its nitrogen content remains as an inert component in the producer gas that dilutes the fuel gas and leads to a low caloric value fuel.

3. Thermal cracking mechanism

Pyrolysis and gasification of plastics and other carbonaceous fuels have been studied extensively in the past. Recent progress in converting plastic waste into petrochemicals by means of pyrolysis in the absence of a catalyst has been reviewed by Kaminsky (Kaminsky, 1991). A comprehensive treatment of the mechanism of plastics pyrolysis has been presented (Cullis and Hirschler, 1981) Four types of mechanisms of plastics pyrolysis have been proposed following this table

Mechanism	Explanation
End-chain scission or depolymerization	The polymer is broken up from the end groups successively yielding the corresponding monomers.
Random-chain scission	The polymer chain is broken up randomly into fragments of uneven length
Chain-stripping	Elimination of reactive substitutes or side groups on the polymer chain, leading to the evolution of a cracking product on one hand, and a charring polymer chain on the other.
Cross-linking	Formation of a chain network, which often occurs for thermosetting polymers when heated.

 Table 1 The explanation of plastic pyrolysis mechanism

Theses different mechanisms and product distributions are to some extent related to bond dissociation energies, the chain defects of the polymers, and the aromaticity degrees, as well as the presence of halogen and other hetero-atoms in the polymer chains. For common plastics the decomposition mechanisms and associated monomer yield are listed in this table

Polymers	Decompositions mechanism	Monomeric yields (Weight)
Polyacrylonitrile	Chain-stripping	5
Polyvinyl fluoride	Chain-stripping	0
Polyvinylchloride	Chain-stripping	0-0.07
Polybutadiene	End-chain scission	1
Polypropylene	Random-chain scission	0–17
Polyethylene	Random-chain scission	0.03
Polyisobutene	End-chain and random-chain scission	18–25
Polystyrene	Random-chain scission	42–45
Polyethylstyrene	End-chain scission	82–94
Polymethacrylonitrile	End-chain scission	90
Polymethylmetacrylate	End-chain scission	95
Polytetrafluorethylene	End-chain and random-chain scission	91–98

 Table 2 Decomposition mechanisms and monomeric yields of some polymer

Source: Cullis (1981); Buekens (1989)

3.1 Product distributions of thermal cracking

The major factors of influence determining the product distribution resulting from plastics pyrolysis are summarized in Table 3

Table 3	Product	distributions	of thermal	cracking
---------	---------	---------------	------------	----------

Factor of influence	Effect
Chemical distribution of	The primary pyrolysis products relate directly to the
the resins	chemical structure and distribution of the resin, and
	also to the mechanism of its decomposition (purely
	thermal or catalytic)
Pyrolysis temperature and	Higher operating temperatures and high heating rates
heating rate	both enhance bond breaking and favour the
	production of small molecules
Pyrolysis time	Longer residence times favor a secondary conversion
	of primary products, yielding more coke, tar, as well
	as thermally stable products, thus gradually
	obscuring the effect of original polymer structure
Reactor type	Determines mainly the quality of heat transfer,
	mixing, gas and liquid phase residence times, and the
	escape of primary products
Operating pressure	Low pressure reduces the condensation of reactive
	fragments forming coke and heavies
Presence of reactive gases,	Such presence internally generates heat, dilutes the
such as (air) oxygen or	products and influences upon equilibriums, kinetics,
hydrogen	and mechanisms
Use of catalysts	Their use influences upon kinetics and mechanisms, and hence, the product distribution
Additives incorporated	The additives generally either evaporate or decompose. Some may influence kinetics and mechanism

Source: Scheirs and Kaminsky (2006)

Temperature is the most important operating variable, since it determines both the rate of thermal decomposition and the stability of feedstock and reaction products. High temperature (>600°C) and both vacuum and product dilution favor the production of simple small gaseous molecules, low temperature (<400°C) and increased pressure lead to more viscous liquid products, higher rates of pyrolysis, a higher coking tendency, more secondary products and dehydrogenation

The required reaction time is determined principally by reaction temperature. The formation of primary products, e.g. monomers, is favoured by short residence times, the formation of more thermodynamically stable products (H₂, CH₄, aromatics, carbon) by long ones. Low pressure (under vacuum, or in the presence of inert diluent) favors the production of primary products, including monomer, high pressure that of complex, liquid fractions

Product distribution of Thermal cracking of plastic waste by the Hamburg process is shown in Table 4 which can categorize in to 3 parts namely gas, oil and solid. The type of plastic waste feedstock effect on the quantity of each part.

	Pyrolysis		Product (%wt)			
Feed	temperature (°C)	Gas	Oil	Solid	Other	
Polyethylene (PE)	760	55.8	42.4	1.8	-	
Polypropylene (PP)	740	49.6	48.8	1.6	-	
Polystyrene (PS)	580	9.9	24.6	0.6	64.9 Styrene	
Poly methyl metacrylate (PMMA)	450	1.25	1.4	0.15	97.2 MMA	
	740	6.8	28.1	8.8	,,, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Poly(vinyl chloride) (PVC)					56.3 HCl	

Table 4 Product distribution in plastics pyrolysis or Thermal cracking (% wt. of feed)

Source: Kaminsky (2004)

The amount of gas, oil and solid product from Thermal cracking process of plastic waste are shown in Figure 3 which demonstrated the increasing amount of gas product when temperature rise from 500-900 K. After that when increase the temperature from 750-900 K, The reducing of oil production occur. The reverse proportion when increasing temperature is investigated for solid product.

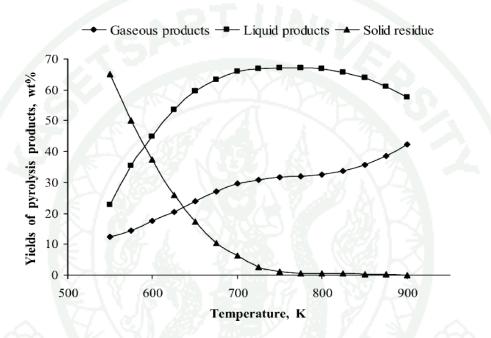


Figure 3 Product from thermal cracking of plastic waste at each temperature

Source: Demirbas (2004)

4. Reactor types for plastic pyrolysis

The reactor type is selected mainly on the basis of technical considerations, mainly its heat transfer and feed and residue handling characteristics. In many processes proposed the polymer is first dissolved in a bath of molten polymer or wax, or dispersed in a salt bath, to reduce the viscosity of the melt. Other processes suggest the use of the excellent heat transfer and mixing properties of fluidized bed thermal or catalytic reactors.

Table 5 Reactor types and their characteristics

Reactor type	Particular characteristic	Application
Extruder	Operating temperature is limited.	Production of
	Degassing of premature decomposition	waxes from PE
	products is essential	
Tubular reactor	Simplicity	Molten
		polyolefins
Stirred tank reactor,	Conventional liquid phase reactor. Stirring	Mixed plastics:
possibly with external	improves heat transfer. Clogging of	BASF,
heating loop and/or	downstream ducting has to be avoided	Ludwigshafen
reflux cooler		Chiyoda
		Engineering,
		Niigata
Fixed bed reactor	Mainly for catalytic reactions, converting	PMMA
	vapours from a first reactor	pyrolysis
Salt or lead bath	The bath acts as a heat transfer agent.	
reactor	Residues accumulate on top of the layer,	
	requiring a periodic shutdown for cleaning	
Fluidized bed reactor	The fluidized bed acts as a heat transfer	
	agent, dispersing the melting plastic in	
	thin layers. Residues are carried out with	
	the products, requiring a delicate filtration	
	of fines (pigments, fillers)	
Rotary kiln	Simple units, featuring tumbling action	NKK PVC-
	and gravity feed. Sealing is delicate.	pyrolysis
		process
Autoclave	Reactor for operating under pressure,	Hydrogenation
	generally in a batch mode	

Source: Scheirs and Kaminsky (2006)

5. Fluidized Bed Pyrolysis of Plastic waste

Gas-solid fluidization is the operation by which a bed of solid particles is led into a fluid-like state through suspension in a gas. Compared with other methods of gas-solid contacting (such as fixed beds, rotary cylinders, flat hearths, etc.), fluidized beds have some rather unusual and useful properties that can lead to desirable characteristics for waste thermal treatments in general, and for plastic waste pyrolysis in particular (Scheirs and Kaminsky, 2006).

The following main advantages can be listed for fluidized-bed reactors utilized for thermal treatments of waste (Kunii and Levenspiel, 1991).

- The rapid and good mixing of solids, which leads to almost uniform isothermal conditions throughout the fluidized bed. This allows an easy and reliable process control.

- The whole reactor of well-mixed solids represents a large thermal flywheel that resists to rapid temperature changes and avoids formation of cold or hot spots. The range of operating temperatures is generally lower than that of other gas-solid reactors.

- Heat and mass transfer between gas and particles are high when comparing with those of other gas-solid reactors and there is a very good quality of contact between reactants of a gas-solid reaction.

- The liquid-like feed of particles allows continuous controlled operations with easy handling. In particular, the circulation of solids between two fluidized beds makes it possible to remove or add the high quantities of heat produced or needed in large reactors as well as to substitute part of the (sticky or agglomerated) bed material with fresh solids.

- The high process flexibility makes possible to utilize different fluidizing agents, operating temperatures and gas residence times and to operate with or without a specific catalyst.

 Table 6
 Summary of pyrolysis processes for plastic waste, auto shredder residues, tires and other wastes carried out with different fluidized bed reactors.

Process	Actors involve	Technology	Process description	Input/Output	Technical status
Akzo	Akzo Nobel	Two	Fast pyrolysis in a CFB reactor (700-	I: shredded MPW with high	Pilot (30 kg/h)
	(NL)	circulating fluidized	900°C), where waste is converted with	percentage of PVC, PVC	since 1994. Some
		beds	steam into fuel gas, HCl and residual	cable, pipe scrap	tests on a large
			tar, and combustion in the second CFB.	O: HCl, CO, H ₂ , CH ₄ , other	scale (200–400
			The process is based on the Battelle	hydrocarbons, fly ash	kg/h)
			process for biomass gasificaition.		
Amoco	Amoco Chem.	Bubbling	Catalytic cracking at 490–580°C	I: PE, PP, PS, plastic waste	Pilot since 1991
	Corp.	fluidized bed		mixed with vacuum gas oil O: naphtha, light mineral oil gases	
AMRA	Center of	Bubbling	Gasification in a BFB of sand, fluidized	I: polyolefins and RDF	Pilot (20-50
	Competence on	fluidized bed	by air, steam and nitrogen at a	shredded at a size<2.5 cm	kg/h) in Caserta
	Env. Risks (I)		temperature between 750 and 900° C	O: syngas, energy	(I)

Table 6 (Continue)				
Process	Actors involve	Technology	Process description	Input/Output	Technical status
Battelle	Battelle Memorial Inst. (USA)	Two circulating fluidized beds	Gasification in a CFB of sand, fluidized by steam and nitrogen at a temperature between 800 and	I: PE, PS, PVC and MPW shredded at a size<2.5 cm	Pilot (9 kg/h) in Vermont (USA) since
			1000°C	O: ethylene, H ₂ ,CH ₄	1992
BP	BP Chemicals, Elf	Bubbling	Low-temperature pyrolysis (500°C)	I: clean plastic waste	Pilot (50 kg/h)
polymer	Atochem, DSM,	fluidized bed	in a BFB of sand. The product is	(<2% PVC)	in
cracking	Enichem, Fina		cleaned from HCl and fine	O: mainly waxy hydrocarbon	Grangemouth
			particles and then fractionated	products to be used in existing petrochemical plants	(UK)
Ebara	Tsukishima (J)	Two	Pyrolysis in a fluidized bed and	I: plastic waste	Operational: 4
		fluidized beds	combustion of the products in the second fluidized bed reactor	O: energy	t/h,Yokohama

Table 6 (Continue)

Process	Actors involve	Technology	Process description	Input/Output	Technical
Ebara TwinRec	Ebara Corp. (J), Alstom Power until 2002	Internally revolving fluidized bed + ash- melting system	Gasification of the shredded waste material in a revolving fluidized bed, operated at 500- 600°C, which separates combustible part from inert and metallic ones. Combustion of syngas and char in a cyclone combustor (1350-1450°C) at a low excess air ratio	I: ASR, plastic and electronic wastes, sewage sludge, MSW O: energy, ferrous and non-ferrous metals, glass granulate	status Pilots (0.3 t/h) in Sodeguara (J) and (1 t/h) in Fujisawa(J) since 1997.
Hamburg- ABB	University of Hamburg (D), Asea Brown Boveri	Bubbling fluidized bed	High-temperature pyrolysis ($600-800^{\circ}$ C) in a BFB, fluidized with liquid-free pyrolysis gas or inert (steam + N ₂) gas	I: shredded plastic waste (having as low as possible Cl content) O: high yield of olefins, BTX-rich oil	Pilot (40 kg/h) at the Univ.of Hamburg. Demonstration (5,000 t/y)

Source: Scheirs and Kaminsky (2006)

Table 7 Lists the operating conditions used in the cited experiments, i.e. polymer type, reactor size, reactor temperature, bed materialtype and size, fluidizing agent, fluidization velocity, as these are reported in the papers.

Plastic feed; bed material	Apparatus	Operating condition	Main result
HDPE; sand	Bubbling fluidized bed,	Batch feeding $U = 0.036$ m/s	Gas yield progressively increases from 5.7 to 96.5%. Methane, benzene, toluene formation is favored by high residence times. Gas yield reaches
	69 mm ID	T = 500, 600,700, 800, 900° C	maximum at 800°C.
Mixed plastics, HDPE;	Bubbling fluidized bed, 154 mm ID	Fluidizing gas: nitrogen; nitrogen/steam	Pyrolysis with steam as fluidizing gas demonstrates that the olefins yield is increased due to water-gas reaction.
quartz sand		U = 0.17 m/s $T = 600, 700, 800^{\circ}\text{C}$ Q = 1.1 - 1.4 kg/h	Mixed plastics pyrolysis does not allow optimization of process temperature since styrene production from PS requires low temperatures while olefins production from PE and PP requires high temperatures.

Table 7 (Continue)

Plastic feed; bed material	Apparatus	Operating condition	Main result
Mixed	Bubbling	Fluidizing gas: pyrolysis	Pyrolysis of mixed plastics lead to aromatics without chlorine yield of
plastics;	fluidized bed,	gas	48%. Chlorine is present, together with heavy metals, in the solid
quartz sand	154 mm ID	U = 0.2 m/s $T = 730^{\circ}\text{C}$	Fraction
	Bubbling	Fluidizing gas: steam	With the exception of experiments at 605°C, the gas fraction is the main
Polyolefin	fluidized bed,	T = 605, 655, 690, 700,	product (58–71%), having a maximum yield at a temperature of about
	154 mm ID	750, 805°C	700°C. BTX-aromatics increase from 1.6% at 605°C up to 16% at 805°C.
		Q = 1-3 kg/h	Distillation residue is higher at lower temperature (at which heavier
			hydrocarbons are produced) and at the highest (since more condensed
			aromatics are present). Chlorine is present in the water and in the solids
Mixtures of	Bubbling	Batch feeding. Fluidizing	Liquid and gas phase distribution is given. Gas yield reaches its maximum
LDPE,HDPE,	fluidized bed,	gas: steam	value at 650°C
PP, PS, PVC,	100 mm ID	U = 0.072 m/s	
PET		$T = 500 - 700 \circ C$	

Table 7 (Continue)

Table 7 (Contin	nue)		
Plastic feed; bed material	Apparatus	Operating condition	Main result
Mixed plastics	Bubbling	Fluidizing gas: nitrogen	Two different mixtures of plastics having different PVC content have
from	fluidized bed,	$T = 685, 710, 716, 730^{\circ}$ C	been pyrolysed in order to evaluate aromatics and light gas yields.
DSD;	154 mm ID	Q = 0.4 - 0.9 kg/h	BTX represent the 20% of input, gases the 44%. Chlorine is absent
quartz sand			in the aromatics compounds due to reaction with CaCO ₃ .
HDPE;	Bubbling	Fluidizing gas: air/nitrogen	The gas yield reaches the maximum value at 780° C. The oxygen
silica sand	fluidized bed,	ER = 0.06 - 0.07	increases the reactivity of degradation. Comparison between aromatics
	48 mm ID	<i>U</i> = 0.11, 0.18 m/s	yield with the two processes is reported
		<i>T</i> = 640, 700, 730, 780,	
		850°C	
Filled or not	Bubbling	Fluidizing gas: nitrogen	PMMA with and without filler has been pyrolysed at low temperature
PMMA;	fluidized bed,	$T = 450 - 480^{\circ} C$	(450 and 480°C). High monomer recovery has been obtained (98%).
quartz sand	154 mm ID	Q = 0.3 - 3 kg/h (lab scale)	The experiments were carried out also in a pilot plant 20 times larger
		Q = 30 kg/h (pilot plant)	than the lab-scale

Table 7 (Continue)

Plastic feed; bed material	Apparatus	Operating condition	Main result
SBR (styrene- butadienerubber); Quartz sand	Bubbling fluidized bed, 154 mm ID	Fluidizing gas: nitrogen, steam U = 0.12, 0.28 m/s $T = 500, 550, 600^{\circ}\text{C}$ Q = 1-3 kg/h	Low temperature pyrolysis (500–600°C) of tires produces a high carbon black yield (40% at 600°C), styrene and butadiene. Butadiene yield increases if nitrogen is used instead of pyrolysis gas due to suppression of secondary and ternary reactions.
Recycled PE; silica sand	Bubbling fluidized bed, 55 mm ID	Fluidizing gas: nitrogen U = 0.15, 0.28 m/s $T = 550-750^{\circ}$ C	The effect of bed temperature appears to play a crucial role in defining yield and distribution
HDPE; silica sand	Bubbling fluidized bed, 48 mm ID	Fluidizing gas: air/nitrogen ER = 0, 0.06 U = 0.11, 0.17 m/s $T = 640, 700, 730, 780, 850^{\circ}\text{C}$ Q = 3-4 g/min	High yield of waxes and oils found at 640 and 700°C. The presence of an in characterized char is highlighted

Source: Scheirs and Kaminsky (2006)

6. Difference stages in the fluidized bed pyrolysis of a plastic waste.

In a fluidized-bed reactor, the interactions between the injected polymer particles and the bed material define the peculiar mechanisms of a series of these steps. Figure 4 provides a list of them as deduced by batchwise and continuous experiments (Arena and Mastellone, 2000) highlights the region of a bubbling bed where each of them mainly occurs and indicates the paths by which the carbon, under its different forms of fixed carbon (FC), volatile (V) and elutriable fines (F), moves inside the reactor.

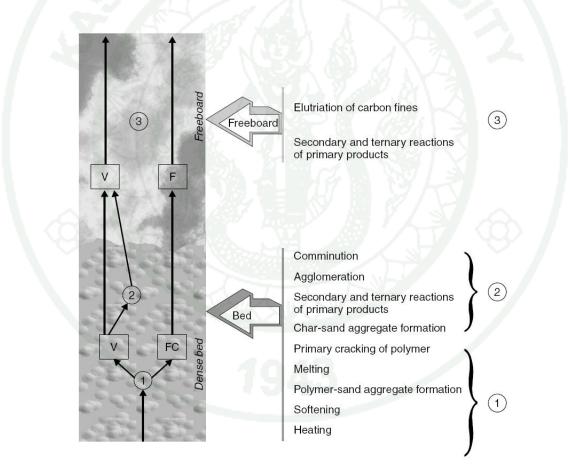


Figure 4 Different steps that a polymer particle undergoes after the injection into a fluidized-bed pyrolyser

Source: Mastellone et al. (2002)

Figure 5 visualizes the same series/parallel sequence of steps, but by following the fate of a single polymer pellet just after its injection into the hot fluidized-bed pyrolyser. The pellet is fast heated up by a high-rate heat transfer mechanism that leads external surface up to the softening temperature (step 1 in Figure 5). Several sand particle stick on the plastic surface, forming a polymer–sand aggregate that has the external shell made of sand particles and the internal core made of polymer not yet molten. When the temperature further increases, the surface of the pellet reaches the melting temperature and the polymer feeds throughout the bed particles of the external shell, so forming a uniform coating over and between them (steps 2–4).

The peculiar features of fluidized beds make this heating and coating process very fast, so that the beginning of the pyrolysis, i.e. the cracking of the weak carbon– carbon bonds of the polymer chain, starts when the polymer has already covered the bed particles. The primary cracking (step 7) is then not related to the whole molten pellet, but to a layer of polymer, which coats and adheres on the external surfaces of single sand particles.

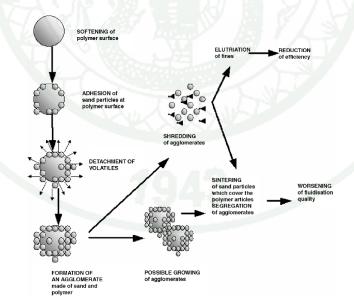


Figure 5 Stages of plastic particles in the fluidized bed

Source: Aznar et al. (2006)

23

MATERIALS AND METHODS

Materials

1. PP plastic

The PP was obtained from TPI Polene Public Company Limited, Bangkok, Thailand. The particle size was 0.03 mm in a pellet shape without additive.

2. Reactor

Two types of reactors were used in this study.

2.1 Semi batch reactor

A semi-batch reactor made of stainless steel having an internal capacity of 1 l was set up as show in Figure 6. An electrical furnace driven by a volt transformer was used to heat the system and to keep the reaction temperature at a desired value. The voltage adjustment procedure is shown in Table 8. A thermocouple was used to monitor the temperature in the reactor. The feed rate of nitrogen used as a carrier gas was measured by an orifice. The compressed air was fed to the system for partial oxidation reaction and the feed rate was also measured by a rotameter. The product gas was condensed in a water baths. The non-condensable product was recycled to the reactor in gas recycling experiments. The feed rate of the recycled gas was measured by an orifice.

 Table 8
 Adjustment procedure for volt transformer

Time (min)	Voltage (V)			
0 - 26	220			
27 - 32	110			
> 32	120			

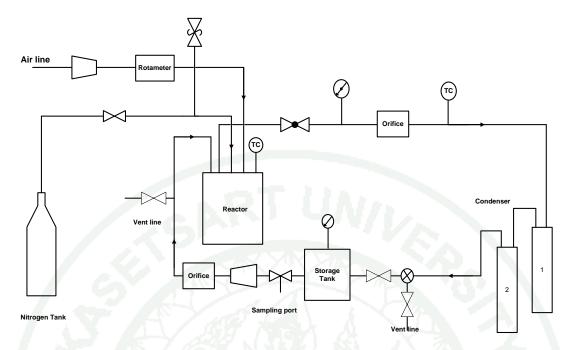


Figure 6 Schematic diagram of the semi-batch reactor

2.2 Fluidized bed reactor.

The fluidized bed reactor was designed based on the information of plastic pyrolysis in a semi-batch reactor. It was constructed of stainless steel insulated with asbestos. Silica sand as a bed material was used in the reactor above a gas distributor. The temperature in the reactor was maintained at the required temperature by using LPG burner at the bottom of the reactor. The amount of LPG and air was optimized. The temperature was monitored at several points in the fluidized bed. Temperature sensors were installed at *3* cm below the gas distributor and every 25.4 cm above distributor to the height of 177.8 cm. The PP was gravity fed via a screw feeder into the fluidized bed. The pyrolysis vapors were passed through the inner tube of the heat exchanger and condensed in the condensers.

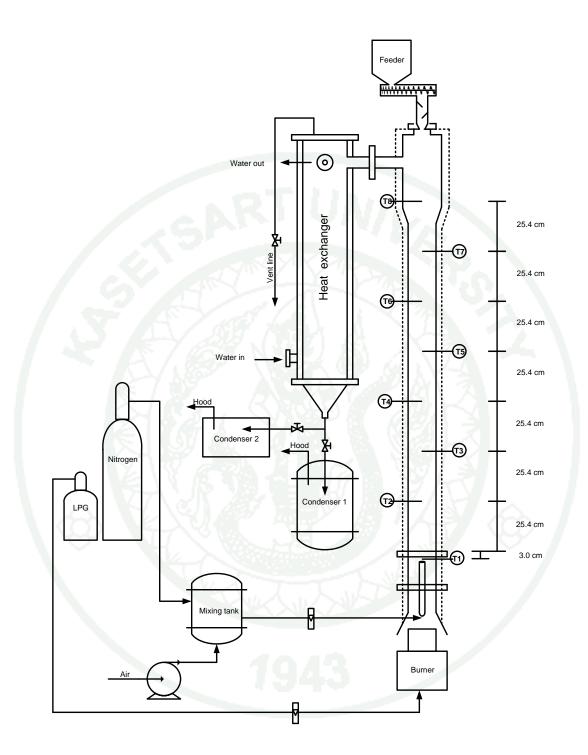


Figure 7 Schematic diagram of the fluidized bed reactor

1. Product analysis

The gases evolved throughout the pyrolysis experiment were collected and analyzed off line. Hydrocarbons up to C_4 , hydrogen, nitrogen, and oxygen were analyzed using Porapak Q packed column gas chromatography with thermal conductivity detector.

The liquid hydrocarbon products from pyrolysis process was weighted and distilled following ASTM D-86 to separate into Gasoline (C_5 - C_{12}), Kerosene (C_{13} - C_{17}), and Gas Oil (more than C_{18}).

Methods

The pyrolysis or thermal cracking is a process of chemical and thermal decomposition, generally leading to smaller molecules and are endothermic reaction. Therefore, ensuring a supply of heat to the reacting material is essential and generally rate-determining. Partial oxidation supplies such heat internally, but the pyrolysis products are diluted by oxidation or combustion products. The suitable operating conditions were investigated to minimize the energy input and obtain acceptable amount of valuable products in both of semi-batch and fluidized bed reactor. The feed stock used was virgin PP pellet and experiments were carried out at atmospheric pressure. The effects of operating conditions were investigated.

1. Effect of temperature on the pyrolysis of PP pellet by DSC-TGA

The effect of temperature on the pyrolysis of PP pellet was investigated by DSC-TGA. Nitrogen was used as a carrier gas at 0.12 kg/h with $20^{\circ}C/min$ of temperature program. The weight loss and weight difference were detected until the degradation was completed.

2. Effect of voltage adjustment

The effect of voltage adjustment, which regulates heat supplying rate, on the system temperature was studied. The voltage regulator was used to vary the supplied voltage for electrical furnace of semi- batch reactor. The voltage between 0-220 volts with time was varied to achieve the desired temperature.

3. Effect of pyrolysis condition

The effect of pyrolysis condition on the PP degradation was studied. The decreasing of temperature from endothermic reaction of pyrolysis was investigated in comparison with reactor temperature without reaction. The degradation products were analyzed.

4. Effect of partial oxidation

The effect of partial oxidation on the temperature profile and product distribution was studied. The variation of air in the range of 5.22 to 11.28 ml/s were studied. The experiments were done in a semi-bath reactor.

5. Effect of product gas recycling

The effect of product gas recycling on the temperature profile and product distribution was studied. The amount of gas recycling from 5.85 to 10.27 ml/s were studied. The experiments were done in a semi-bath reactor.

Summary of the experiment and their operating conditions in a semi batch reactor are shown in Table 9.

Condition	PP (g)	Nitrogen (ml/s)	Air (ml/s)	Gas recycling (ml/s)	
DSC-TGA	0.0078	28.13	-	-	
No reaction	RT	23.29		-	
Pyrolysis	50	23.29		-	
Partial oxidation 1	50	18.07	5.22		
Partial oxidation 2	50	14.78	8.51	S	
Partial oxidation 3	50	11.51	11.78		
Gas recycling 1	50	8.93	8.51	5.85	
Gas recycling 2	50	6.51	8.51	8.27	
Gas recycling 3	50	4.51	8.51	10.27	

 Table 9
 Summary on the operating condition for investigation of their effects on PP

 pyrolysis in a semi-batch reactor.

6. Effects of LPG feed rate on the fluidized bed reactor temperature and combustion products

The effect of LPG feed rate on the system temperature and combustion products were investigated. The LPG feed rates were varied from 5.22 to 10.23 ml/s at constant air feed rate of 300 L/min. The fluidizing gas was controlled to be 1.5 Umf by nitrogen. The experiments were operated in a fluidized bed reactor.

7. Effects of air feed rate on the fluidized bed reactor temperature and combustion products

The effects of amount of air on the system temperature and combustion products were investigated. The feed rates of air were varied at *100, 300, 400* and *500 l/min* at constant feed rate of LPG of 7.32 *l/min*. The fluidizing gas was kept constant at 1.5 U_{mf} . The experiments were done in the fluidized bed reactor.

8. Effect of plastic feed rate

The plastic feed rates of 25, 40, 50 and 60 g/min were fed through the screw feeder for 2 min into the reactor which caused the temperature to drop. After 2 minutes, the feeding was stopped. LPG and air feed rate were fixed at 300 l/min and 7.32 l/min, respectively. The fluidizing gas was controlled to be 1.5 Umf by nitrogen. After the temperature approach to initial starting, the experiment was repeated again for 9 times (10 times for total). The experiments were operated in a fluidized-bed reactor and temperature profiles were investigated.

9. Effect of bed temperature

The bed temperature at 3 cm below distributor was controlled to be 450 and $480 \,^{o}C$ by using 300 L/min of air with 7.31 and 7.69 of LPG, respectively. The fluidizing gas of 1.5 Umf was used. The plastic feeding of 25 g/min was fed for 2 min which caused the temperature to drop. The experiment was repeated again for 9 times. The experiments were done in a fluidized-bed reactor and the product distribution was investigated.

10. Effect of secondary air feed rate for partial oxidation

The bed temperature was set at $450 \ ^{o}C$ by using 7.31 and 300 l/min of LPG and air, respectively. The fluidizing gas was controlled to be 1.5 Umf by nitrogen. The secondary air feed rate of 25, 50 and 100 L/min was mixed with nitrogen and fed to the system for partial oxidation. The plastic feeding at 25 g/min was fed for 2 min which caused the temperature to drop. The experiment was repeated again for 9 times.

11. Effect of energy saving by partial oxidation

The temperature with secondary air feed rate of *100 l/min* for partial oxidation was adjusted by variation of LPG feed rates to obtained the temperature to be the same as that using *7.31* and *300 l/min* of LPG and air (without partial oxidation), respectively. The LPG feed rate was decreases carefully to keep the temperature closed to desired temperature. The fluidizing gas was controlled to be *1.5 Umf* by nitrogen. The plastic feeding at *25 g/min* was fed for *2 min* which caused the temperature to drop. The experiment was repeated again for *9 times*.

12. Effect of gas recycling

The bed temperature was set at $450 \ ^{o}C$ by using 7.31 and 300 l/min of LPG and air, respectively. The fluidizing gas at of 1.5 Umf was fed into the reactor. The secondary air feed rate of 100 l/min as well as 100 l/min of gas product recycled by air pump was mixed with fresh nitrogen in mixing tank and then fed to the system. The plastic feeding at 25 g/min was fed for 2 min which caused the temperature to drop. The experiment was repeated again for 9 times.

Summary of the experiment and their operating conditions in the fluidized bed reactor are shown in Table 10.

Run	Studied	Bed Temperature (°C)	Air + Secondary air (L/min)	LPG (L/min)	Plastic feed rate (g/min)	Time period for plastic feeding
1	Effect LPG feed rate		300	5.22, 7.31, 9.50,10.23		-
2	Effect of Air feed rate		100, 200, 300, 400	7.31	<u> -</u>	-
3	Effect plastic feed rate	450	300	7.31	25, 40 50, 60	2 min
4	Effect of bed temperature	450, 480	300	7.31, 7.69	25	2 min/10 cycle
5	Effect of air for partial oxidation	450	300 + 25, 50, 100	7.31	25	2 min/10 cycle
6	Effect of energy saving by partial oxidation	450	300, 300+100	Varied	25	2 min/10 cycle

 Table 10
 Summary on the operating condition for investigation the effect of PP pyrolysis in the fluidized-bed reactor.

Table 10 (Continue)

Run	Case	Bed Temperature (°C)	Air + Secondary air (l/min)	Gas Recycling (l/min)	LPG (l/min)	Plastic feed rate (g/min)	Time period for plastic feeding
7	Effect of gas recycling	450	300 + 100	100	6.59	25	2 min/10 cycle
					R		

RESULTS AND DISCUSSIONS

This research was divided into two parts; the main purpose of the first part is to investigate the influences of operating condition on the plastic pyrolysis in a semibatch reactor. The experiments were conducted with the variations of the oxygen, and gas recycling feed rate. The temperature profiles were used to study the effect of pyrolysis with and without partial oxidation and gas recycling. The product was also analyzed in each case for comparison.

1. The result of semi batch reactor

1.1 The thermogram of PP degradation by DSC-TGA

Figure 8 shows the thermogram of PP degradation by DSC-TGA. The weight loss and weight different were detected at the heating rate of $20^{\circ}C/min$ under nitrogen atmosphere. It was found that the weight loss was initially observed at about $360^{\circ}C$ and then increases sharply in the range of $405-470^{\circ}C$. After $473^{\circ}C$, the percent weight of PP decreased to 0% which can be concluded that the degradation of sample was completed.

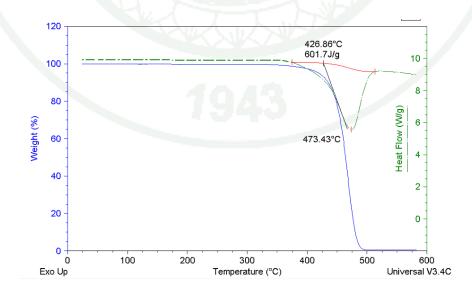


Figure 8 The thermogram of PP degradation by DSC-TGA

1.2 The temperature profile in the system without reaction

For a base line, the temperature profile of the system with a stream of nitrogen (23.92 ml/s at room temperature) and without PP was monitored. The temperature profile according to the voltage (Table 8) for 60 mins is shown in Figure 9. The result shows that the temperature of the system reaches $450 \,^{\circ}C$ within 25 mins. Then, the temperature remains constant.

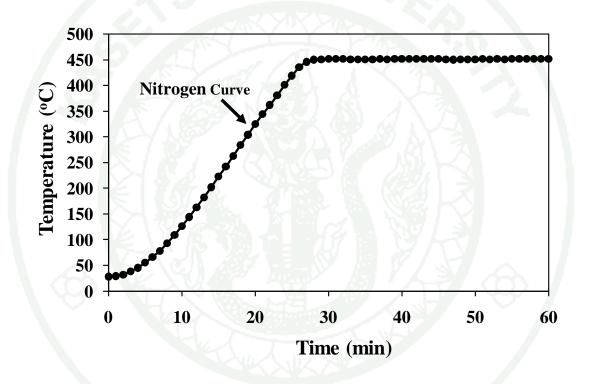


Figure 9 Temperature profile of the system with a stream of nitrogen only without reaction

1.3 The temperature profile in the pyrolysis

Figure 10 shows the comparison between the temperature profiles of the pyrolysis system and the temperature profile of the system with a stream of nitrogen only. The heat input for both runs was adjusted according to Table 8. As expected, the lower temperature of the pyrolysis system was observed due to the endothermic reaction. The temperature difference between these two systems slightly increased at the initial of the experiment. Although at low temperature no reaction occurred in the pyrolysis system, sensible heat was required for the pyrolysis. The initial degradation temperature of PP under nitrogen stream is $380 \ ^{o}C$ [4].

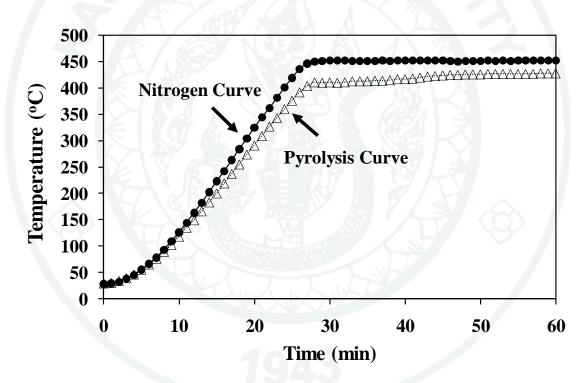


Figure 10 Comparison of temperature profiles of the systems with pyrolysis and without reaction

The temperature difference of 35-43 °C was found in the degradation period when the temperature is above 380 °C. It can be explained that the PP degradation operated in oxygen absent gas mainly occurred in this range. Finally, the temperature difference slowly decreased because of the running out of feedstock and reducing of pyrolysis reaction.

Figure 11 The enlarged temperature profiles of the systems with pyrolysis and without reaction

1.4 The temperature profile in the pyrolysis with partial oxidation

Pyrolysis combined with partial oxidation was carried out with the air feed rates in the range of 5.22 to 11.79 ml/s. At low air feed rate of 5.22 ml/s, temperature difference in pyrolysis system and pyrolysis system combined with partial oxidation were not significant at the beginning. Then, the generated heat from partial oxidation leads to the rising of system temperature and the different temperature was observed. The temperature of pyrolysis with partial oxidation is 2 to $10^{\circ}C$ higher than that of pyrolysis. After the period of pyrolysis of PP, gas products were still oxidized. Thus the temperature difference still existed although it decreased.

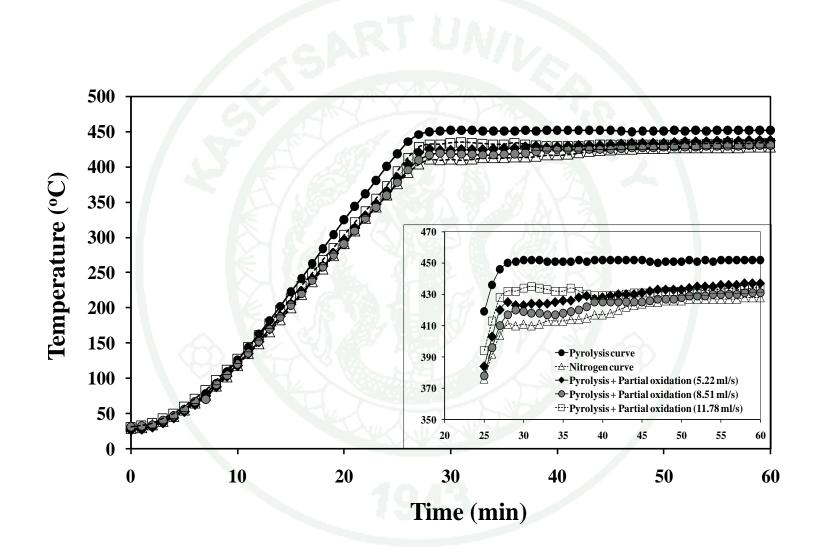


Figure 12 Temperature profile for pyrolysis combined with partial oxidation

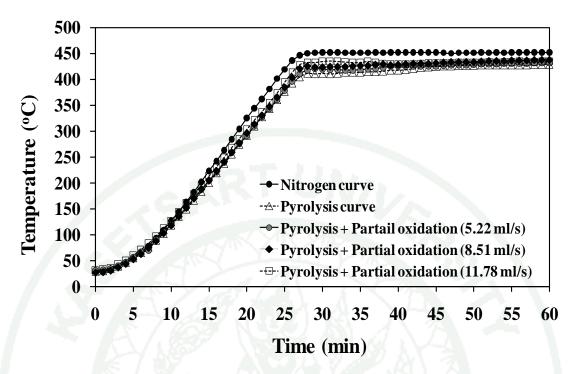


Figure 13 Temperature profile for pyrolysis combined with partial oxidation at 5.22 ml/s compared with temperature profiles of the systems with pyrolysis and without reaction

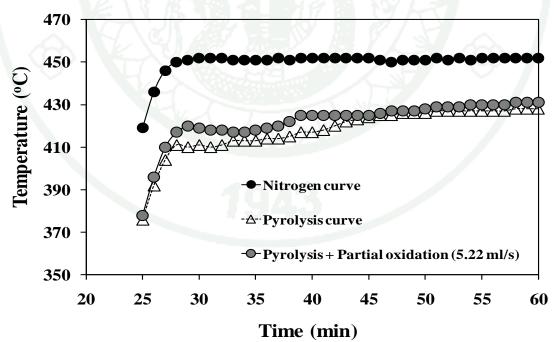
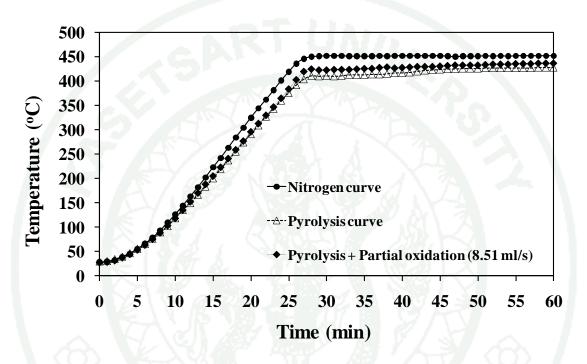
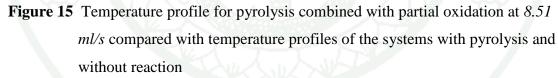




Figure 14 The enlarged temperature profile for pyrolysis combined with partial oxidation at 5.22 ml/s compared with the temperature profiles of the systems with pyrolysis and without reaction.

At higher feed rate of air, 8.51 ml/s. The temperature difference between the pyrolysis and pyrolysis-partial oxidation increased dramatically. The temperature of pyrolysis-partial oxidation system is $13^{\circ}C$ higher than that of the pyrolysis during 25-42 mins. It demonstrates that the partial oxidation of PP or gas products still be the main effect on the increasing of temperature.

At higher feed rate of air, 11.78 ml/s, high temperature difference between pyrolysis and pyrolysis combined with partial oxidation was observed. This is caused by the increasing amount of air feeding. More than 20 °C of temperature difference was observed between 25-37 mins. When PP was all consumed, the temperature difference almost unchanged at 5 °C.



Figure 16 The enlarged temperature profile for pyrolysis combined with partial oxidation at 8.51 ml/s compared with the temperature profiles of the systems with pyrolysis and without reaction

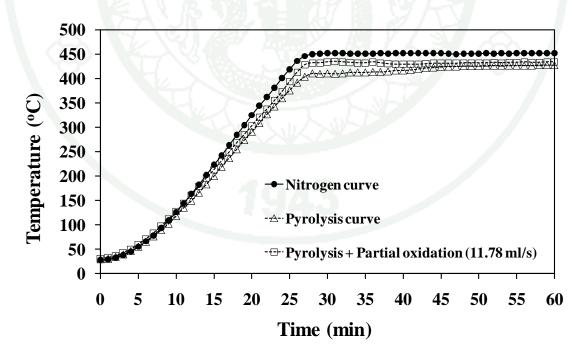


Figure 17 Temperature profile for pyrolysis combined with partial oxidation at *11.78 ml/s* compared with temperature profiles of the systems with pyrolysis and without reaction

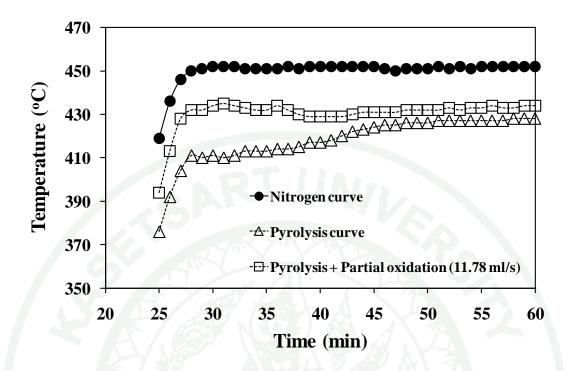


Figure 18 The enlarged temperature profile for pyrolysis combined with partial oxidation at *11.78 ml/s* compared with the temperature profiles of the systems with pyrolysis and without reaction

1.5 The temperature profile in the pyrolysis with partial oxidation and gas recycling

As depicted in Figure 19, this pyrolysis process combined with partial oxidation and gas recycling was conducted. The feed rate of gas recycling was varied at 5.85, 8.27 and 10.7 ml/s. Constant feed rate of air at 8.51 ml/s was used for each experimental run.

ht bu Kasetsart University-All rights reserved

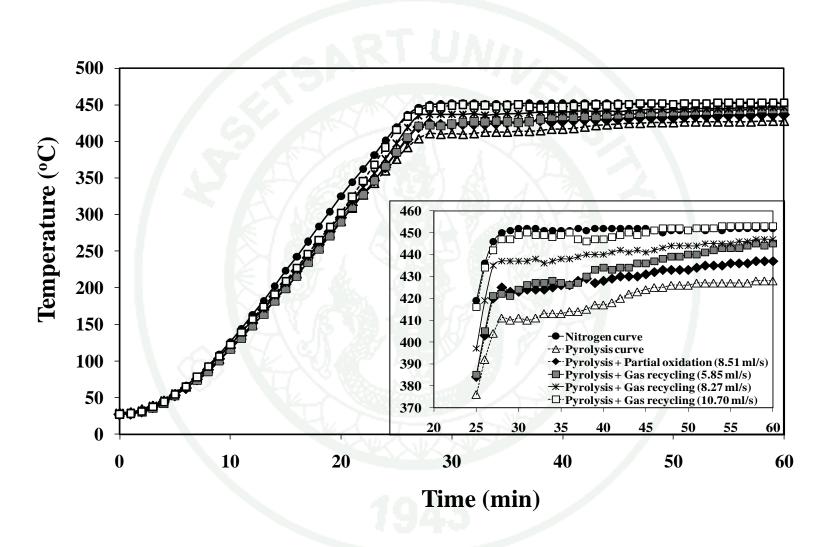


Figure 19 The effect of gas recycling on temperature variation

At low gas recycling feed rate, 5.85 ml/s, the temperature differences between pyrolysis combined with partial oxidation and pyrolysis combined with partial oxidation and gas recycling in the reaction period (25-37 mins) are in the range of 1 to 3 °C. It can be explained that the small amount of product gas which is recycled to the system slightly affects to the temperature in the system. After 37 mins, the temperature profile of pyrolysis combined with partial oxidation and gas recycling was higher than without gas recycling about 7 °C. This is due to the heat release from the oxidation of recycled gas.

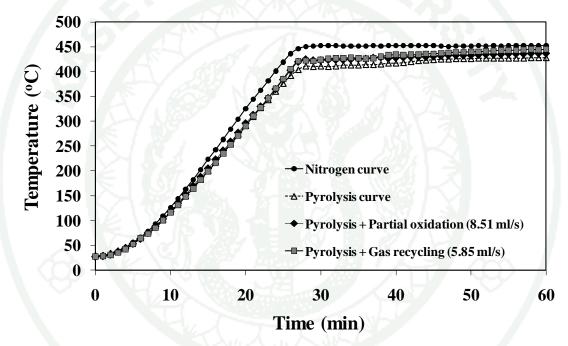


Figure 20 Temperature profile for pyrolysis combined with gas recycling at 5.85 ml/s compared with temperature profiles of the systems with pyrolysis and without reaction

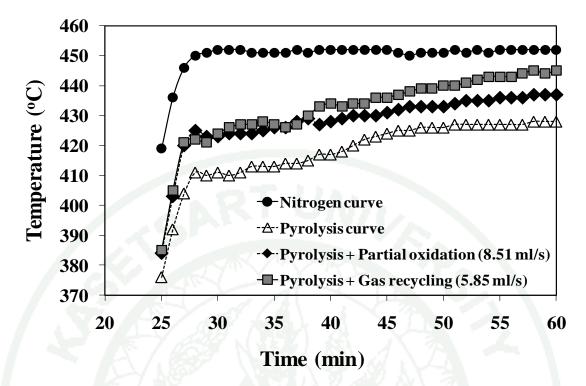


Figure 21 The enlarge temperature profile for pyrolysis combined with gas recycling at 5.85 ml/s compared with temperature profiles of the systems with pyrolysis and without reaction

At higher gas recycling of 8.27 ml/s, the temperature difference between the pyrolysis-partial oxidation and the pyrolysis-partial oxidation-gas recycling increased. The system with gas recycling had $25^{\circ}C$ higher than the system without gas recycling in the period of 25-42 mins. The generated heat from the partial oxidation of gas recycling leads to the rising of the temperature. After 42 mins, the temperature difference slightly increased until the end of the experiment.

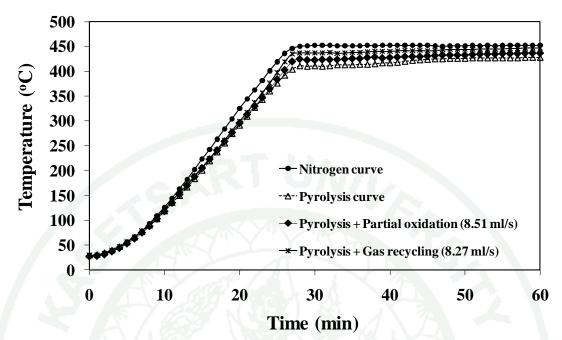


Figure 22 Temperature profile for pyrolysis combined with Gas recycling at 8.27 *ml/s* compared with temperature profiles of the systems with pyrolysis and without reaction

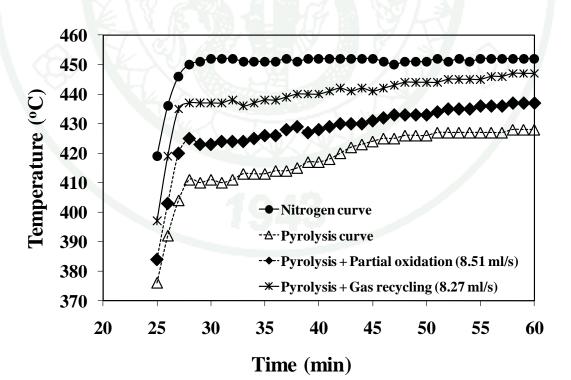


Figure 23 The enlarged temperature profile for pyrolysis combined with gas recycling at 8.27 *ml/s* compared with temperature profiles of the systems with pyrolysis and without reaction

At higher gas recycling feed rate of 10.70 ml/s, the temperature difference of the systems with and without gas recycling was increased dramatically. It had $35^{\circ}C$ higher than the temperature of pyrolysis without gas recycling in the period of 24-41 mins. After PP was consumed, the temperature remained constant and higher than the temperature of the system without gas recycling for 20 $^{\circ}C$.

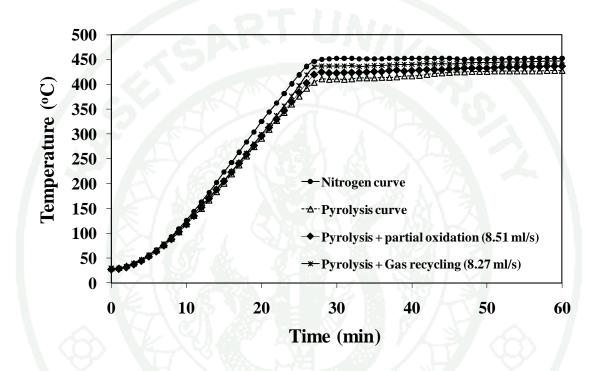


Figure 24 Temperature profile for pyrolysis combined with gas recycling at 10.70 *ml/s* compared with temperature profiles of the systems with pyrolysis and without reaction

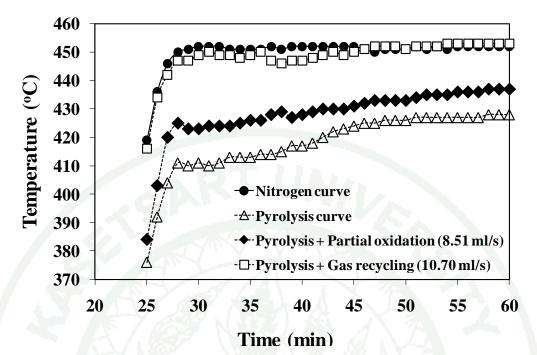


Figure 25 The enlarged temperature profile for pyrolysis combined with gas recycling at *10.70 ml/s* compared with temperature profiles of the systems with pyrolysis and without reaction

1.6 Product distribution of semi-batch reactor

Analysis of hydrocarbon products is essential to ascertain their potential values as fuels or refinery feed stocks. ASTM D-86 was used to determine the proportion of liquid products. As appeared in Figure 26, the percent by weight of liquid product in the pyrolysis-partial oxidation decreases from the pyrolysis case. The increasing of air feed rate in the range of *5.22-11.79 ml/s* leads to the decreasing of liquid product from *63.24 to 51.64 % wt*. It showed that some PP and gas product were consumed to release heat to the system. The increasing of temperature because of released heat from partial oxidation causes increasing of gas product fraction. The total liquid fraction of pyrolysis-partial oxidation-gas recycling is also lower than that of the pyrolysis with partial oxidation. The rising of temperature due to the partial oxidation of some PP, gas product, and recycling gas leads to further cracking. The gas fraction increases with the gas recycling feed rate (see Figure 26).

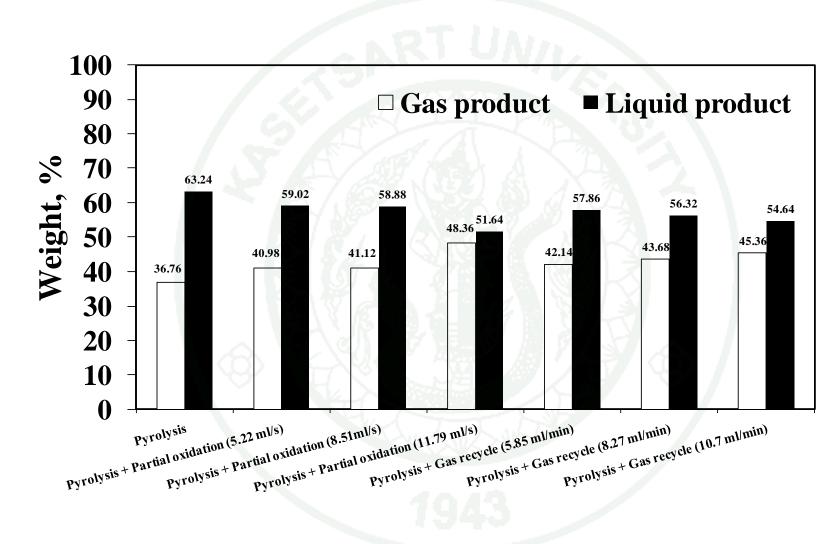


Figure 26 The percent by weight of gas and liquid products of semi-batch reactor

1.7 The liquid product distribution of semi-batch reactor

Figure 27 shows percent yield of liquid product of 50 g PP. For pyrolysis, the main product was kerosene components with 53.18% yield. On the contrary, gasoline and long chain hydrocarbon products (C>18) showed low yield which were 6.55 and 3.50 % respectively. For pyrolysis-partial oxidation, yield of kerosene dramatically reduced to 27.93 %. Increasing yield of gasoline from 6.55 to 7.72 % was achieved. The highest yield of gasoline, 7.72 %, was obtained by using the air feeding at 8.51 ml/s. Some kerosene product is degraded to gasoline product at this condition. The gas oil fractions at the air feed rates of 5.22 and 8.51 ml/s were almost the same. At higher feed rate of air, 11.79 ml/s, the gas oil fraction was the lowest at 15.20 % due to the rising of the temperature from partial oxidation. Addition of partial oxidation leads to the decreasing of the total amount of liquid product due to increasing of system temperature. However, the yield of gasoline in liquid product increases up to 9.00 %. For pyrolysis-partial oxidation-gas recycling, the reducing of gas oil yield from 13.34 to 3.56 % was observed with the increasing of gas recycling from 5.85 to 10.7 ml/min. It can be deduced that the rising of temperature leads to the degradation of long chain hydrocarbon into the kerosene and gasoline product. On the other hand, the yield of gasoline and kerosene increased from 14.55 to 14.90 % and 29.97 to 36.18 % respectively with the increasing of gas recycling. It can be explained that some PP and gas product used to partial oxidation was compensated by recycled gas.

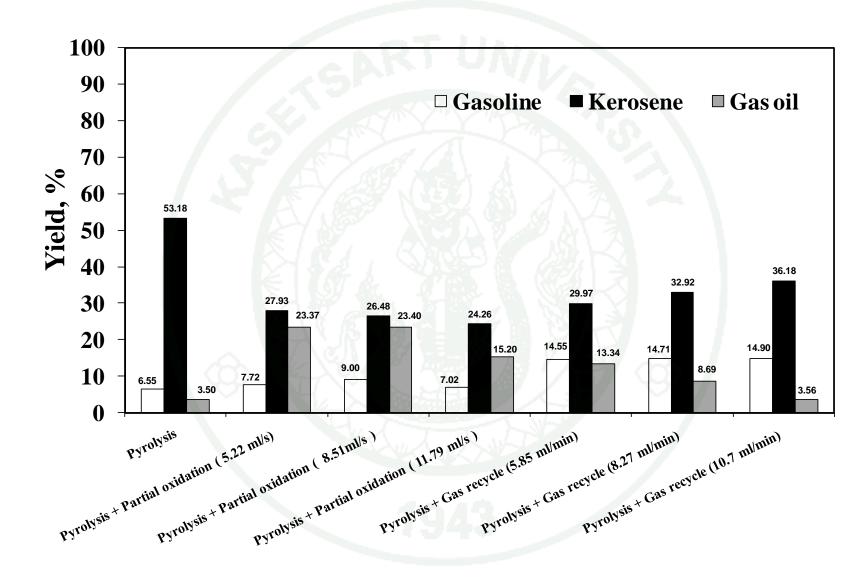
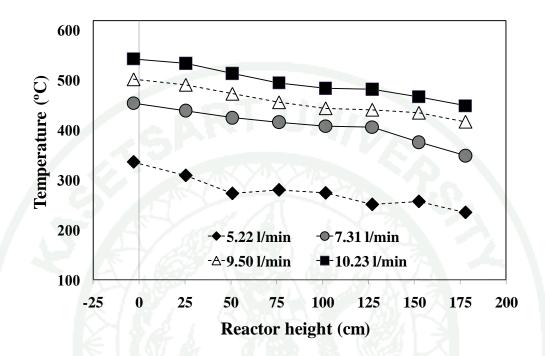


Figure 27 The effect of partial oxidation and gas recycling on the percent yield of liquid product distribution


In the second part, experiments were carried out in a fluidized bed reactor. In the fluidized bed, LPG and air are fed to the burner which located about 45 cm below fluidized bed distributor for combustion. Without plastic feeding, the effects of LPG and air feed rate for burner combustion on the temperature and combustion products were investigated. With plastic feeding, the effect of plastic feed rate, bed temperature obtained by varying LPG and air feed rates, secondary air feed rate for partial oxidation, and gas recycling feed rate on product distributions and production rate were also studied. The temperature profiles, production rate and distribution of gas and liquid were analyzed for comparison among various experimental cases.

2. The result of fluidized bed reactor

2.1 Effect of LPG feed rate on system temperature and combustion products

To ensure the effective combustion of LPG was obtained, the effect of LPG feed rate on system temperature and combustion gases without plastic feeding was investigated. The LPG feed rate was varied in the range of 5.22-10.23 l/min at a fixed air feed rate of 300 l/min. At all LPG feed rates, the highest temperature was detected at the point 3 cm below the distributor where is the nearest measuring point to the burner. The temperature decreases along the reactor height from 336 to 235 °C, 454 to 349 °C, 502 to 417 °C and 543 to 449 °C for the LPG feed rate of 5.22, 7.32, 9.50 and 10.23 l/min, respectively (See Figure 28). The temperature dropped due to heat loss though the wall to the environment.

At the lowest LPG feed rate of 5.22 *l/min*, an unstable flame from the burner was observed due to the insufficient amount of LPG. The average temperature was 272.84 °C. At higher LPG feed rate of 7.31 *l/min*, the flame is more stable and the temperature increases considerably due to effective combustion. It is the result of high LPG feed rates at suitable fuel/air ratios which correspond to the fuel/air ratio of 41.04, 31.58 and 29.32. The average temperatures at the LPG feed rate of 7.31, 9.50 and 10.23 *l/min* were 402, 450 and 496 °C, respectively (See Figure 29). It can be concluded that, in this experimental range, the more LPG feed rate results the higher

reactor temperature due to more heat supplied to the system caused by more combustion reactions.

Figure 28 Temperature profile at various LPG feed rates. The air feed rate is kept constant at *300 l/min*

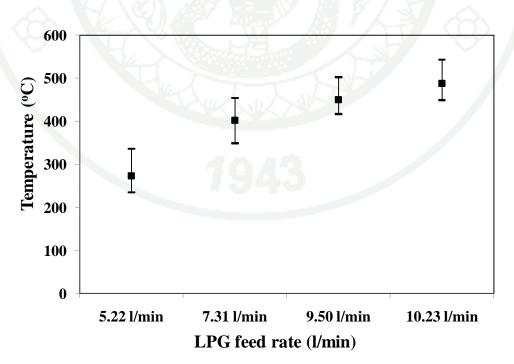


Figure 29 The average temperature at various LPG feed rates . The air feed rate is kept constant at 300 l/min

The combustion product consists of carbon dioxide, carbon monoxide and oxygen. Increasing the LPG feed rate from 5.22 to 10.23 l/min, carbon dioxide increases from 2.91 to 5.42% mol (See Figure 30). At higher feed rate of LPG, more combustion of LPG leads to more carbon dioxide production. This corresponds to decreasing of residual oxygen from 10.91 to 7.00% mol. At the LPG feed rate at and below 9.50 l/min, no carbon monoxide was observed. At the highest feed rate, 10.23 l/min, small amount of carbon monoxide, 0.39 % mol, was found due to incomplete combustion caused by less excess oxygen. The total flow rates of combustion products fed into the fluidized bed reactor are obtained as shown in Figure 31.

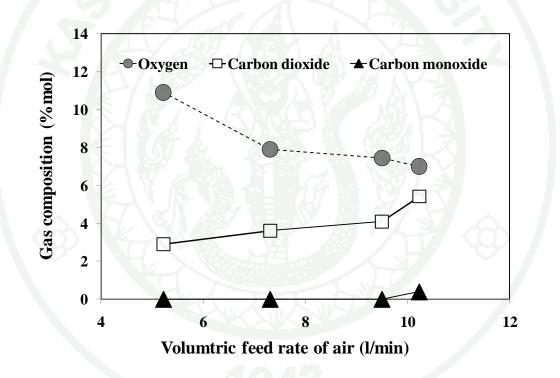


Figure 30 Distribution of combustion product at various LPG feed rates. The air feed rate is kept constant at 300 *l/min*

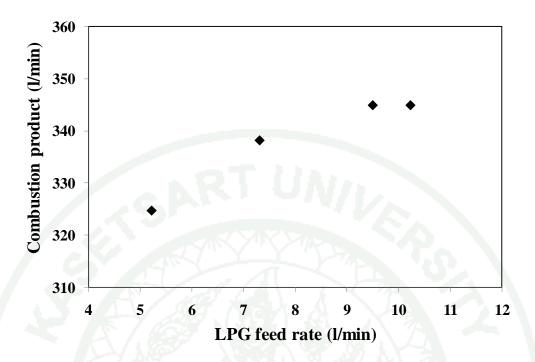
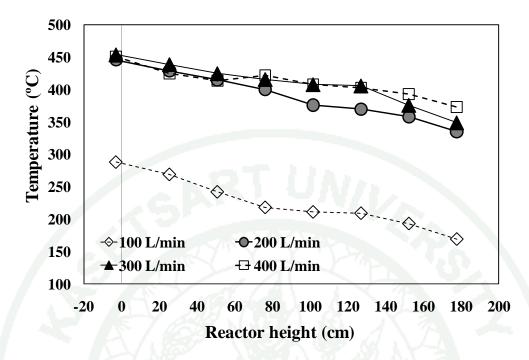



Figure 31 Volumetric flow rate of combustion gas product at various LPG feed rates. The air feed rate is kept constant at 300 *l/min*

2.2 Effect of air feed rate for burner on system temperature and combustion products

Figure 32 illustrates the effect of air feed rate on the temperature of system without plastic feeding. The air feed rate was varied from *100 to 400 l/min* at the fixed LPG feed rate of 7.31 l/min. The temperature along the reactor height for the air feed rates of *100*, *200*, *300* and *400 l/min* decreases from *288 to 169 °C*, *446 to 335 °C*, *454 to 349 °C and 451 to 373 °C*, respectively.

Figue 32 Temperature profile at various air feed rates. The LPG feed rate is kept constant at 7.31 l/min

At the lowest air feed rate of *100 l/min*, the flame was not stable and troublesome ignition was occurred. The average temperature in the system is too low (*224 °C*). Insufficient amount of air results in the incomplete combustion which was confirmed by the presence of carbon monoxide (see also in Figure 34). In contrast, the amount of oxygen is adequate to obtain stable flame and smooth ignition at higher air feed rate, *200-400* l/min. The temperatures were much higher than that obtained at air feed rate of *100 l/min*. At the air feed rates of *200, 300 and 400 l/min*, the average temperatures along the reactor height were *391, 409, and 411°C*, respectively (see Figure 33). It can be seen that, when the air feed rate is enough (*200-400 l/min*), the air feed rate does not affect the system temperature significantly.

56

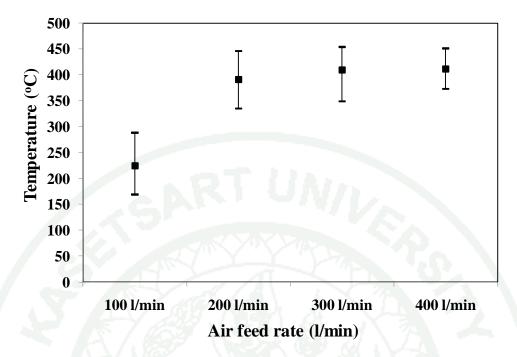
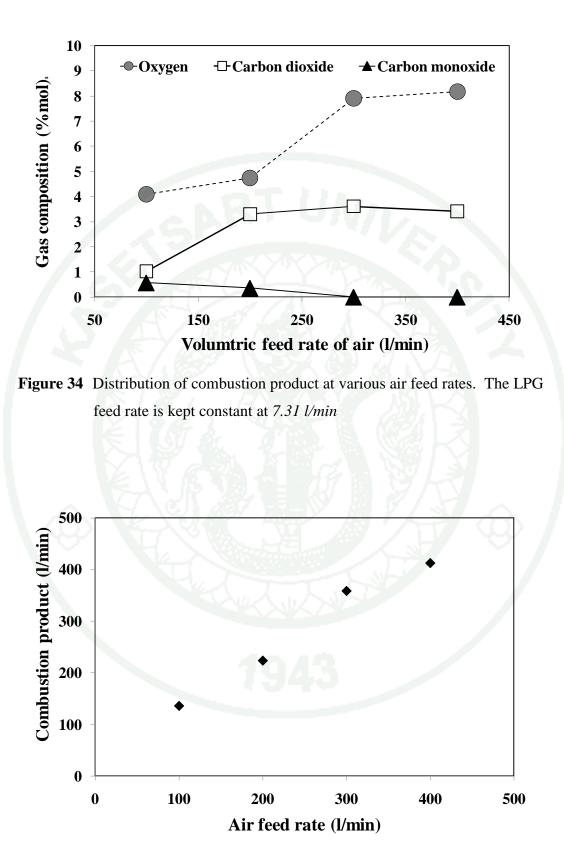
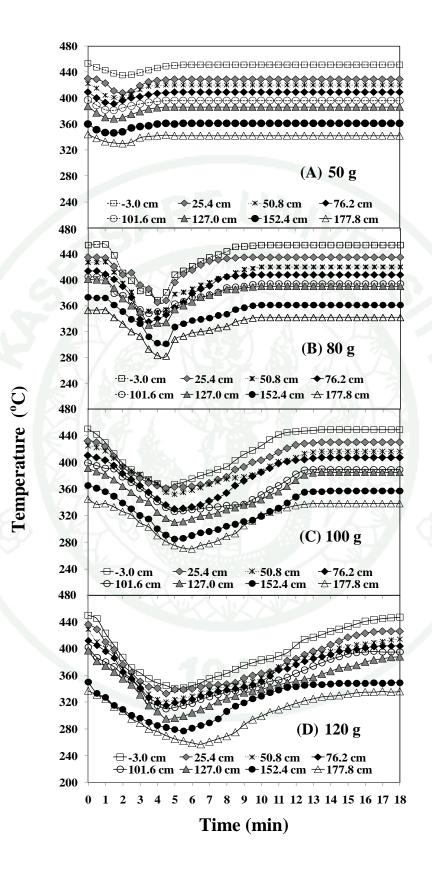



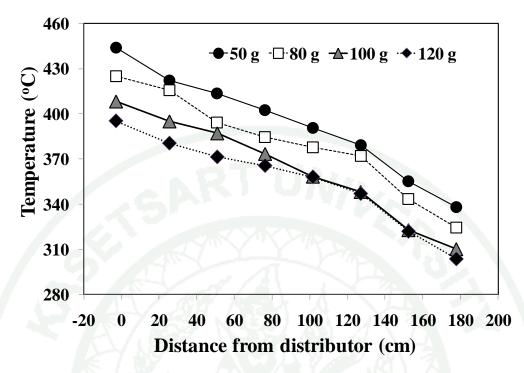
Figure 33 The average temperature at various air feed rates . The LPG feed rate is kept constant at 7.31 *l/min*

With increasing air feed rate from *100 to 400 l/min*, carbon dioxide increases sharply from *1.03 to 3.41% mol* due to the sufficient amount of air for combustion reaction while carbon monoxide decreases from *0.57 to 0 % mol* (see Figure 34). More oxygen leads to more carbon monoxide conversion to carbon dioxide. The oxygen in emission gas increases from *4.08 to 8.18%* with the increasing of air fed rate from *100 to 400 l/min*. The oxygen for combustion reaction is enough and then increases in emission gas. The total flow rates of combustion products fed into the fluidized bed reactor are obtained as shown in Figure 35.

Figure 35 Volumetric flow rate of combustion gas product at various air feed rates. The LPG feed rate is kept constant at 7.31 *l/min*


2.3 Effect of plastic feed rate on system temperature

During plastic feeding into the reactor, the temperature can be reduced due to endothermic reaction of pyrolysis and sensible heat loss to the plastic. In this section, the effect of plastic feed rate on the system temperature was studied.


The effect of the plastic feed rate on the temperature profile has been studied at the plastic feed rates of 25, 40, 50 and 60 g/min. The temperature at 3 cm below distributor was controlled to be $450 \,^{\circ}C$ by using 300 l/min air and 7.31 l/min LPG. At steady state, plastics were fed via a screw feeder into the reactor in period of 2 min with various loadings namely 50, 80, 100 and 120 g (25, 40, 50 and 60 g/min). As depicted in Figure 36, the temperature decreases immediately after plastic feeding. At higher plastic feed rates, the temperature drops more. The temperature drops for some periods of time depending on the extension of the reaction. Higher plastic feed rate causes the longer dropping periods. After the reaction was completed, the temperature rises up to the temperature before plastic feeding and then keeps constant.

As depicted in Figure 37, the time average temperature decreases from 444 to 338 °C, 425 to 325 °C, 408 to 310 °C and 395 to 304 °C at plastic feed rate of 25, 40, 50, and 60 g/min, respectively. It indicates that due to sensible heat and required heat for pyrolysis reaction, an increase of plastic feed rate causes a decrease of time average temperature at all position. From the results, it can be seen that at plastic feed rate at and higher than 40 g/min, heat supplied to the system is inefficiency to keep the system at appropriate temperature.

59

Figure 36 Temperature profile in the system with plastic feeding of (*A*) 50 g, (*B*) 80 g, (*C*) 100 g and (*D*) 120 g, time for plastic feeding is 2 min

Figue 37 The time average temperature at various plastic feed rates. The LPG and air feed rate is kept constant at 7.31 and 300 l/min, respectively.

2.4 Effect of bed temperature on product distributions

The bed temperature is one of the variables which has more influence on the product distributions. Therefore, the effect of bed temperature was investigated. At the beginning, the bed temperature was controlled to be 450 and 480 °C. The LPG feed rates of 7.31 *l/min* and 7.69 *l/min* with air feed rate of 300 *l/min* was used and then keeps constant. After the temperature approached to steady state condition, 50 g of PP was fed into the reactor in period of 2 min. The temperature of the system expected to drop due to the reaction. Plastic feeding was stopped until the system reached to the new steady state condition. Then plastic was fed into the reactor again as a pause cycle and carried for 10 times.

61

2.4.1 Temperature profile at fixed bed temperature of 450 and 480 °C

As shown in Figure 38, the pattern of temperature changes with plastic feeding is almost the same at both of bed temperature. The time average temperature along reactor height decreases from 471 to 350 °C and 435 to 335 °C at bed temperature of 450 and 480 °C, respectively (see Figure 39).

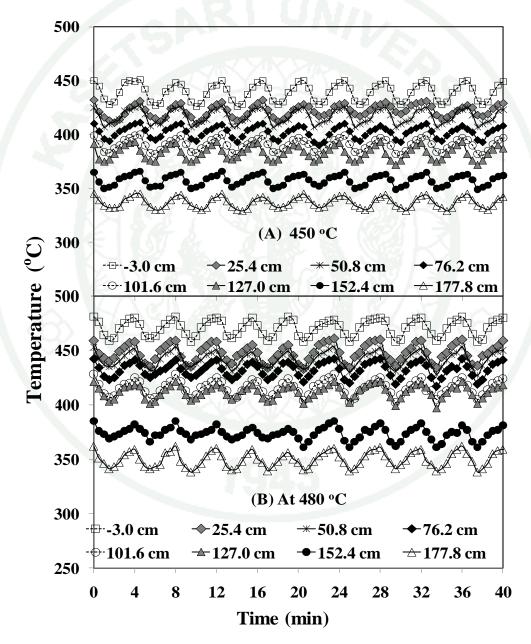
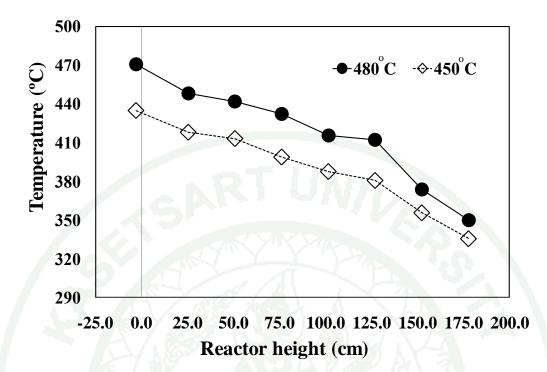



Figure 38 Temperature profile in the system with plastic feeding at different bed temperature

Figue 39 The time average temperature at different bed temperature

2.4.2 Pyrolysis product distribution at fixed bed temperature of 450 and 480 ^{o}C

As depicted in Figure 40, total liquid product decreases from 33.25 to 22.68 wt% whereas gas distribution increases from 66.75 to 77.32 wt% with the increasing of bed temperature from $450 \text{ to } 480 \text{ }^{\circ}\text{C}$. Higher bed temperature causes more cracking of plastic which prefers to produce lower molecular weight product like gas.

The gas product from pyrolysis reaction consists of methane (CH₄), carbon dioxide (CO₂), carbon monoxide (CO) and propane (C₃H₈) (see Figure 41). The production rate of methane is 3.83 g/min and then increases to 4.29 g/min when increases bed temperature from 450 to 480 °C. The breaking polymer from the end group (end-chain scission) leading to more methane production. Production rate of CO was almost the same at both of bed temperature which is 0.28 and 0.30 g/min, respectively. Whereas CO₂ increases from 4.14 to 4.96 g/min with increasing bed temperature from 450 to 480 °C. The results show that other than pyrolysis reaction,

there are some partial oxidation due to residual oxygen from the burner which produced CO and CO₂. At higher bed temperature of $480 \,^{\circ}C$, $0.51 \,\text{g/min}$ of propane was detected due to random chain scission of plastic. At both of bed temperature, there are no C2-C4 was detected as shown in appendix F1.

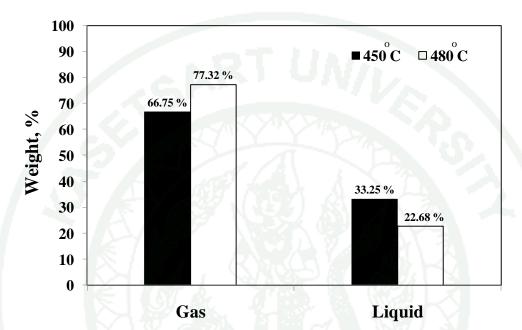


Figure 40 Pyrolysis product distribution at different bed temperature

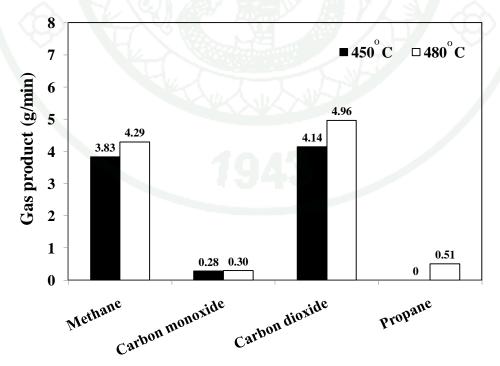


Figure 41 Production rate of gas product at different bed temperature

As shown in Figure 42, liquid product consists of gasoline (C5-C12), kerosene (C13-C17) and gas oil (> C18). As expected, the increasing bed temperature from 450 to 480 ^{o}C causes the decreasing all of liquid production rate. It decreases from 2.46 to 1.50, 1.43 to 1.13 and 0.22 to 0.17 g/min for gasoline, kerosene and gas oil, respectively. It was due to more cracking of liquid product to be gas which is agree well with the increasing of methane when increasing bed temperature. The decreasing of production rate of gasoline is higher than kerosene and kerosene higher than gas oil because the cracking of low molecular weight is easier.

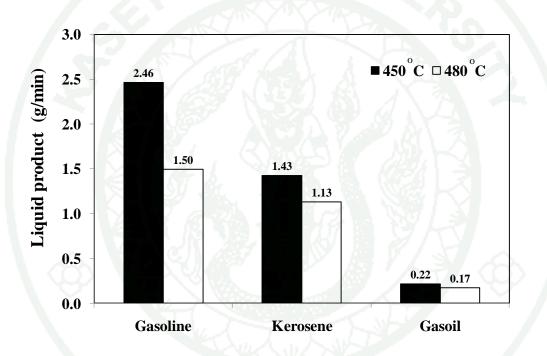


Figure 42 Production rate of liquid product at different bed temperature

2.5 Effect of secondary air for partial oxidation on product distributions

To reduce external heat supplied to the system, secondary air should be added to the system for oxidation of combustible gases. Oxidation is usually exothermic reaction. Therefore, some heat adding is expected from oxidation of light gases with secondary air. The secondary air was mixed with the nitrogen gas in the mixing tank and then fed to the bed of the reactor.

In this section, the effect of secondary air feed rate for partial oxidation on temperature profile, production rate and distribution of gas and liquid were studied. The summary of production rate and distribution of gas and liquid were shown in appendix F3. The secondary air feed rate was varied in the range of 25 to 100 l/min at a fixed LPG feed rate of 7.31 l/min with 300 l/min primary air.

2.5.1 Temperature profile at various secondary air feed rates

As shown in Figure 43, the time average temperature decreases along reactor height from 435 to 336 °C in the case without partial oxidation and decreases from 441 to 337, 442 to 338 and 441 to 337 °C for the beds with the secondary air feed rates of 25, 50 and 100 l/min, respectively. The results show that the presence of secondary air increases the bed temperature compared with the bed without partial oxidation, especially at the lower part of reactor (below 50.8 cm). Increasing of system temperature due to partial oxidation was clearly observed at 25.4 cm height (see Figure 44). At this position, the time average temperature of the system without partial oxidation was 418 °C. It increases from 423 to 427 °C with increasing of air feed rate from 25 to 100 l/min. It can be explained that the majority partial oxidation can increase temperature of the system, the liquid product need to scarify with the energy saving.

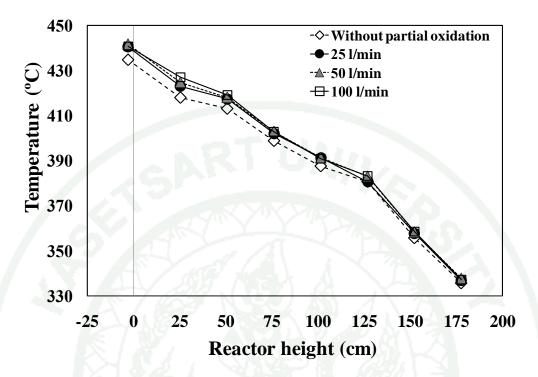


Figure 43 The time average temperature at various secondary air feed rates.

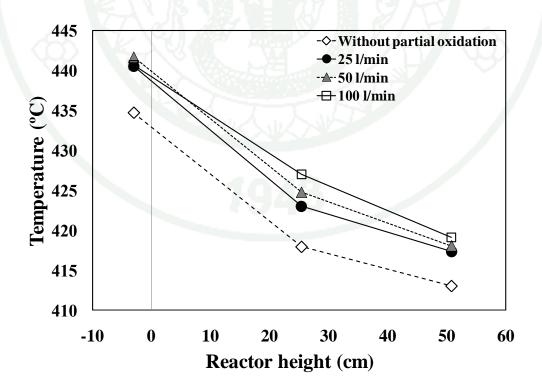


Figure 44 The time average temperature in the area near the distributor at various secondary air feed rates

2.5.2 Production rate and product composition at various secondary air feed rates

Liquid product slightly decreases with increasing secondary air feed rate for partial oxidation. As seen in Figure 45, it was 33.25 wt % in the case without partial oxidation and 30.31, 28.16 and 27.09 wt % with secondary air feed rates of 25, 50, and 100 l/min, respectively. More air feed rate leads to more partial oxidation some of liquid resulting in increasing of gas product.

When increasing secondary air feed rate from 0 to 100 l/min, the production rate of methane decreases from 3.83 to 3.68 g/min. While, the production rate of carbon dioxide and carbon monoxide increases from 4.14 to 4.97 g/min and 0.28 to 0.32 g/min, respectively (see Figure 46). The gas product, carbon number between C2 to C4 was not detected (see appendix F2). Light gas and light liquid can be further oxidized by secondary air to carbon monoxide and carbon dioxide. Increasing secondary air feed rate increases partial oxidation.

Liquid product consists of gasoline, kerosene and gas oil. Increasing of secondary air feed rate from 0 (without partial oxidation) to 100 l/min leads to decreasing of gasoline and kerosene from 2.46 to 1.87 g/min and 1.43 to 1.28 g/min, respectively as shown in Figure 47. While, the production rate of gas oil slightly decreases from 0.22 to 0.20 g/min with increasing of secondary air feed rate 100 l/min. It can be concluded increasing secondary air feed decreases liquid product due to product loss by partial oxidation. Decreasing of lower molecular products is significant at higher secondary air feed rate due to their ease of oxidation.

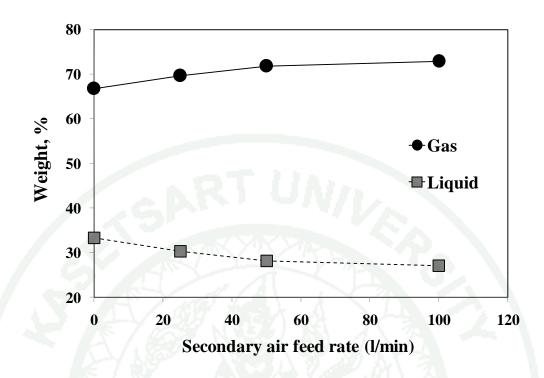


Figure 45 Pyrolysis product distribution at various secondary air feed rates

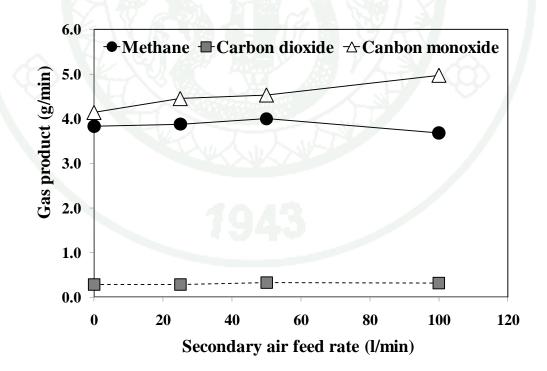


Figure 46 Production rate of gas product at various secondary air feed rates

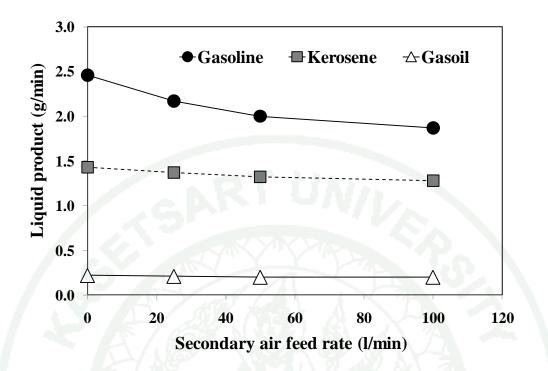


Figure 47 Production rate of liquid product at various secondary air feed rates

2.6 Energy saving by partial oxidation

This section aims to show energy saving by reduction of LPG consumption. Compensation of energy required in reaction is made by the energy from partial oxidation of cracking product with secondary air. The temperature profile of the system with partial oxidation was adjusted to approach that without partial oxidation by adjusting LPG feed rate. The energy supplied to the system of both cases as well as the production rate of gas and liquid were analyzed for comparison.

2.6.1 Production rate and product distribution in the system with and without partial oxidation

Addition partial oxidation into the pyrolysis, addition partial oxidation into the pyrolysis liquid product decreases from *33.25 to 26.95%* (see Figure 48). As mentioned before, some liquid product was consumed for partial

oxidation. Oxidation of hydrocarbons including plastic, liquid and gas products (especially gas which tends to be easily oxidized at lower temperature) can supply heat for endothermic cracking reaction. This leads to energy saving by reducing the LPG consumption. The increasing of gas fraction from *66.75* to *73.04 wt* % due to the presence of partial oxidation for energy saving was observed. The details of production rates and product distribution of liquid and gas product were reported in appendix F3.

Methane production in the system with partial oxidation (3.42 g/min) is lower than that obtained in the system without partial oxidation (3.83 g/min) as shown in Figure 49. This is due to its consumption in partial oxidation with addition of oxygen which corresponds well with the increasing of oxidation products of carbon dioxide from 4.14 to 4.92 g/min. On the other hand, the presence of partial oxidation does not affect the production rate of carbon monoxide. The gas product from C2 to C4 was not observed in this condition.

As shown in Figure 50, all liquid production rates decrease when the systems include partial oxidation. Gasoline, kerosene and gas oil decrease from 2.46 to 1.84 g/min, 1.43 to 1.31 g/min, and 0.22 to 0.17 g/min, respectively. Decreasing of lighter product (gasoline) is higher than medium product (kerosene) and heavy product (gas oil). Liquid product with lower carbon number was easier cracked than that with higher carbon number.

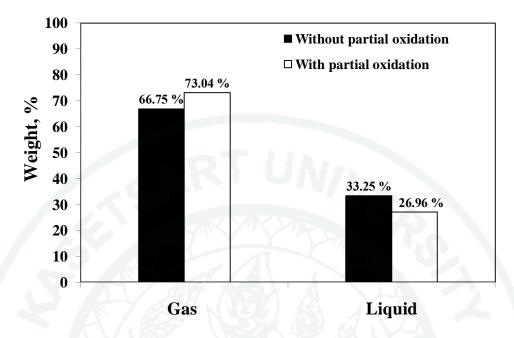


Figure 48 Pyrolysis product distribution in the system with and without partial oxidation. The percent by weight of product is based on total feed weight

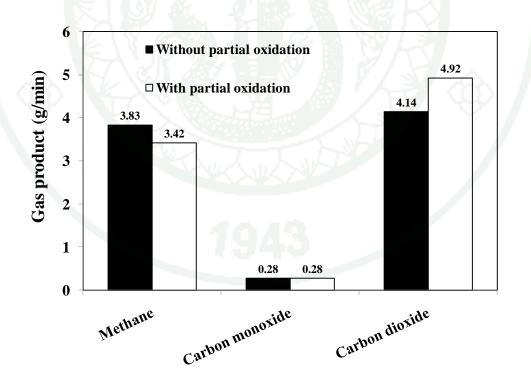


Figure 49 Production rate of gas product in the system with and without partial oxidation. The numbers show the production rates in g/min of each species

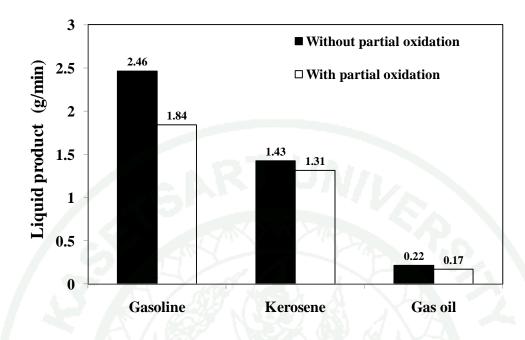


Figure 50 Production rate of liquid product in the system with and without partial oxidation

2.6.2 The amount of energy supplied to the system with and without partial oxidation

By decreasing LPG feed rate from 7.31 *l/min* to 6.59 *l/min* along the operation time, the partial oxidation with secondary air feed rate of 100 *l/min* and plastic loading of 50 g fed as a pulse cycle gave almost the same time average temperature with that of the system without partial oxidation (see Figure 51 (B)). The experiments were repeated for 10 *times*. The heat obtained from partial oxidation can be used to compensate the heat supplied to the system. Including partial oxidation in the pyrolysis can save LPG requirement. LPG feed rate can be reduced from 7.3 to 6.59 l/min. Thus energy requirement is reduced from 26,460 to 23,854 kJ based on 0.5 kg feeding plastic or reduced 9.85 %.

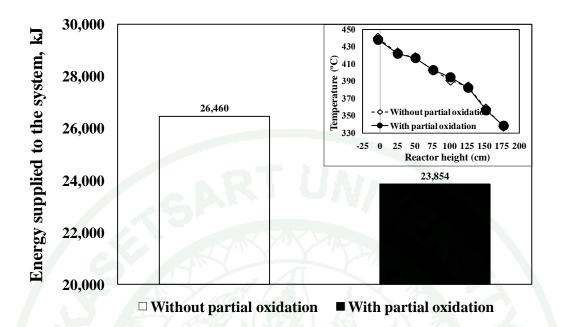


Figure 51 (A) The amount of energy supplied to the system and (B) the time average temperature of the systems with and without partial oxidation

2.6.3 Heating values of liquid fuels obtained from the systems with and without partial oxidation

The heating value is the heat released when one kilogram of a compound undergoes complete combustion with oxygen. The heating value of each liquid species was reported in Table 11.

Table 11 Heating values of liquid fuels

Liquid fuel	Heating value (MJ/kg)	
Gasoline	47.30	
Kerosene	46.20	
Gas oil	42.80	

The heating values of the product liquid can be obtained from the heating values of each component and product distribution (Figure 51).

Lower heating of all liquid products in the systems with partial oxidation were observed (see Table 12). The total heating value of liquid products in the system with partial oxidation was reduced with *19.29* %.

 Table 12 Heating values of liquid products in the systems with and without partial oxidation

I N	Total weight (g)		Heating values (kJ)	
Liquid fuel	Without partial oxidation	With partial oxidation	Without partial oxidation	With partial oxidation
Gasoline	99.63	74.52	4,712.50	3,524.80
Kerosene	57.92	53.06	2,675.90	2,451.37
Gas oil	8.91	6.89	381.35	294.89
Total	166.46	134.47	7,769.75	6,271.06

2.6.4 Heating values of gas product obtained from the systems with and without partial oxidation

The heating value of gas product, carbon monoxide and methane, were reported in Table 13.

 Table 13 Heating values of fuel gas

Gas fuel	Heating value (MJ/kg)		
Carbon monoxide	10.11		
Methane	55.50		

Gas product contained fuel gases such as CO_2 and CH_4 . Heating values of the product gases can be calculated from heating values of each gas and gas composition. Table 14 shows the heating values of product gas.

As shown in Table 14, heat values of product gases in the system without partial oxidation is higher that the system with partial oxidation by *10.57 %*. Some methane gas in the case with partial oxidation was consumed in oxidation which provided heat for compensating the supplied heat decrease due to decreased LPG feed rate.

Table 14 Heating values of fuel gas

	Total weight (g)		Heating value (kJ)		
Gas fuel	Without partial oxidation	With partial oxidation	Without partial oxidation	With partial oxidation	
Methane	155.12	138.51	8,609.16	7,687.31	
Carbon monoxide	11.20	11.20	113.12	113.12	
Total	166.32	149.71	8,722.28	7,800.43	

2.6.5 Total energy saving by partial oxidation

Based on 0.5 kg of PP feeding, the energy saving by partial oxidation due to the decreasing of LPG feed rate was 2,606 kJ. The presence of partial oxidation decreases gas and liquid products with heating value of 922 and 1,499 kJ, respectively. Therefore the total energy saving was 185 kJ which is 0.70 %.

2.7 Effect of gas recycling

Some gas products from pyrolysis are combustible such as CH₄ and CO. Recycling of the product gas can reduce inert gas usage. Moreover, the fuel gas can be oxidized then the energy will be released. In the system with gas recycling, *100 l/min* of gas product and inert gas were recycled to the system by an air pump. It was mixed with 50 *l/min* of fresh nitrogen (decrease from 150 *l/min* in the system without gas recycling) and *100 l/min* secondary air for partial oxidation. The LPG and air feed rates of 6.59 and 300 *l/min*, respectively coupled with 100 *l/min* secondary air were kept constant in both of the systems with and without gas recycling. Plastic loading of 50 g was fed to the system as a pulse cycle for 10 times. Temperature profile, production rate and product distribution of gas and liquid were analyzed for comparison.

2.7.1 The effect of gas recycling on system temperature and fluidizing gas saving

With gas recycling of 100 *l/min*, nitrogen can be reduced from 28.03 to 18.69 kg (based on 0.5 kg of plastic) which was 34.28 % reduction to keep the fluidizing gas constant at 1.5 U_{mf} (see Figure 52). As shown in Figure 53, the system temperature with gas recycling was higher than that in the system without gas recycling at all positions especially at 25.4 cm height where the main reaction occurs (see Figure 54). The combustible gases containing CH₄, CO (see section 2.6.2) recycled to the system were oxidized and then produced heat was supplied to the system leading to higher temperature.

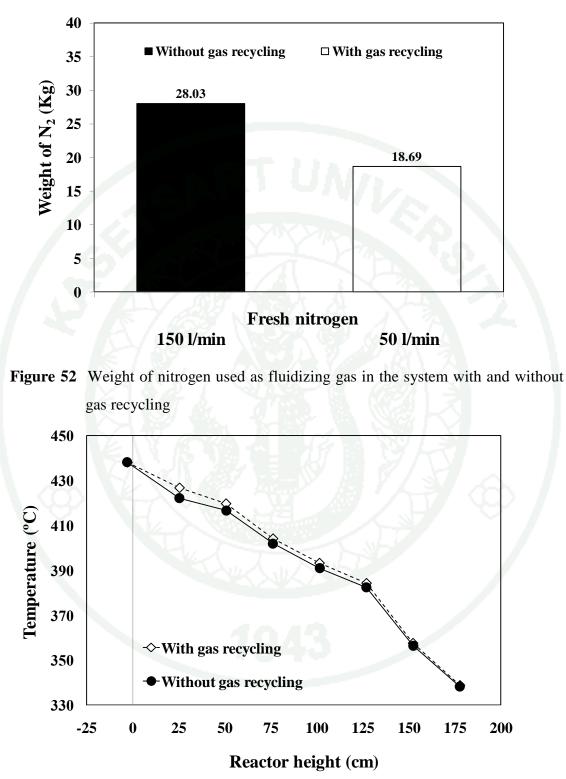


Figure 53 The time average temperature in the systems with and without gas recycling

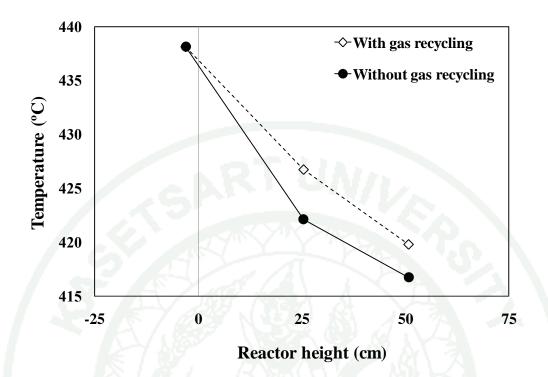


Figure 54 The time average temperature in the area near the distributor in the systems with and without gas recycling

2.7.2 Production rate and product distribution in the systems with and without gas recycling

Liquid and gas products in the systems with and without gas recycling were almost the same. Liquid product in the system with recycling was slightly with higher gasoline (see Figures 55 and 57). The maximum temperature increase of $5 \, ^{o}C$ is not enough to affect the change of products. Methane increases due to methane recycling although combustible gases recycled are expected to be oxidized, however, methane and carbon monoxide in the outlet gas are still higher as seen in Figure 56 (Although, slightly). It means that methane was not all consumed for oxidation. The results of this section show that slightly higher bed temperature in the system with recycling provides similar liquid product. More work in testify with higher recycling rate of gas should be tested for better explanation.

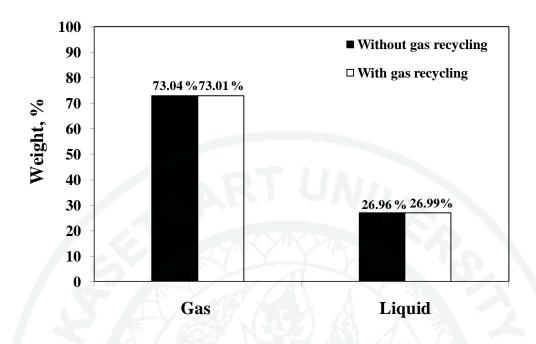


Figure 55 Pyrolysis product distribution in the systems with and without gas recycling

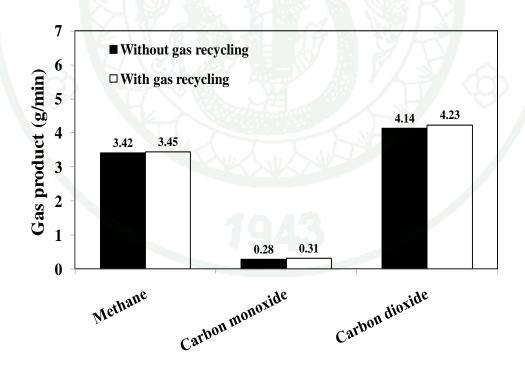


Figure 56 Production rate of gas product in the systems with and without partial gas recycling

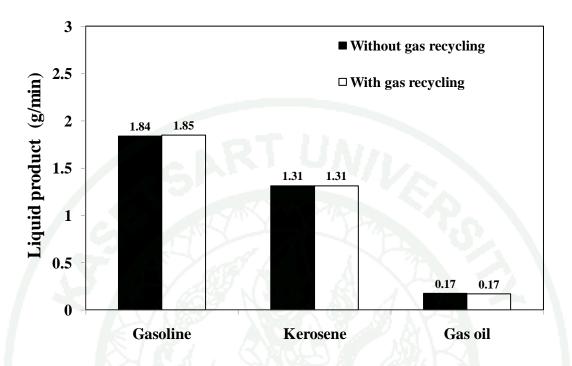


Figure 57 Production rate of liquid product in the systems with and without gas recycling

2.8 Energy saving by gas recycling

The energy saving by partial oxidation of recycled gas and pyrolysis product gas are shown in this section. In the system with gas recycling, *100 l/min* mixture of gas product and inert gas was recycled to the system by an air pump. The primary air and secondary air feed rates were kept constant at *300* and *100 l/min*, *respectively* in both systems with and without gas recycling. The temperature profile of the system with gas recycling was adjusted to approach that in the system without gas recycling by adjusting LPG feed rate. The energy supplied to the systems for both cases as well as production rate were analyzed for comparison.

2.8.1 Production rate and product distribution in the systems with and without gas recycling operated at the same temperature

At almost the same system temperature, the liquid fraction from the system with gas recycling (27.02 wt %) is slightly higher than without gas recycling (26.96 wt %) as shown in Figure 58. Whereas, methane production rate decreases with the reduction of LPG feed rate from 3.42 to 3.39 wt %. The decreased methane was consumed for compensating the reduced LPG feed rate as shown in Figure 59. Decreasing supplied heat to the system leads to higher methane consumption for partial oxidation which is corresponding well with the increasing of combustion product (carbon dioxide and carbon monoxide). The production rate of gasoline in the system with gas recycling is slightly higher than that of the system without gas recycling. It means that recycled gas can reduce the consumption of gasoline for oxidation. Thus gasoline production rates of kerosene and gas oil as shown in Figure 60. More work with higher recycling rate of gas should be tested for better explanation.

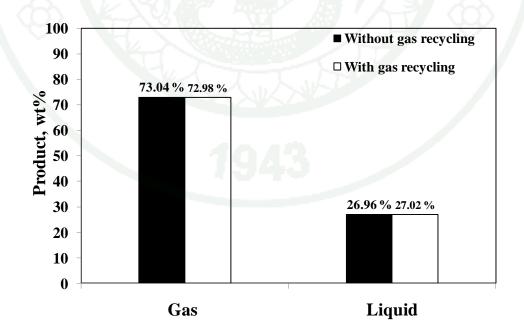


Figure 58 Pyrolysis products in the systems with and without gas recycling at the same operating temperature conditions

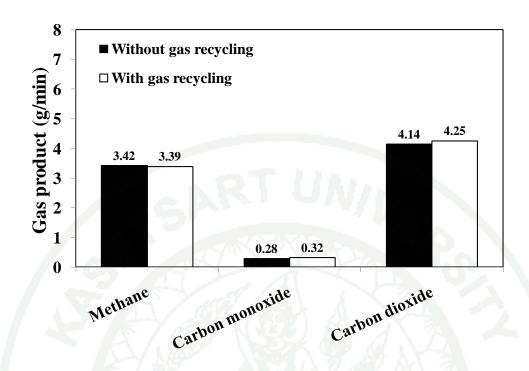


Figure 59 Production rate of gas product in the systems with and without gas recycling at the same operating temperature conditions

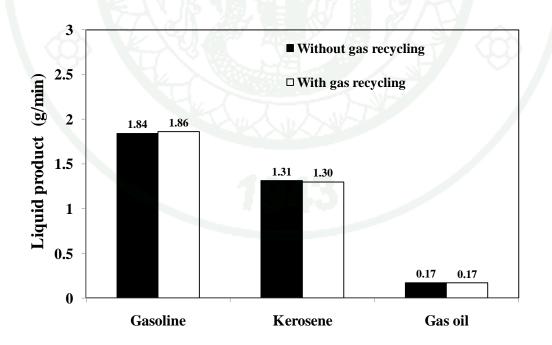
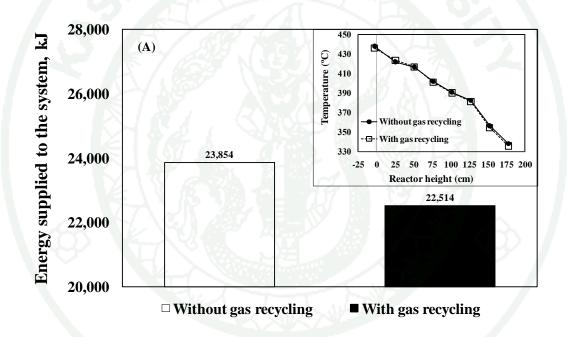
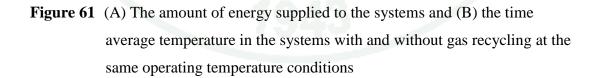




Figure 60 Production rate of liquid products in the systems with and without gas recycling at the same operating temperature conditions

2.8.2 The amount of energy supplied to the systems with and without gas recycling at the same operating temperature conditions

As shown in Figure 61, when the systems are operated without gas recycling and with gas recycling at the same temperature, the system with gas recycling requires less LPG. Therefore operation with gas recycling can save required energy. Based on 0.5 kg of plastic feeding, 5.62 % energy saving was found as in Figure 61. It can be explained that the heat obtained from oxidation of recycled gases can reduce 5.62 % energy input requirement.

2.8.3 Heating values of liquid fuels in the systems with and without gas recycling operated at the same temperature

The heating values of liquid products in the systems with and without gas recycling at the same operating temperature conditions is shown in Table 15.

Table 15 Heating values of liquid products in the systems with and without gas recycling operated at the same temperature

	Total weight (g)		Heating values (kJ)	
Liquid fuel	Without gas recycling	With gas recycling	Without gas recycling	With gas recycling
Gasoline	74.52	75.33	3,524.80	3,563.11
Kerosene	53.06	52.65	2,451.37	2,432.43
Gas oil	6.89	6.89	294.89	294.68
Total	134.47	134.87	6,271.06	6,290.22

In the system operated with 0.5 kg of plastic, the heating values of liquid products with and without gas recycling at the same operating temperature conditions are shown in Table 15. With gas recycling, the heating value is slightly higher than that in the system without gas recycling due to higher amount of gasoline. On the other hand, the heating values of kerosene and gas oil show insignificantly different between both cases.

2.8.4 Heating values of gas fuels obtained from the systems with and without gas recycling operated at the same temperature

As shown in Table 16, the heating values of gases in the system with gas recycling is lower than that the system without gas recycling operated at the same temperature. Less LPG was used in the system with gas recycling leading to lower methane. Methane gas was recycled and oxidized. Thus lower methane rate was found in the system with recycling leading to lower heating value. However, carbon monoxide is increased. The increasing of carbon monoxide in the system with gas recycling does not significantly affect the total gas product heat values due to its lower heating value.

Ě	Total weight (g)		Heating values (kJ)	
Gas fuel	Without gas recycling	With gas recycling	Without gas recycling	With gas recycling
Methane	138.51	137.29	7,687.31	7,619.60
Carbon monoxide	11.34	12.96	114.65	131.03
Total	149.85	150.25	7,801.96	7,750.63

Table 16 Heating values of gas products

2.8.5 Total energy saving in the system with gas recycling

Based on 0.5 kg of PP feeding, the energy saving by gas recycling due to the decreasing of LPG feed rate was 1,340 kJ. The presence of partial oxidation combined with gas recycling increases liquid products with the heating value of 19.16 kJ. On the other hand, gas product is lower with 51.33 kJ. Therefore the total energy saving is 1,307.83kJ which is 5.48 %.

2.9 Effect of quenching in upper zone of reactor on the reactor performance

The pyrolysis product flowing out from the reactor can be further thermal cracked at hot zone in the upper zone of the reactor leading to lower liquid production, especially, at very high bed temperature (i.e $500 \,^{o}C$). In this section, upper zone quenching by feeding cold nitrogen at the upper part of reactor (*152.4 cm* height) is proposed. *50 l/min* of fresh nitrogen at room temperature is injected to the upper zone to quench. The bed temperature was controlled at $500 \,^{o}C$ with $9.50 \, l/min$ LPG with *300 l/min* air. The temperature in the upper zone of the system is expected to drop due to cold nitrogen feeding. The rapid cooling of product stops further cracking to reduce lower molecular weight products. Temperature profile, production rate and product distribution of gas and liquid were analyzed for comparison.

2.9.1 Effect of upper zone quenching on temperature profile

The temperature profiles of the system with and without product quenching are shown in Figure 62. In the lower part (below 75.4 cm height), quenching does not affect the temperature profiles. However above 107.0 cm where is the feeding point the temperature drops significantly and drops to $332 \ ^{o}C$ at the top of the reactor.

2.9.2 Effect of quenching on product distributions

The effect of quenching with cold nitrogen feeding (50 l/min) with high bed temperature on product distribution was studied. The liquid product was extremely lower than that in the system at lower bed temperature (see Section 2.4.2). At higher bed temperature, thermal cracking of plastic is higher producing low molecular weight products. However, the liquid product in the system with quenching is slightly higher than that of the system without quenching (higher by 0.42 %).

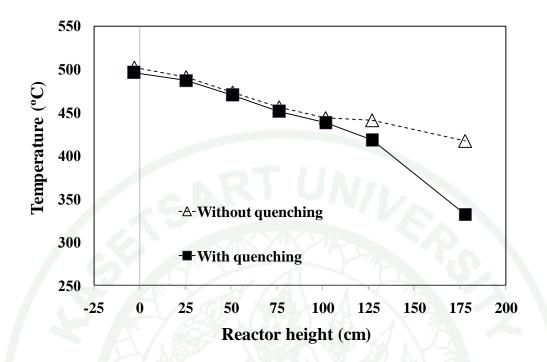
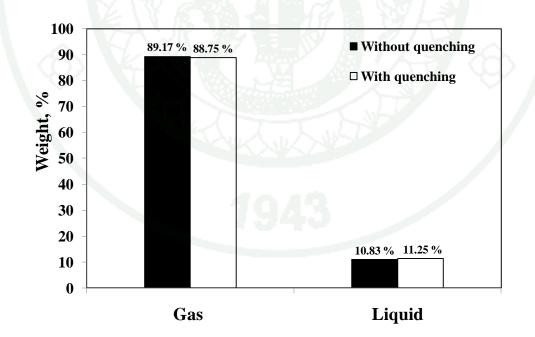
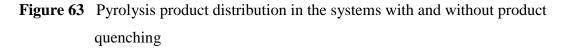




Figure 62 The time average temperature of the reactor with and without quenching

The production rate of methane in the system at 500 oC is extremely higher than that in the system at 450 oC (see Section 2.4.3). At higher bed temperature, overcracking leads to more production of lower molecular weight products. The production rate of methane of the system with quenching is slightly lower than that without product quenching. This is due to lower temperature in the upper zone leading to less low molecular weight gas production. However, quenching does not affect the production rate of carbon dioxide and carbon monoxide (see Figure 64).

As seen in Figure 65, the production rate of gasoline with quenching is higher than that without product quenching. Similarly, the production rates of kerosene and gas oil of the system with quenching are also higher than that of without quenching. It can be concluded that the presence of quenching can help stopping further cracking leading to high liquid production. However, more work in testify with lower bed temperature combined with quenching or higher flow rate of cold nitrogen for quenching should be tested for more information.

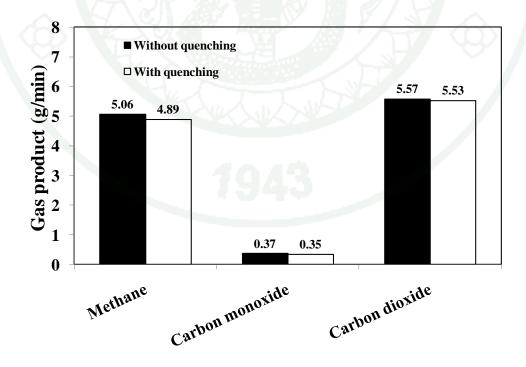


Figure 64 Production rates of gas products in the systems with and without quenching

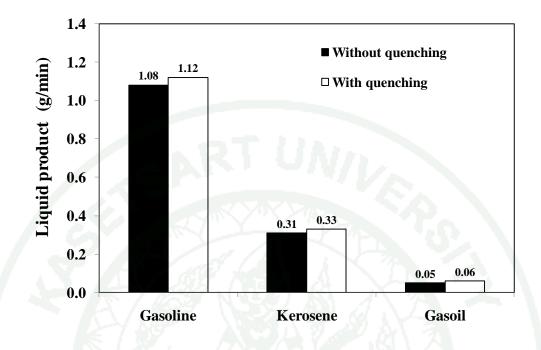


Figure 65 Production rates of liquid products in the system with and without quenching

CONCLUSIONS

1. In semi batch reactor, the increasing of temperature of $5-30 \ ^{o}C$ showed clearly to be the effects of oxygen and gas recycling adding. The presence of gas recycling leads to the decreasing of the total amount of liquid product. However, the yield of gasoline in liquid product increases up to 9.00 %.to 14.30 %.

2. The increasing of LPG and air feed rate increases the fluidized bed reactor temperature. The increasing bed temperature form $450 \text{ to } 480 \text{ }^{o}C$ causes the decreasing liquid fraction from 33.25 to 22.68 %.

3. The partial oxidation appeared to have a significant effect on the fluidized bed reactor temperature and product distribution. The increase of partial oxidation increases the system temperature of $5-10^{\circ}C$. Base on 0.5 kg of plastic feeding, the present of partial oxidation also provides energy saving of 0.70 %.

4. Base on 0.5 kg of plastic feeding, the gas recycling can reduce the inert gas usage of 18.68 kg and can save the energy input of 5.48 % due to the oxidation of combustible gases.

LITERATURE CITED

- Demirbas, A. 2004. Pyrolysis of municipal plastic waste for recovery of gasolinerange hydrocarbons. J. Anal. Appl. Pyrol 72: 97–102.
- Lee, C.G., Y.J Cho., P.S Song., Y. Kang., J. S. Kim and M. J. Choi. 2003. Effects of temperature distribution on the catalytic pyrolysis of polystyrene waste in a swirling fluidized-bed reactor. Catal. Today 79: 453–464.
- Baron, J., E. M. Bulewicz., W. Z. Ukowski, S. Kandefer and M. Pilawska. 2002. Combustion of Hydrocarbon Fuels in a Bubbling Fluidized Bed. Combust. Flame 128:410-421.
- Wang, L., P. Wu and X. Ni. 2006. Combustion of liquid petroleum gas in a fluidized bed furnace with a jetting-mixing distributor. **Powder Technology** 170: 86–93
- Aznar, M.P., M. A. Caballero., J. A. Sancho and E. Frances. 2006. Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Process. Technol 87: 409–420.
- Murty M.V.S., P. Rangarajan, E.A. Grulke and D. Bhattacharyya. 1996.
 Thermaldegradation/ hydrogenation of commodity plastics and characterization of their liquefaction products. Fuel Processing Technology 49: 75-90.
- Kiran N., E. Ekinci and C.E. Snape. 2000. Recyling of plastic waste via pyrolysis. **Resour. Conserv. Recycl** 29: 273–283.
- Horvat N and T.T.N Flora. 1999. Tertiary polymer recycling: study of polyethylene thermolysis as a first step to synthetic diesel fuel. **Fuel** 78: 459–470.

- Williams P.T and E. Slaney. Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures. **Resour. Conserv. Recycl** 51: 754– 769.
- Williams P.T and E. A. Williams. 1999. Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock. J. Anal. Appl. Pyrolysis 51: 107–126.
- Xiao R., B. Jin., H. Zhou, Z. Zhong and M. Zhang. 2007. Air gasification of polypropylene plastic waste in fluidized bed gasifier. Energy Convers. Manage 48: 778–786.
- Kim S.S and S. Kim. 2004. Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor. **Chem. Eng. J** 98: 53–60.
- Ucara S., S. Karagoz, T. Karayildirim and J. Yanik. 2002. Conversion of polymers to fuels in a refinery stream. **Polym. Degrad. Stab.** 75: 161–171.
- Kruse T.M., S. E. Levine., H. W. Wong., E. Duoss, A. H. Lebovitz, J. M. Torkelson and L. J. Broadbelt. 2005. Binary mixture pyrolysis of polypropylene and polystyrene: A modeling and experimental study. J. Anal. Appl. Pyrolysis 73: 342–354.
- Kaminsky, W., M. Predel and A. 2004. Sadiki. Feedstock recycling of polymers by pyrolysis in a fluidised bed. **Polym. Degrad. Stab.** 85: 1045-1050.
- Ding, W., J. Liang and L. L. Anderson. 1997. Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste. Fuel Process. Technol. 51: 47-62.

APPENDICES

Appendix A

The temperature profile in semi-batch reactor

Time (min)	Temperature (°C)	Time (min)	Temperature (°C)
0	28	31	452
1	29	32	452
2	32	33	451
3	38	34	451
4	45	35	451
5	55	36	451
6	66	37	452
7	78	38	451
8	93	39	452
9	109	40	452
10	126	41	452
11 🧉	144	42	452
12	163	43	452
13	182	44	452
14	202	45	452
15	223	46	451
16	242	47	450
17	263	48	451
18	284	49	451
19	304	50	451
20	325	51	452
21	344	52	451
22	362	53	452
23	381	54	451
24	401	55	452
25	419	56	452
26	436	57	452
27	446	58	452
28	450	59	452
29	451	60	452
30	452		

Time (min)	Temperature (°C)	Time (min)	Temperature (°C)
0	29	31	410
1	30	32	411
2	34	33	413
3	39	34	413
4	46	35	413
5	55	36	414
6	65	37	414
7	76	38	415
8	89	39	417
9	102	40	417
10	118	41	418
11 🔶	135	42	420
12	149	43	422
13	166	44	423
14	183	45	424
15	200	46	425
16	219	47	425
17	237	48	426
18	255	49	426
19	274	50	426
20	291	51	427
21	309	52	427
22	327	53	427
23	343	54	427
24	360	55	427
25	376	56	427
26	392	57	427
27	404	58	428
28	411	59	428
29	410	60	428
30	411		

Time (min)	Temperature (°C)	Time (min)	Temperature (°C)
0	31	31	418
1	32	32	418
2	34	33	417
3	40	34	417
4	47	35	418
5	56	36	419
6	67	37	420
7	70	38	422
8	91	39	425
9	105	40	425
10	120	41	425
11 🔶	136	42	425
12	152	43	425
13	170	44	425
14	187	45	425
15	204	46	426
16	220	47	427
17	239	48	427
18	258	49	427
19	275	50	428
20	291	51	429
21	309	52	429
22	327	53	429
23	343	54	430
24	360	55	430
25	378	56	430
26	396	57	430
27	410	58	431
28	417	59	431
29	420	60	431
30	419		

Table A3 The system with pyrolysis combined with partial oxidation at 5.22 ml/s

Time (min)	Temperature (°C)	Time (min)	Temperature (°C)		
0	29	31	410		
1	30	32	411		
2	34	33	413		
3	39	34	413		
4	46	35	413		
5	55	36	414		
6	65	37	414		
7	76	38	415		
8	89	39	417		
9	102	40	417		
10	118	41	418		
11	135	42	420		
12	149	43	422		
13	166	44	423		
14	183	45	424		
15	200	46	425		
16	219	47	425		
17	237	48	426		
18	255	49	426		
19	274	50	426		
20	291	51	427		
21	309	52	427		
22	327	53	427		
23	343	54	427		
24	360	55	427		
25	376	56	427		
26	392	57	427		
27	404	58	428		
28	411	59	428		
29	410	60	428		
30	411				

Table A4 The system with pyrolysis combined with partial oxidation at 8.51 ml/s

Time (min)	Temperature (°C)	Time (min)	Temperature (°C)
0	31	31	435
1	33	32	434
2	36	33	433
3	43	34	432
4	50	35	432
5	60	36	434
6	71	37	432
7	83	38	430
8	97	39	429
9	112	40	429
10	127	41	429
11 🔶	144	42	429
12	161	43	430
13	178	44	431
14	196	45	431
15	213	46	431
16	231	47	431
17	249	48	432
18	268	49	432
19	285	50	432
20	303	51	432
21	321	52	433
22	337	53	432
23	355	54	433
24	373	55	433
25	394	56	434
26	413	57	433
27	428	58	433
28	432	59	434
29	432	60	434
30	434		

Table A5 The system with pyrolysis combined with partial oxidation at 11.78 ml/s

Time (min)	Temperature (°C)	Time (min)	Temperature (°C)
0	27	31	426
1	28	32	427
2	30	33	427
3	35	34	428
4	42	35	427
5	52	36	426
6	64	37	427
7	73	38	430
8	85	39	433
9	100	40	434
10	116	41	433
11 🔶	131	42	434
12	148	43	434
13	164	44	436
14	182	45	436
15	199	46	437
16	216	47	438
17	235	48	439
18	253	49	439
19	271	50	440
20	290	51	440
21	310	52	441
22	327	53	442
23	346	54	443
24	366	55	443
25	385	56	443
26	405	57	444
27	421	58	445
28	422	59	444
29	421	60	445
30	424		

Table A6The system with pyrolysis combined with gas recycling at 5.85 ml/s

Time (min)	Temperature (°C)	Time (min)	Temperature (°C)	
0	29	31	437	
1	30	32	438	
2	33	33	436	
3	39	34	437	
4	46	35	438	
5	56	36	438	
6	66	37	439	
7	78	38	440	
8	91	39	440	
9	106	40	440	
10	121	41	441	
11 🔶	139	42	442	
12	155	43	441	
13	171	44	442	
14	189	45	441	
15	206	46	442	
16	224	47	443	
17	242	48	444	
18	261	49	444	
19	280	50	444	
20	299	51	444	
21	317	52	445	
22	337	53	445	
23	356	54	445	
24	376	55	445	
25	397	56	446	
26	419	57	446	
27	435	58	447	
28	437	59	447	
29	437	60	447	
30	437			

Table A7 The system with pyrolysis combined with gas recycling at 8.27 ml/s

Time (min)	Temperature (°C)	Time (min)	Temperature (°C)
0	27	31	450
1	28	32	449
2	31	33	449
3	37	34	448
4	44	35	449
5	54	36	450
6	65	37	447
7	78	38	446
8	92	39	447
9	106	40	447
10	122	41	448
11 🔶	139	42	449
12	157	43	450
13	174	44	449
14	191	45	450
15	209	46	451
16	227	47	452
17	246	48	452
18	265	49	452
19	283	50	451
20	302	51	452
21	324	52	452
22	346	53	452
23	368	54	453
24	392	55	453
25	416	56	453
26	434	57	453
27	442	58	453
28	447	59	453
29	447	60	453
30	449		

Table A8 The system with pyrolysis combined with gas recycling at 10.70 ml/s

Appendix B

The temperature profiles in fluidized bed reactor

				Temper	rature (°C))				
Time (min)	Distance from distributor (cm)									
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
0	28	28	28	28	28	28	28	28		
1	156	124	57	103	94	82	87	68		
2	193	175	94	143	135	117	119	92		
3	225	203	121	179	161	141	138	107		
4	232	213	137	195	174	155	153	120		
5	248	230	155	210	192	171	169	133		
6	256	240	169	218	204	183	181	145		
7	268	248	181	224	213	192	189	153		
8	270	254	191	231	221	201	198	162		
9	282	264	202	241	231	210	208	171		
10	295	275	214	253	243	219	219	181		
11	314	285	226	263	253	227	228	189		
12	324	293	237	271	262	236	237	205		
13	327	297	246	273	266	242	241	223		
14	329	301	258	275	270	246	249	231		
15	331	303	263	277	273	248	253	233		
16	333	305	267	278	273	249	255	234		
17	334	307	271	279	274	250	256	235		
18	335	308	273	280	274	251	257	235		
19	336	309	273	280	274	251	257	235		
20	336	309	273	280	274	251	257	235		

Table B1 The system with 5.22 l/min of LPG by fixing air feed rate at 300 l/min

				Temper	ature (°C	2)		
Time (min)			Distar	nce from	distribut	or (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
0	26	26	26	26	26	26	26	26
1	113	98	80	85	77	72	75	56
2	145	137	125	114	107	96	100	74
3	178	161	153	139	130	117	120	92
4	201	182	177	158	150	136	140	108
5	229	210	208	186	177	159	165	130
6	245	232	225	211	199	182	185	150
7	268	256	247	229	220	202	206	169
8	289	277	265	257	240	223	224	191
9	316	302	283	274	265	250	248	212
10	340	321	307	295	286	272	266	230
11	355	339	328	315	305	295	286	252
12	369	353	338	326	318	316	300	271
13	384	363	349	340	331	333	322	287
14	395	385	370	358	351	349	337	304
15	408	392	381	365	357	359	347	317
16	415	398	390	375	368	367	354	329
17	418	398	394	380	370	370	357	336
18	423	403	398	390	376	375	364	340
19	425	414	405	397	385	383	370	343
20	433	425	414	405	394	391	371	345
21	440	434	420	410	403	399	373	346
22	445	433	423	413	405	402	374	347
23	447	434	424	415	407	404	375	349
24	449	436	424	416	408	405	376	348

Table B2 The system with 7.31 l/min of LPG by fixing air feed rate at 300 l/min

				Ten	nperature (°C)				
Time (min)		Distance from distributor (cm)								
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
25	453	439	425	415	409	405	375	349		
26	454	439	425	416	408	406	376	349		

		Temperature (°C)								
Time (min)			Distar	ce from	distributor	: (cm)				
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
0	26	26	26	26	26	26	26	26		
1	178	169	234	203	181	173	170	140		
2	254	237	294	277	244	232	225	188		
3	300	281	305	289	278	267	256	217		
4	315	301	316	298	295	288	274	236		
5	331	312	325	308	301	300	282	250		
6	346	324	339	314	302	303	283	257		
7	364	342	355	327	314	318	302	273		
8	375	355	371	349	335	333	318	291		
9	387	367	379	352	346	344	328	299		
10	398	375	381	366	350	367	331	305		
11	410	391	402	371	367	378	350	322		
12	419	408	408	383	377	388	359	331		
13	426	421	417	394	386	397	369	342		
14	435	432	427	404	396	409	380	352		
15	444	445	439	412	408	415	391	362		
16	465	455	446	421	416	420	398	370		
17	475	461	453	430	419	425	405	376		
18	481	467	454	439	425	431	422	380		
19	489	474	460	442	431	437	423	390		
20	493	481	463	445	436	438	425	397		
21	495	482	464	448	437	442	428	399		
22	497	483	465	451	442	442	430	402		
23	499	487	467	453	441	440	432	406		
24	500	488	468	454	442	439	434	409		

Table B3 The system with 9.50 l/min of LPG by fixing air feed rate of 300 l/min

	Temperature (°C)									
Time (min)	(min) Distance from distributor (cm)									
	-3.0	25.4	50.8	76.2	101.6	127.0				
25	501	489	470	455	443	439				
26	502	490	471	456	444	440				

 Table B3 (Continued)

Copyright by Kasetsart University All rights reserved

177.8

152.4

	Temperature (°C)									
Time (min)			Dista	nce from	distributo	or (cm)				
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
0	26	26	26	26	26	26	26	26		
1	215	189	249	211	195	193	188	156		
2	284	264	315	295	269	260	245	209		
3	334	318	352	322	309	300	288	243		
4	356	347	360	342	334	325	311	271		
5	376	367	375	360	346	340	325	280		
6	399	384	389	367	356	354	333	300		
7	415	403	400	380	369	366	348	318		
8	426	417	418	397	385	381	365	330		
9	437	430	431	405	395	394	374	340		
10	452	440	440	415	402	411	383	350		
11	467	451	448	426	415	421	394	367		
12	483	468	458	437	426	429	405	376		
13	490	481	465	445	435	437	412	388		
14	510	490	472	454	443	448	425	398		
15	515	499	481	460	451	456	433	406		
16	521	507	488	466	457	462	439	414		
17	523	512	493	475	461	465	447	421		
18	526	517	498	481	468	472	458	424		
19	530	523	503	486	471	477	461	429		
20	534	527	507	488	475	478	462	434		
21	536	528	508	490	479	479	463	439		
22	538	529	509	492	481	480	465	441		
23	539	530	510	493	483	480	465	444		
24	540	532	512	494	483	481	466	446		

Table B4The system with 10.23 l/min of LPG by fixing air feed rate at 300 l/min

Table B4 (Continued)
------------	------------

				Temperat	ture (°C)					
Time (min)	Distance from distributor (cm)									
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
25	542	533	513	495	484	481	466	448		
26	542	534	513	495	484	481	467	449		
27	543	535	514	496	484	482	468	449		
28	543	534	514	495	484	482	467	449		
29	543	534	514	495	484	482	467	449		

	Temperature (°C)										
Time (min)	Distance from distributor (cm)										
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8			
0	27	27	27	27	27	27	27	27			
1	201	183	156	121	108	93	89	68			
2	215	191	166	137	133	115	105	84			
3	221	205	171	148	134	124	113	88			
4	235	210	180	155	142	133	125	97			
5	243	219	186	164	151	145	132	105			
6	250	225	199	172	164	155	142	114			
7	259	231	211	189	173	169	156	125			
8	264	241	223	194	185	182	166	137			
9	272	253	230	203	197	190	174	144			
10	278	260	232	209	198	194	179	149			
11	282	262	233	211	201	198	183	157			
12	284	263	235	213	204	201	186	157			
13	285	264	237	214	208	205	190	165			
14	286	265	238	215	209	207	191	166			
15	287	267	239	216	210	208	192	167			
16	287	268	240	217	211	209	193	166			
17	287	268	241	218	211	210	192	168			
18	288	269	241	218	212	210	192	169			
19	289	269	242	218	212	210	193	170			
20	288	269	242	218	211	209	193	169			

Table B5 The system with 100 l/min of air by fixing LPG feed rate at 7.31 l/min

	Temperature (°C)									
Time (min)			Distanc	e from di	istributor	(cm)				
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
0	27	27	27	27	27	27	27	27		
1	96	85	75	68	65	64	61	51		
2	140	120	113	98	95	93	87	68		
3	175	147	142	122	111	112	105	86		
4	195	173	164	135	123	124	121	94		
5	218	201	191	154	138	139	134	112		
6	226	212	210	189	176	178	171	131		
7	257	241	231	213	194	192	184	153		
8	269	263	251	239	221	223	203	168		
9	284	291	274	254	231	230	221	186		
10	300	313	296	277	254	248	234	201		
11	321	325	315	295	287	283	252	213		
12	355	341	321	305	295	294	276	234		
13	376	353	334	319	307	301	289	251		
14	381	377	355	334	321	318	301	264		
15	393	381	372	351	346	335	314	278		
16	405	389	383	361	351	346	324	297		
17	418	395	388	370	359	353	336	310		
18	429	400	393	374	364	360	348	324		
19	435	410	398	380	366	363	351	329		
20	439	419	403	384	368	365	353	332		
21	441	425	409	389	371	368	355	333		
22	443	429	413	395	373	369	356	334		
23	444	430	414	398	375	369	357	335		
24	444	431	415	400	376	370	358	336		
25	445	430	415	401	377	369	358	334		

Table B6 The system with 200 l/min of air by fixing LPG feed rate at 7.31 l/min

Table B6	(Continued)
----------	-------------

				Tempe	erature (°C	C)				
Time (min)		Distance from distributor (cm)								
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
26	446	429	415	400	377	370	359	335		
27	446	429	415	400	376	370	358	335		

	Temperature (°C)									
Time (min)			Distan	ce from d	listributor	(cm)				
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
0	26	26	26	26	26	26	26	26		
1	113	98	80	85	77	72	75	56		
2	145	137	125	114	107	96	100	74		
3	178	161	153	139	130	117	120	92		
4	201	182	177	158	150	136	140	108		
5	229	210	208	186	177	159	165	130		
6	245	232	225	211	199	182	185	150		
7	268	256	247	229	220	202	206	169		
8	289	277	265	257	240	223	224	191		
9	316	302	283	274	265	250	248	212		
10	340	321	307	295	286	272	266	230		
11	355	339	328	315	305	295	286	252		
12	369	353	338	326	318	316	300	271		
13	384	363	349	340	331	333	322	287		
14	395	385	370	358	351	349	337	304		
15	408	392	381	365	357	359	347	317		
16	415	398	390	375	368	367	354	329		
17	418	398	394	380	370	370	357	336		
18	423	403	398	390	376	375	364	340		
19	425	414	405	397	385	383	370	343		
20	433	425	414	405	394	391	371	345		
21	440	434	420	410	403	399	373	346		
22	445	433	423	413	405	402	374	347		
23	447	434	424	415	407	404	375	349		
24	449	436	424	416	408	405	376	348		
25	453	439	425	415	409	405	375	349		

 Table B7
 The system with 300 l/min of air by fixing LPG feed rate at 7.31 l/min

				Temp	erature (°C)					
Time (min)		Distance from distributor (cm)									
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8			
26	454	439	425	416	408	406	376	349			
27	446	429	415	400	376	370	358	335			

	Temperature (°C)								
Time (min)			Distan	ce from	distributo	r (cm)			
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8	
0	26	26	26	26	26	26	26	26	
1	111	96	79	84	75	70	69	63	
2	139	135	121	110	105	93	98	71	
3	176	160	150	135	128	110	115	95	
4	198	179	173	151	145	134	129	110	
5	225	208	201	181	168	152	148	128	
6	242	229	219	205	185	178	167	149	
7	264	248	245	224	211	197	189	165	
8	283	265	264	258	235	217	210	188	
9	313	289	283	276	260	246	235	210	
10	336	312	301	289	281	269	250	228	
11	351	321	320	310	301	287	271	247	
12	364	341	331	321	313	308	297	267	
13	383	352	340	335	325	324	315	285	
14	396	378	359	355	345	339	331	300	
15	405	389	376	361	350	354	343	310	
16	413	387	389	373	361	363	351	325	
17	420	394	391	375	365	367	359	336	
18	424	405	395	379	372	369	364	347	
19	426	409	400	387	381	371	369	356	
20	430	412	406	395	392	384	375	364	
21	435	420	408	401	399	395	386	369	
22	441	421	410	408	403	399	388	371	
23	445	423	412	414	405	401	389	372	
24	448	425	413	420	406	402	392	373	
25	449	425	414	421	407	403	393	373	

Table B8 The system with 400 l/min of air by fixing LPG feed rate at 7.31 l/min

			,	Temperat	ure (°C)				
Time (min)		Distance from distributor (cm)							
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8	
26	450	424	413	422	408	403	394	373	
27	451	425	414	422	408	403	393	373	

	Temperature (°C)									
Time (min)			Distan	ce from d	listributor	(cm)				
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
0	453	430	422	409	397	387	360	344		
0.5	447	429	415	400	389	377	351	338		
1	443	423	404	393	382	370	347	333		
1.5	438	411	401	391	381	368	346	331		
2	435	408	403	396	385	370	348	330		
2.5	436	410	407	400	388	375	354	332		
3	439	419	413	402	391	379	356	339		
3.5	443	425	418	405	393	383	357	341		
4	446	427	419	407	395	385	360	342		
4.5	449	428	420	408	396	386	361	343		
5	450	429	420	409	396	386	360	342		
5.5	451	429	420	409	396	386	361	342		
6	451	429	420	409	396	386	361	342		
6.5	451	429	420	409	396	386	361	342		
7	451	429	420	409	396	386	361	342		
7.5	451	429	420	409	396	386	361	342		
8	451	429	420	409	396	386	361	342		
8.5	451	429	420	409	396	386	361	342		
9	451	429	420	409	396	386	361	342		
9.5	451	429	420	409	396	386	361	342		
10	451	429	420	409	396	386	361	342		
10.5	451	429	420	409	396	386	361	342		
11	451	429	420	409	396	386	361	342		
11.5	451	429	420	409	396	386	361	342		
12	451	429	420	409	396	386	361	342		
12.5	451	429	420	409	396	386	361	342		

Table B9 The variation of system temperature after 50 g of plastic feeding

	Temperature (°C) Distance from distributor (cm)									
Time (min)										
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
13	451	429	420	409	396	386	361	342		
13.5	451	429	420	409	396	386	361	342		
14	451	429	420	409	396	386	361	342		
14.5	451	429	420	409	396	386	361	342		
15	451	429	420	409	396	386	361	342		
15.5	451	429	420	409	396	386	361	342		
16	451	429	420	409	396	386	361	342		
16.5	451	429	420	409	396	386	361	342		
17	451	429	420	409	396	386	361	342		
17.5	451	429	420	409	396	386	361	342		
18	451	429	420	409	396	386	361	342		

	Temperature (°C)									
Time (min)			Distance	ce from d	istributor	(cm)				
-	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
0	454	435	427	414	405	401	373	353		
0.5	455	435	427	414	405	400	372	353		
1	455	434	428	409	406	399	372	353		
1.5	438	421	412	401	379	387	361	342		
2	411	408	395	390	376	371	351	332		
2.5	399	411	381	373	368	360	339	320		
3	383	392	348	339	354	351	332	313		
3.5	380	386	352	335	348	330	312	293		
4	369	365	350	340	351	333	302	283		
4.5	381	368	354	346	352	334	301	282		
5	408	396	378	357	363	354	327	308		
5.5	414	409	381	365	367	360	332	313		
6	421	415	386	379	373	366	337	318		
6.5	429	423	392	386	374	373	339	320		
7	435	429	396	391	377	376	341	322		
7.5	439	431	402	401	381	381	345	326		
8	444	433	405	405	388	385	347	328		
8.5	451	434	411	406	389	385	354	335		
9	452	435	416	407	390	388	357	338		
9.5	453	435	418	408	393	389	360	341		
10	454	435	420	408	394	390	361	342		
10.5	454	435	420	408	394	390	361	342		
11	454	435	420	408	394	390	361	342		
11.5	454	435	420	408	394	390	361	342		
12	454	435	420	408	394	390	361	342		
12.5	454	435	420	408	394	390	361	342		

Table B10 The variation of system temperature after 80 g of plastic feeding

				Tempera	ture (°C)					
Time (min)	Distance from distributor (cm)									
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
13	454	435	420	408	394	390	361	342		
13.5	454	435	420	408	394	390	361	342		
14	454	435	420	408	394	390	361	342		
14.5	454	435	420	408	394	390	361	342		
15	454	435	420	408	394	390	361	342		
15.5	454	435	420	408	394	390	361	342		
16	454	435	420	408	394	390	361	342		
16.5	454	435	420	408	394	390	361	342		
17	454	435	420	408	394	390	361	342		
17.5	454	435	420	408	394	390	361	342		
18	454	435	420	408	394	390	361	342		

	Temperature (°C)									
Time (min)			Distanc	e from d	istributor	(cm)				
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
0	450	432	425	410	399	391	365	345		
0.5	442	430	422	407	395	386	361	337		
1	430	424	417	403	391	381	356	338		
1.5	413	409	406	395	390	374	349	333		
2	399	393	393	383	378	364	339	326		
2.5	389	383	386	374	370	355	330	321		
3	380	376	382	365	361	345	320	309		
3.5	374	369	375	355	351	340	315	303		
4	368	365	368	345	341	325	300	290		
4.5	360	361	355	336	332	316	291	281		
5	367	363	352	330	326	310	285	275		
5.5	370	363	355	331	327	311	286	271		
6	375	364	358	333	329	315	290	270		
6.5	380	366	362	336	330	319	294	275		
7	384	369	367	342	332	321	296	278		
7.5	389	374	371	347	333	324	299	282		
8	393	378	375	354	335	329	304	289		
8.5	403	389	377	365	336	332	307	293		
9	412	393	378	372	337	336	311	305		
9.5	418	400	381	379	344	338	313	312		
10	425	403	386	385	351	344	319	321		
10.5	434	408	394	391	359	351	326	325		
11	441	415	401	398	365	356	331	329		
11.5	445	421	402	401	373	364	339	332		
12	446	426	407	403	382	373	348	335		
12.5	447	428	413	404	388	381	355	337		

 Table B11
 The variation of system temperature after 100 g of plastic feeding

			Т	'empera	ture (°C)						
Time (min)	Distance from distributor (cm)										
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8			
13	448	429	415	406	389	384	356	338			
13.5	449	430	416	407	390	385	356	338			
14	449	430	416	407	389	385	357	338			
14.5	449	430	416	407	389	385	357	338			
15	449	430	416	407	389	385	357	338			
15.5	449	430	416	407	389	385	357	338			
16	449	430	416	407	389	385	357	338			
16.5	449	430	416	407	389	385	357	338			
17	449	430	416	407	389	385	357	338			
17.5	449	430	416	407	389	385	357	338			
18	449	430	416	407	389	385	357	338			

124

	Temperature (°C)									
Time (min)			Distanc	ce from c	listributo	r (cm)				
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
0	450	436	429	412	402	397	350	337		
0.5	445	429	410	405	387	381	333	331		
1	423	410	401	396	380	374	327	325		
1.5	405	399	391	386	373	365	315	313		
2	387	376	370	365	361	355	309	307		
2.5	371	364	360	355	353	346	300	295		
3	364	351	346	341	340	331	296	289		
3.5	355	343	332	327	321	315	290	280		
4	349	341	324	319	315	306	285	276		
4.5	345	333	320	315	310	295	282	270		
5	340	339	324	319	312	296	279	265		
5.5	341	339	326	321	315	299	277	262		
6	345	340	329	324	318	304	281	259		
6.5	349	343	334	329	324	309	285	257		
7	355	345	338	333	328	314	289	261		
7.5	359	346	341	336	331	321	295	265		
8	363	347	343	338	335	325	306	269		
8.5	369	349	345	340	337	329	314	275		
9	375	356	348	343	340	334	319	286		
9.5	379	360	351	346	342	336	325	294		
10	383	363	356	351	346	339	329	299		
10.5	385	365	364	359	351	343	334	305		
11	389	370	373	368	353	346	338	309		
11.5	394	382	375	370	357	349	342	314		
12	405	385	381	376	363	351	343	318		
12.5	414	391	386	381	368	354	345	322		

 Table B12
 The variation of system temperature after 120 g of plastic feeding

			r	Femperat	ture (°C)					
Time (min)	Distance from distributor (cm)									
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8		
13	417	396	390	385	374	357	346	325		
13.5	421	399	393	388	379	362	346	328		
14	426	406	396	391	384	366	347	329		
14.5	429	411	401	396	388	371	348	330		
15	433	417	403	397	392	373	348	332		
15.5	437	420	406	399	394	375	348	334		
16	441	423	407	401	395	380	348	335		
16.5	443	425	409	403	396	383	349	335		
17	445	426	411	404	395	385	348	336		
17.5	446	426	413	404	395	387	349	335		
18	447	426	414	404	395	388	349	336		

				Tempera	ature (°C)			
Time (min)			Distan	ce from	distributo	r (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
0	450	432	425	410	399	391	365	345
0.5	445	421	418	403	391	377	356	339
1	433	416	407	396	384	375	350	334
1.5	428	413	410	394	383	377	351	332
2	430	411	412	399	387	382	353	332
2.5	439	414	414	403	390	386	359	333
3	448	419	422	405	395	390	361	340
3.5	450	425	423	408	397	392	362	342
4	449	428	425	410	399	393	365	345
4.5	451	431	426	411	400	385	366	345
5	442	423	419	404	390	378	357	338
5.5	430	417	408	397	383	376	351	333
6	427	415	411	395	382	375	352	330
6.5	429	412	410	398	386	383	352	330
7	440	416	415	404	391	387	360	334
7.5	443	424	423	406	394	391	362	339
8	448	428	424	409	396	392	363	343
8.5	447	429	425	410	399	384	365	344
9	440	420	418	403	391	377	356	339
9.5	430	416	407	396	384	375	350	334
10	426	410	410	394	383	377	351	332
10.5	429	413	412	399	387	382	353	330
11	437	418	414	403	390	386	359	332
11.5	445	425	422	405	395	390	361	340
12	446	428	423	408	397	393	362	342
12.5	450	430	426	409	400	385	366	345

Table B13 The system temperature with fixing the bed temperature at 450 ^{o}C

Table B13 (Continued)

				Tempera	ture (°C)			
Time (min)			Distan	ce from d	istributor	(cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
13	442	423	419	404	390	378	357	338
13.5	432	416	408	397	383	377	351	333
14	426	413	408	393	382	379	354	330
14.5	428	414	413	398	388	384	356	329
15	437	419	415	404	391	387	360	331
15.5	444	425	423	406	394	391	362	338
16	448	429	424	409	396	392	363	341
16.5	450	432	425	410	399	384	365	342
17	443	423	418	403	391	377	356	339
17.5	431	416	407	396	384	375	350	334
18	428	412	410	394	383	377	351	332
18.5	430	414	412	399	387	382	353	333
19	439	418	414	403	390	386	359	335
19.5	443	423	422	405	395	390	361	340
20	449	426	423	408	397	389	362	342
20.5	450	428	425	407	394	384	363	345
21	443	426	418	400	391	380	358	340
21.5	431	421	407	393	384	375	354	335
22	428	417	410	390	381	377	352	332
22.5	430	418	412	393	387	382	355	333
23	439	420	414	400	390	386	360	337
23.5	445	426	422	405	395	390	361	341
24	448	428	423	408	397	392	362	343
24.5	450	429	425	410	399	384	365	343
25	443	423	418	403	391	377	356	339

Table B13 (Continued)

				Tempera	ture (°C)			
Time (min)			Distance	ce from d	listributor	(cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
25.5	431	419	407	396	384	375	350	334
26	428	417	410	394	383	377	351	332
26.5	430	419	412	399	387	382	353	330
27	439	423	414	403	390	386	359	332
27.5	445	427	422	405	395	390	361	340
28	447	428	423	408	397	393	362	342
28.5	450	430	425	405	395	382	363	344
29	443	426	418	402	390	376	358	339
29.5	431	421	407	395	382	372	349	334
30	428	419	410	393	381	376	351	332
30.5	430	422	412	401	385	382	353	329
31	439	427	414	404	391	386	359	333
31.5	445	429	422	406	395	390	361	340
32	448	430	423	408	397	392	362	343
32.5	450	431	425	410	399	384	365	344
33	443	426	418	403	391	377	356	339
33.5	431	418	407	396	384	375	350	334
34	428	415	410	394	383	377	351	332
34.5	430	416	412	399	387	382	353	329
35	439	419	414	403	390	386	359	332
35.5	443	422	422	405	395	390	361	340
36	449	425	423	408	397	393	362	342
36.5	450	427	425	405	395	382	363	345
37	443	425	418	402	390	376	358	339
37.5	431	418	407	395	382	372	349	334
38	428	417	410	393	381	376	351	332

			r	Fempera	ture (°C)			
Time (min)			Distanc	e from c	listributo	r (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
38.5	430	419	412	401	385	382	353	330
39	439	424	414	404	391	386	359	334
39.5	446	428	422	406	395	390	361	340
40	449	429	423	408	397	387	362	342
40.5	450	430	425	408	395	386	365	344

				Temp	erature (°	C)		
Time (min)			Dista	ance from	n distribu	tor (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
0	481	459	453	442	428	421	385	362
0.5	476	447	442	434	419	415	376	351
1	464	443	437	426	410	408	373	346
1.5	459	440	435	423	407	403	369	341
2	461	443	436	425	408	405	371	343
2.5	470	449	440	430	415	412	373	347
3	475	453	445	436	419	416	376	354
3.5	479	457	449	438	420	417	378	357
4	480	458	451	441	425	418	382	359
4.5	474	445	441	436	421	417	378	350
5	463	438	437	428	412	405	374	343
5.5	461	435	432	425	406	401	366	341
6	463	442	433	428	407	403	372	343
6.5	469	450	442	431	413	409	372	345
7	474	454	447	433	418	414	377	356
7.5	478	458	449	437	421	417	379	357
8	481	459	453	441	428	421	385	362
8.5	473	444	445	433	421	417	376	348
9	465	436	437	428	413	409	373	342
9.5	458	435	435	425	406	404	368	338
10	463	441	438	427	409	406	372	341
10.5	471	450	441	431	416	409	373	346
11	476	454	446	435	418	413	375	353
11.5	479	458	448	439	421	415	377	358
12	480	458	450	441	425	418	382	360
12.5	477	448	441	433	421	416	375	353

Table B14 The system temperature with fixing the bed temperature at $480 \ ^{o}C$

				Temp	perature (^o	C)		
Time (min)			Dist	ance fro	m distribu	itor (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
13	463	441	437	427	413	409	371	343
13.5	461	438	431	423	405	405	368	340
14	465	445	435	426	407	408	370	341
14.5	471	448	442	431	413	413	372	348
15	476	452	446	437	418	415	377	355
15.5	480	455	448	439	423	418	379	359
16	473	448	440	435	421	413	374	350
16.5	465	437	436	428	412	406	370	347
17	459	434	434	423	405	403	369	339
17.5	462	441	436	426	409	404	372	343
18	471	446	441	431	414	410	373	348
18.5	476	452	446	438	420	415	375	353
19	481	455	449	439	424	416	378	356
19.5	478	445	443	435	417	417	375	350
20	463	437	436	427	412	411	369	347
20.5	458	433	433	421	404	401	361	340
21	462	442	435	426	409	406	366	341
21.5	469	448	441	431	417	409	372	348
22	473	455	446	437	419	413	377	353
22.5	475	458	448	439	423	415	379	356
23	477	459	451	441	425	418	383	359
23.5	478	461	453	442	428	421	385	360
24	473	448	441	433	416	416	378	352
24.5	465	437	436	423	411	409	367	347
25	458	434	430	420	402	402	361	339

Time (min)	-3.0		D: 4					
	-3.0		DIS	tance fro	m distribu	tor (cm)		
25.5	5.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
25.5	462	444	435	426	406	408	366	341
26	471	448	441	431	413	414	370	346
26.5	476	454	446	437	416	417	377	353
27	478	458	447	439	419	419	375	358
27.5	479	459	449	441	423	420	380	359
28	480	460	452	442	425	421	383	361
28.5	477	445	441	435	418	414	377	353
29	465	441	434	427	411	407	366	347
29.5	458	436	431	419	402	399	362	341
30	460	442	435	424	409	406	366	345
30.5	471	448	441	431	414	412	373	349
31	476	452	446	437	418	415	377	356
31.5	479	458	449	439	422	418	379	358
32	480	459	451	441	425	419	383	359
32.5	473	448	443	436	413	416	375	348
33	465	438	436	425	413	409	368	345
33.5	459	434	428	417	405	397	361	339
34	462	444	435	424	409	406	364	341
34.5	470	448	441	431	413	411	372	346
35	476	454	446	435	417	416	375	355
35.5	478	458	448	433	422	415	374	359
36	481	460	453	442	425	421	381	362
36.5	475	445	443	435	418	416	377	355
37	465	437	434	427	411	409	366	348
37.5	458	436	427	419	405	401	361	338
38	460	445	436	423	409	406	366	341

 Table B14 (Continued)

				Temp	erature (^o	C)		
Time (min)			Dist	tance fro	m distribu	ator (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
38.5	471	447	442	431	414	411	372	346
39	476	451	447	437	420	415	376	355
39.5	478	454	449	439	422	416	377	358
40	480	459	450	441	424	418	381	359
40.5	480	459	450	441	424	418	381	359

				Temp	erature (^o	C)		
Time (min)			Dist	ance fro	m distribu	itor (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
0	450	433	426	411	400	392	364	345
0.5	446	422	420	405	391	378	355	338
1	432	417	408	397	385	376	351	335
1.5	427	414	412	394	394	378	350	331
2	431	413	413	397	386	383	353	333
2.5	440	415	414	404	391	386	358	335
3	447	420	423	403	396	391	362	341
3.5	451	425	423	407	397	393	363	345
4	449	428	426	409	400	394	366	345
4.5	452	432	427	412	401	386	337	346
5	441	425	419	405	392	379	359	339
5.5	431	419	408	398	384	377	356	335
6	427	417	411	394	381	374	351	331
6.5	431	414	411	396	385	382	350	330
7	443	418	416	399	392	388	358	333
7.5	445	425	423	403	395	390	361	338
8	451	430	425	405	397	391	364	341
8.5	449	431	426	410	400	383	366	343
9	442	422	419	406	392	376	357	338
9.5	431	418	408	394	384	374	349	335
10	427	411	411	395	382	376	351	331
10.5	431	414	413	398	388	381	352	331
11	439	420	414	402	391	386	360	330
11.5	447	428	423	406	394	390	362	338
12	448	430	425	409	397	392	363	340
12.5	451	431	426	410	401	385	367	344

Table B15 The system temperature with air 25 l/min for partial oxidation

				Temp	perature (^o	C)		
Time (min)			Dist	ance fro	m distribu	itor (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
13	444	425	420	406	392	379	359	339
13.5	434	417	407	398	385	376	354	335
14	428	414	405	392	381	379	351	331
14.5	430	415	415	396	384	385	356	328
15	439	420	416	401	392	386	361	333
15.5	446	427	425	405	394	390	362	335
16	450	431	426	408	396	393	364	339
16.5	451	433	425	411	398	384	365	342
17	446	425	418	404	400	376	361	340
17.5	433	416	408	398	385	377	354	335
18	431	413	411	395	384	378	351	331
18.5	432	415	412	400	386	383	353	332
19	442	418	415	404	391	386	358	336
19.5	444	423	422	406	396	391	361	341
20	451	427	424	409	398	390	363	343
20.5	452	429	425	408	395	385	365	344
21	445	427	419	401	392	379	360	341
21.5	432	421	408	394	385	975	352	336
22	430	418	411	391	380	378	351	331
22.5	431	419	412	394	386	381	356	334
23	440	421	414	401	390	386	359	338
23.5	444	426	423	406	396	390	360	342
24	450	430	424	409	396	391	361	345
24.5	451	430	426	411	400	385	364	343
25	445	424	419	402	392	378	356	340

				Temp	erature (°	C)		
Time (min)			Dist	ance fro	m distribu	tor (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
25.5	432	420	408	394	384	376	351	335
26	429	418	411	392	383	378	352	331
26.5	431	420	412	396	387	383	354	330
27	441	423	413	400	391	387	360	331
27.5	446	428	423	404	395	391	362	339
28	449	429	424	406	397	392	363	341
28.5	451	431	426	407	396	382	364	343
29	445	427	419	403	391	376	360	338
29.5	432	422	407	394	382	373	350	333
30	430	419	411	391	383	375	352	331
30.5	431	423	412	399	386	381	353	330
31	440	428	415	403	392	385	359	331
31.5	446	430	423	405	396	391	362	338
32	449	431	424	407	398	393	363	342
32.5	451	432	426	408	400	385	365	343
33	444	427	418	402	392	377	357	338
33.5	432	419	408	395	385	376	351	333
34	430	416	411	393	384	375	349	331
34.5	431	417	412	398	388	381	353	328
35	440	419	415	403	391	385	360	331
35.5	443	423	422	406	396	390	362	339
36	449	425	423	409	398	393	363	341
36.5	451	428	426	406	396	381	364	344
37	445	426	418	403	391	374	360	338
37.5	432	419	407	396	383	371	349	333
38	430	418	411	394	382	377	352	331

Table B15 (Continued)

				Temp	erature (^o	C)		
Time (min)			Dis	tance fro	m distribu	ator (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
38.5	431	420	413	402	384	381	353	330
39	440	425	414	405	392	389	358	333
39.5	447	429	423	407	396	392	362	339
40	449	430	424	409	398	391	363	341
40.5	450	431	426	410	394	387	365	343

				Temp	perature (°	C)		
Time (min)			Dist	ance fro	m distribu	tor (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
0	451	432	426	411	400	390	366	346
0.5	446	422	419	405	390	376	357	340
1	435	417	410	397	383	374	350	335
1.5	430	415	413	395	384	376	352	333
2	432	413	414	399	389	381	354	334
2.5	439	416	415	403	391	387	359	335
3	447	421	423	406	396	391	362	341
3.5	449	428	425	409	398	393	363	343
4	450	431	426	411	399	394	364	346
4.5	452	433	428	413	401	384	367	347
5	443	425	420	405	391	379	358	339
5.5	435	419	411	398	384	375	352	335
6	430	417	413	396	383	376	353	331
6.5	431	415	411	397	387	374	354	332
7	439	419	417	406	392	386	361	335
7.5	442	427	425	408	395	391	363	340
8	450	431	427	410	397	393	364	345
8.5	447	433	428	411	400	385	367	346
9	442	425	421	405	392	376	357	340
9.5	438	419	408	397	385	376	349	336
10	432	415	411	395	384	378	352	333
10.5	431	419	413	400	388	383	354	331
11	438	423	415	404	390	376	358	334
11.5	444	429	423	406	394	391	362	339
12	448	430	424	409	396	374	363	341
12.5	449	432	427	410	401	384	365	344

Table B16 The system temperature with air 50 l/min for partial oxidation

				Temp	perature (^o	C)		
Time (min)			Dist	tance fro	m distribu	itor (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
13	445	428	421	406	391	380	358	339
13.5	436	419	411	398	382	376	352	334
14	431	418	412	394	383	380	355	330
14.5	432	417	414	399	389	385	357	331
15	438	423	415	405	392	389	361	332
15.5	446	429	424	407	395	392	363	338
16	449	431	425	410	397	391	364	340
16.5	451	433	426	411	400	385	366	343
17	446	427	417	404	392	376	357	340
17.5	435	420	408	395	385	374	351	335
18	433	417	411	396	384	378	353	333
18.5	431	416	413	400	388	383	351	334
19	439	423	415	404	391	385	357	336
19.5	445	427	423	406	396	391	360	340
20	448	430	424	409	397	390	363	343
20.5	451	432	426	408	395	385	364	346
21	445	428	419	400	392	381	359	341
21.5	438	425	408	394	385	376	355	336
22	432	420	411	391	382	377	353	333
22.5	436	419	413	394	388	380	356	334
23	440	423	415	399	391	386	361	338
23.5	446	429	423	406	396	391	362	342
24	450	431	425	409	396	392	363	344
24.5	452	433	426	411	398	383	364	343
25	446	425	417	404	392	377	354	340

				Temp	perature (°	C)		
Time (min)			Dist	tance fro	m distribu	itor (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
25.5	435	423	408	395	385	374	351	334
26	432	421	411	395	384	376	350	331
26.5	435	420	413	400	388	383	352	330
27	438	427	415	404	391	387	359	331
27.5	448	429	423	406	396	391	360	341
28	450	431	425	409	398	394	361	343
28.5	453	432	426	406	396	383	364	345
29	445	427	419	403	391	377	357	341
29.5	436	423	409	396	383	373	350	335
30	432	421	411	394	381	375	352	331
30.5	438	425	413	402	386	383	355	330
31	443	428	415	405	392	387	360	331
31.5	448	431	423	407	396	391	362	341
32	449	433	425	409	398	393	363	344
32.5	452	431	426	411	400	385	366	345
33	446	427	419	404	392	376	358	340
33.5	435	418	409	397	385	376	352	335
34	432	416	411	395	384	376	350	331
34.5	436	415	414	400	388	383	354	330
35	440	421	415	404	391	387	358	331
35.5	445	425	423	406	396	391	362	341
36	450	427	424	408	398	394	362	343
36.5	452	429	427	405	397	383	364	344
37	445	431	420	402	393	377	360	340
37.5	435	425	408	396	383	373	355	335
38	430	419	412	394	380	377	350	331

				Temp	erature (^o	C)			
Time (min)		Distance from distributor (cm)							
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8	
38.5	436	425	414	399	384	383	352	329	
39	441	429	415	403	390	387	358	335	
39.5	448	430	423	405	394	391	362	341	
40	452	431	425	409	398	388	363	343	
40.5	453	433	426	408	396	387	365	345	

				Temp	perature (^o	C)		
Time (min)			Dist	ance fro	m distribu	tor (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
0	451	433	424	410	400	392	366	344
0.5	444	423	419	405	393	380	356	340
1	432	420	410	395	384	376	351	335
1.5	427	417	412	393	382	378	352	333
2	430	416	414	400	386	381	354	333
2.5	440	417	416	402	390	387	360	334
3	449	421	424	406	394	390	362	341
3.5	451	426	425	408	396	393	363	343
4	450	431	427	410	398	394	364	346
4.5	449	433	429	411	401	386	367	347
5	445	425	425	405	391	379	358	337
5.5	434	421	416	396	384	377	352	331
6	430	418	413	394	383	376	353	331
6.5	431	416	412	397	386	377	353	332
7	442	419	418	404	392	388	361	334
7.5	445	428	425	405	395	392	362	338
8	450	431	426	408	397	393	364	344
8.5	449	433	423	410	398	385	366	343
9	442	423	419	403	392	378	357	338
9.5	433	420	414	396	385	376	351	335
10	427	418	412	385	384	378	352	331
10.5	431	423	411	399	386	383	354	329
11	439	427	416	402	391	387	360	331
11.5	447	431	425	406	386	390	362	339
12	448	433	426	409	398	394	363	343
12.5	451	435	427	408	401	386	366	346

Table B17 The system temperature with air 100 l/min for partial oxidation

				Temp	perature (^o	C)		
Time (min)			Dist	ance fro	m distribu	itor (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
13	443	427	423	405	391	379	358	347
13.5	434	423	413	396	384	378	351	332
14	427	417	410	392	383	378	356	331
14.5	430	423	415	397	389	385	357	329
15	439	428	417	405	392	386	361	330
15.5	446	432	425	407	395	392	361	337
16	449	434	426	410	397	390	362	340
16.5	451	435	423	411	400	385	364	341
17	445	427	419	405	390	376	357	338
17.5	432	421	413	397	385	374	352	332
18	430	418	412	395	384	376	352	331
18.5	431	425	415	400	386	383	354	331
19	440	429	416	405	391	385	360	333
19.5	445	431	420	406	396	391	362	339
20	451	433	424	409	398	388	363	341
20.5	452	434	426	408	395	383	364	343
21	445	429	420	409	392	380	359	339
21.5	432	425	412	394	384	374	355	334
22	430	419	411	391	382	376	353	331
22.5	431	425	414	394	388	381	356	332
23	440	427	417	400	391	387	361	338
23.5	446	430	424	406	386	390	362	342
24	449	432	425	409	398	391	363	344
24.5	451	433	426	411	400	385	365	345
25	444	427	423	404	392	376	357	340

				Temp	perature (^o	C)		
Time (min)			Dist	tance fro	om distribu	tor (cm)		
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
25.5	432	425	412	397	385	376	351	335
26	430	421	413	395	382	377	352	333
26.5	432	425	415	400	386	383	354	331
27	440	428	416	404	391	385	359	333
27.5	447	432	423	406	394	391	360	339
28	449	433	424	409	398	392	363	343
28.5	451	435	426	408	396	381	364	345
29	444	430	421	404	391	375	359	340
29.5	432	427	411	396	383	371	350	335
30	430	424	413	394	382	375	352	331
30.5	431	428	415	402	386	381	354	330
31	441	430	417	405	392	387	360	332
31.5	446	431	423	407	396	391	362	339
32	449	433	425	409	398	393	363	342
32.5	451	434	426	411	400	385	365	345
33	445	429	421	404	392	376	357	340
33.5	432	426	413	395	385	374	351	335
34	429	423	415	395	384	376	352	331
34.5	431	427	416	400	386	383	354	330
35	442	430	419	404	391	387	357	333
35.5	445	432	425	406	396	391	362	340
36	451	433	426	409	396	394	363	341
36.5	451	434	425	406	396	383	365	343
37	445	432	423	403	391	377	360	340
37.5	432	428	413	396	383	372	350	335
38	429	425	412	394	382	375	352	333

				Temp	erature (^o	C)		
Time (min)	Distance from distributor (cm)							
	-3.0	25.4	50.8	76.2	101.6	127.0	152.4	177.8
38.5	432	423	415	402	386	381	354	331
39	441	426	417	405	392	386	360	335
39.5	447	429	422	407	396	391	362	341
40	450	430	424	409	398	386	363	341
40.5	451	431	425	409	396	387	365	341

Appendix C

147

The liquid product distribution in condenser

Condition	Componenet	Weight (g)	% by weight of liquid
Pyrolysis	Liquid	31.62	100%
	- C ₅ -C ₁₂	3.28	10.36%
	- C ₁₃ -C ₁₇	26.59	84.10%
	- >C ₁₈	1.75	5.54%
Pyrolysis +	Liquid	29.51	100%
Partial oxidation (5.22 ml/s)	- C ₅ -C ₁₂	3.86	13.08%
	- C ₁₃ -C ₁₇	13.96	47.32%
	- >C ₁₈	11.69	39.60%
Pyrolysis +	Liquid	29.44	100%
Partial oxidation (8.51 ml/s)	- C ₅ -C ₁₂	4.50	15.29%
	- C ₁₃ -C ₁₇	13.24	44.97%
	- >C ₁₈	11.70	39.74%
Pyrolysis +	Liquid	25.82	100%
Partial oxidation (11.78 ml/s)	- C ₅ -C ₁₂	3.51	13.59%
	- C ₁₃ -C ₁₇	12.13	46.98%
	- >C ₁₈	10.18	29.43%
Pyrolysis +	Liquid	28.93	100%
Partial oxidation (8.51 ml/s) +	- C ₅ -C ₁₂	7.20	25.15%
Recycle (5.85 ml/min)	- C ₁₃ -C ₁₇	14.18	51.80%
	- >C ₁₈	6.32	23.05%
Pyrolysis +	Liquid	28.16	100%
Partial oxidation (8.51 ml/s) +	- C ₅ -C ₁₂	7.35	26.12%
Recycle (8.27 ml/min)	- C ₁₃ -C ₁₇	16.46	58.45%
	- >C ₁₈	4.35	15.43%
Pyrolysis +	Liquid	27.32	100%
Partial oxidation (8.51 ml/s) +	- C ₅ -C ₁₂	7.45	27.27%
Recycle (10.27 ml/min)	- C ₁₃ -C ₁₇	18.09	66.22%
	- >C ₁₈	1.78	6.51%

 Table C1
 Liquid product distribution in semi-batch reactor.

Condition		Conde	enser 1	1	Condenser 2				
Condition	Gas (g)	Liquid (g)			Gas (g) Liquid (g)				
		· A	C5-C12	85.5			C5-C12	14.3	
450 °C	286.1	142.5	C11-C17	49.5	47.7	23.8	C11-C17	8.3	
		5.	> C18	7.5			>C18	1.3	
		E,	C5-C12	51.9			C5-C12	8.7	
480 °C	331.4	97.2	C11-C17	39.3	55.3	16.2	C11-C17	6.6	
			>C18	6.0			>C18	1.0	

Table C2 Liquid product distribution at bed temperature of and $480 \, ^{o}C$

 Table C3
 Liquid product distribution at various secondary air feed rates for partial oxidation.

Caraltitian		Cond	lenser 1			Cond	lenser 2	
Condition	Gas (g)	Liquid (g)			Gas (g)	4	Liquid (g)	
	ET.	Gass	C5-C12	427.5	「え		C5-C12	14.3
Without partial oxidation	286.1	142.5	C11-C17	247.5	47.7	23.8	C11-C17	8.3
		y ex.	>C18	37.5			>C18	1.3
	N S		C5-C12	376.5			C5-C12	12.6
25 l/min	298.7	129.9	C11-C17	237.0	49.8	21.7	C11-C17	7.9
		19	>C18	36.0			> C18	1.2
			C5-C12	348.0			C5-C12	11.6
50 l/min	307.9	122.4	C11-C17	229.5	51.3	20.4	C11-C17	7.7
			>C18	34.5			>C18	1.2
			C5-C12	324.0			C5-C12	10.8
100 l/min	312.5	116.1	C11-C17	222.0	52.1	19.4	C11-C17	7.4
			>C18	34.5			>C18	1.2

Copyright by Kasetsart University All rights reserved

150

Table C4 Liquid product distribution in case with and without partial oxidation for energy saving

Condition		Conde	nser 1	Condenser 2				
Condition	Gas (g)	Gas (g) Liquid (g)					Liquid (g)	
		3, 6	C5-C12	63.9			C5-C12	10.7
With partial oxidation	115.5	312.9	C11-C17	45.6	52.2	19.3	C11-C17	7.6
	Ě, ľ		> C18	6			> C18	1.0
			C5-C12	64.8			C5-C12	10.8
Without partial oxidation	116.1	312.6	C11-C17	44.4	52.1	19.4	C11-C17	7.4
		West Lu	> C18	6.9			> C18	1.2

Appendix D

The calculation of the production rate of liquid product

Appendix D1 The calculation of production rate of liquid and gas product

Sample; Section 2.4 at bed temperature of $450 \ ^{o}C$

In the effect of bed temperature (section 2.4), the LPG feed rates of 7.31 *l/min* with air feed rate of 300 *l/min* was used to keep the system temperature at 3 cm below distributor to be 450 ^{o}C . In this condition, 50 g of PP was fed to the reactor for 10 times. The operating time of plastic pyrolysis for 10 cycles was 40.5 min.

- Total plastic feeding

= (Amount of plastic feeding) × (Number of time) = $50 \text{ g} \times 10$ = 500 g

- Production rate of plastic gas

= (Amount of total plastic) / (operating time)
= 500 g / 40.5 min
= 12.36 g/min

Plastic gas of 12.36 g/min was controlled by valve to flow into condenser 1 and condenser 2 at the ratio of 6:1 which is 10.59 and 1.77 g/min, respectively.

The total liquid product in condenser 1 and condenser 2 was 142.25 and 23.75 g which was (142.25/40.5) = 3.51 g/min for condenser 1 and (23.75/40.5) = 0.59 g/min for condenser 2, respectively

- Production rate of gas product

= (Production rate of plastic gas) - (Production rate of liquid)Condenser 1 = 10.59-3.51 = 7.08 g/min Condenser 2 = 1.77-0.59 = 1.18 g/min

Appendix E

The calculation of production rate of gas product

Sample; Section 2.4 at bed temperature of 480 °C.

In this condition, the gas product consists of methane (CH_4) , carbon dioxide (CO_2) and carbon monoxide (CO). The peak area of each gas components were reported in following table.

 Table E1
 The peak area of each gas components

Gas distribution at 450 °C	Peak area						
Gas distribution at 450°C	17/	2	3	Avg			
- Methane	88,214.00	87,976.00	81,989.00	86,059.67			
- Carbon monoxide from partial oxidation	2,042.00	2,144.00	2,198.00	2,128.00			
- Carbon dioxide leaving	120,134.00	118,535.00	119,211.00	119,293.33			
- Carbon dioxide from burner	90,134.00	91,219.00	91,352.00	90,901.67			

Gas	Standard equation	\mathbf{R}^2	Remark
Hydrogen (H ₂)	Y=12,006X-621.15	0.9972	$X = 10^{-6}$
Carbon monoxide (CO)	Y= 124,228X-1,432.9	0.9949	$X = 10^{-6}$
Carbon dioxide (CO ₂)	Y = 30,744X + 147.74	0.9985	$X = 10^{-6}$
Oxygen (O ₂)	Y = 90,998X + 24344	0.9981	$X = 10^{-5}$
Methane (CH ₄)	Y=12,006X-621.15	0.9972	$X = 10^{-6}$
Propylene (C ₃ H ₆)	Y = 200,000X + 563,955	0.9976	$X = 10^{-5}$
Propane (C ₃ H ₈)	Y = 5,3836X - 6,941.9	0.9936	$X = 10^{-6}$

 Table E2
 The standard equation of each gas components

Y is peak area and X is mol of gas

The standard equation as shown in table appendix E2 was used to convert peak area of each gas components to be mol. The volumetric of gas sample analyzed by GC was 2 ml. Therefore, the mol of each gas components obtained was the mol in 2 ml of gas sample.

For example; Methane

Average peak area of methane

= 86,059.67

(from Appendix E1)

The standard equation of methane

Y = 12,006X-621.15
86059.67 = 12,006X -621.15 * X=
$$10^{-6}$$

X = 7.22
X = 7.22 × 10^{-6} mol/ 2 ml of gas sample

The others gas components were calculated following procedure mentioned before. The result of converting peak area to be mol was reported in Appendix E3

Table E3 The mol of each gas components

Gas distribution at 480 °C	Average peak area	mol x 10 ⁻⁶
- Methane	8,6059.67	7.22
- Carbon monoxide from partial oxidation	2,128.00	0.29
- Carbon dioxide leaving	11,929.33	3.88
- Carbon dioxide from burner	95,568.33	3.10

The mol of each gas components was converted to be weight per 1 ml of gas sample by using molecular weigh

For example; Methane

Mol of methane in 2 ml of gas sample = 7.22×10^{-6} mol

$$= 7.22 \times 10^{-6} \text{ mol} \times 16 \text{ g/mol}$$

$$= 1.1552 \times 10^{-4}$$

Mol of methane in *l* ml of gas sample = 5.776×10^{-5} g

The others gas components were calculated following procedure mentioned above. The result of converting mol of gas to be mass was reported in Appendix E4

Basis: $X = \frac{\text{mol of CO}_2 \text{ from LPG}}{\text{mol of CO}_2 \text{ from Total}}$ mol of each component is: $= 1.94 \text{ x } 10^{-6} (1-X) \text{ mol/ml}$ mol of CO₂ from PP $= 0.155 \text{ x } 10^{-6} \text{ mol/ml}$ mol of CO from PP $= 3.76 \text{ x } 10^{-6} \text{ mol/ml}$ mol of CH₄ from PP Convert mol to be weight using MW of each component $= 44 \text{ x } 1.94 \text{ x } 10^{-6} \text{ (1-X) } \text{g/ml} = 8.54 \text{ x } 10^{-5} \text{(1-X)}$ Weight of CO₂ from PP X) g/m $= 28 \text{ x } 0.155 \text{ x } 10^{-6} \text{ g/ml} = 4.34 \text{ x } 10^{-6} \text{ g/ml}$ Weight of CO from PP $= 16 \text{ x} 3.76 \text{ x} 10^{-6} \text{ g/ml} = 6.01 \text{ x} 10^{-5} \text{ g/ml}$ Weight of CH₄ from PP $= (14.98 + 8.54 \text{X}) \times 10^{-5} \text{ g/ml}$ Total weight Therefore, weight fraction of CO₂ from PP is: 8.54 x 10⁻⁵(1-X) = (14.98+8.54X) x 10⁻⁵

Mass flow rate of CO₂ from PP is:

$$= \underbrace{8.54 \times 10^{-5}(1-X)}_{(14.98+8.54X) \times 10^{-5}} \times \underbrace{333.8}_{40.5}$$

Mass flow rate of CO₂ from PP is:

Mass flow rate ratio of CO₂ from LPG/ Total is:

Х

$$= \frac{1.3 \text{ g/min}}{\frac{70.35 (1-X)}{(14.98+8.54X)} + 1.3}$$

$$1.3 = 70.35X (1-X) + 1.3X$$
$$(14.98+8.54X)$$

$$1.3 = \frac{70.35X - 70.35X^2 + 1.3X}{(14.98 + 8.54X)}$$

 $19.47-11.097X = 70.35X-70.35X^{2}+19.47X-11.097X^{2}$

 $= 81.447X^2 - 100.917X + 19.47$

X = 0.24

Replace X in this Eq.

Weight of CO₂ from PP = $44 \times 1.94 \times 10^{-6} (1-X) \text{ g/ml} = 8.54 \times 10^{-5} (1-X) \text{ g/m}$

Weight of CO₂ from PP = $6.50 \times 10^{-5} \text{ g/ml}$

Weight of each component/ml of gas product is:

Weight of CO₂ from PP = 6.50×10^{-5} g/ml Weight of CO from PP = 4.34×10^{-6} g/ml Weight of CH₄ from PP = 6.01×10^{-5} g/ml Total weight

 $= 1.30 \text{ x } 10^{-4} \text{ g/ml}$

Convert weight/ml of gas to be weight fraction

 y_{CO2} from CH₄ = 50.21% (CO₂) y_{CO} from CH₄ = 3.36 % (CO) y_{CH4} = 46.43 % (CH₄)

This fraction multiply by 333.8 g of gas

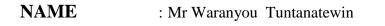
Mass flow rate of $CO_2 = (333.8 \times 0.54021)/40.5 = 4.45$ g/min Mass flow rate of $CO = (333.8 \times 0.0336)/40.5 = 0.28$ g/min Mass flow rate of $CH_4 = (333.8 \times 0.4643)/40.5 = 3.83$ g/min

Appendix F

The production rate and distribution of gas and liquid product

	Condition			
Product distribution	Stores L	450 °C	480 °C	
	Weight (g)	Mass flow (g/min)	Weight (g)	Mass flow (g/min)
- Combustion product and residual oxygen	from burner			
- Oxygen (O ₂)	83.9	2.1	79.6	2.0
- Carbon dioxide (CO ₂)	52.6	1.3	55.3	1.4
- Gas product	333.8	8.2	386.6	4.29
- Methane (CH ₄)	155.1	3.8	173.7	6.2
- Carbon monoxide (CO)	11.3	0.3	12.2	0.3
- Carbon dioxide (CO ₂)	167.7	4.14	200.9	4.96
- Ethylene (C_2H_4)	nd	nd	nd	nd
- Ethane (C_2H_6)	nd	nd	nd	nd
- Propylene (C_3H_6)	nd	nd	nd	nd
- Propane (C_3H_8)	nd	nd	27.3	0.7
- Butane (C_4H_{10})	nd	nd	nd	nd
- Liquid product	166.2	4.1	113.4	2.8
- Gasoline (C5-C12)	99.8	2.5	60.6	1.5
- Kerosene (C13-C17)	57.8	1.4	45.9	1.1
- Gas oil (> C18)	8.8	0.2	7.0	0.2

Table F1 Summary of the production rate and distribution of gas and liquid at fixed bed temperature of 450 and 480 °C


 Table F2
 Summary gas and liquid product distribution at various secondary air feed rates

	Condition							
	Without partial		25 l/min air		50 l/min air		100 l/min air	
Product distribution	Weight (g)	Mass flow (g/min)	Weight (g)	Mass flow (g/min)	Weight (g)	Mass flow (g/min)	Weight (g)	Mass flow (g/min)
- Combustion products and residual oxygen from burner		200		81 A				
- Oxygen (O ₂)	83.9	2.1	83.9	2.1	83.9	2.1	83.9	2.1
- Carbon dioxide (CO ₂)	52.6	1.3	52.6	1.3	52.6	1.3	52.6	1.3
- Gas product	333.8	8.2	349.9	8.6	359.2	8.9	364.5	9.0
- Methane (CH ₄)	155.1	3.8	157.1	3.9	162.0	4.0	220.1	5.4
- Carbon monoxide (CO)	11.3	0.3	11.3	0.3	13.4	0.3	13.0	0.3
- Carbon dioxide (CO ₂)	167.7	4.14	180.2	4.5	183.5	4.53	201.3	5.0
- Ethylene (C_2H_4)	nd	nd	nd	nd	nd	nd	nd	nd
- Ethane (C_2H_6)	nd	nd	nd	nd	nd	nd	nd	nd
- Propylene (C_3H_6)	nd	nd	nd	nd	nd	nd	nd	nd
- Propane (C_3H_8)	nd	nd	nd	nd	nd	nd	nd	nd
- Butane (C_4H_{10})	nd	nd	nd	nd	nd	nd	nd	nd
Liquid product	166.0	4.1	151.55	3.74	140.80	3.48	135.45	3.34
- Gasoline (C5-C12)	99.8	2.5	87.85	2.17	81.2	2.00	75.60	1.87
- Kerosene (C13-C17)	57.8	1.4	55.30	1.37	53.55	1.32	51.80	1.28
- Gas oil (> C18)	8.8	0.2	8.40	0.21	8.05	0.20	8.05	0.20

 Table F3
 Summary gas and liquid product distribution in case of with and without partial oxidation

	S / uto 1	Condition				
Product distribution	Without	Without partial oxidation		Energy saving by partial oxidation		
	Weight (g)	Mass flow (g/min)	Weight (g)	Mass flow (g/min)		
- Combustion products and residual oxyge	en from burner		3			
- Oxygen (O ₂)	59.8	1.5	59.8	1.5		
- Carbon dioxide (CO ₂)	31.4	0.8	31.4	0.8		
- Gas product	333.8	8.2	365.2	9.1		
- Methane (CH ₄)	155.1	3.8	138.5	3.4		
- Carbon monoxide (CO)	11.3	0.3	0.3	0.7		
- Carbon dioxide (CO ₂)	167.7	4.1	199.3	4.9		
- Ethylene (C_2H_4)	nd	nd	nd	nd		
- Ethane (C_2H_6)	nd	nd	nd	nd		
- Propylene (C_3H_6)	nd	nd	nd	nd		
- Propane (C_3H_8)	nd	nd	nd	nd		
- Butane (C_4H_{10})	nd	nd	nd	nd		
- Liquid product	166.0	4.1	134.8	3.3		
- Gasoline (C5-C12)	99.8	2.5	74.6	1.8		
- Kerosene (C13-C17)	57.8	1.4	53.2	1.3		
- Gas oil (> C18)	8.8	0.2	7.0	0.2		

CURRICULUM VITAE

BIRTH DATE : September 14, 1983

BIRTH PLACE : Maha sarakham, Thailand

: YEAR

2006

EDUCATION

INSTITUTE Khon Kaen Univ. DEGREE/DIPLOMA

B.Sc. (Chemistry)