TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF TABLES	iv
LIST OF FIGURES	V
LIST OF SYMBOLS	vii
LIST OF ABBREVIATIONS	viii
INTRODUCTION	1
Objectives	2
Scopes	2
Benefits	3
LITERATURE REVIEW AND RELATED THEORIES	4
Literature Review	4
The Piper Alpha Incident	4
Topside Emergency Shutdown Valve (ESV) Survivability	5
A Study of the Dynamic Response of Emergency	
Shutdown Valves Following Full Bore Rupture of	
Gas Pipelines	5
Emergency Pipe-line Valve Regulations	
(Safety Instrument SI 1989/1029)	5
METHODOLOGY	6
Description of Facilities	6
General	6
Platforms & Floating Units	7
Risk Assessment	11
Safeguards	14
Mechanical Integrity of the PESDV	14
Fire Protection	18
Valve Actuators and Emergency Shutdown Systems	18

TABLE OF CONTENTS (continue)

	Page
Risks to the Personnel and Assets	21
Potential Hazards from pipe rupture when PESDV fail to close	22
Requirement for PESDV	22
Classification of PESDVs installed	24
Risk Based Testing	25
Testing Opportunities	25
Test Methods	27
Reliability	27
Effectiveness	29
Acceptance Criteria	31
Reliability	31
Effectiveness	31
Online PESDV Testing	32
RESULTS AND DISCUSSION	33
Aging Facilities	33
Risk Associated of an Offshore Platform	33
The Risk to Personnel and Assets	35
Mechanical Integrity of Valves and Actuators	36
Fire Protection	39
Valve Actuators and Emergency Shutdown Systems	41
Testing and Requirements	43
Online or Stroke Test with Special Devices	45
Overall Test Results	47
CONCLUSIONS AND RECOMMENDATIONS	50
Conclusions	50
Identify General Arrangement of PESDVs in the GoT	50
Identify Risk Associated with Failures of those PESDVs.	50

TABLE OF CONTENTS (continue)

		Page
Cond	luct Pilot Test on PESDVs	51
Recommend	ations	51
LITERATURE CIT	ED	53
APPENDIX		55
Appendix A	Overview of Offshore Facilities where PESDVs	
	Located and Metro maps of Gulf of Thailand	
	Pipeline Network	56
Appendix B	Support Documents used for Risk Assessment	66
Appendix C	Testing Task Sheet	73
Appendix D	Additional Literature Review	
	1. The Piper Alpha Incident	
	2. Topside Emergency Shutdown Valve (ESV)	
	Survivability	
	3. A Study of the Dynamic Response Of	
	Emergency Shutdown Valves Following Full Bore	
	Rupture of Gas Pipelines	
	4. The Offshore Installations (Emergency	
	Pipe-line Valve) Regulations 1989, Statutory	
	Instrument SI 1989/1029, North Sea.	88
Appendix E	On-line Stroke Testing Device Function and Summary	110

LIST OF TABLES

Table		Page
1	Hydrocarbons Inventory in Process Equipment	13
2	Hydrocarbon Inventory from Incoming Pipelines to ECPP	14
3	Air Operated Ball Valve (for emergency service) Reliability	16
4	Air Hydraulic Operated Ball Valve (for emergency service)	
	Reliability	17
5	Pneumatic Actuator (for emergency service) Reliability	19
6	Prescribed Testing Frequency	26
7	Risk Based Classification of PESDVs to be tested	27
8	Effectiveness Acceptance Criteria	31
9	Comparison of Ball Valve Fire Testing Standards	37
10	Test Pressure of Valve during Fire Test	38
11	Pneumatic Actuator (for emergency service) Reliability	42
12	Pneumatic and Hydraulic Actuator Comparison	43
13	Valve Actuator Reliability	45
14	Stroke Test Devices Comparison	46
15	Total Numbers of Valve Tested	48
Appendix	Table	
R1	Gas leak rate from 1" hole of 24" nineline	71

LIST OF FIGURES

Figure		Page
1	Typical Metro Map shows location of PESDVs	8
2	Typical PESDV arrangement	11
3	Major hazards and consequences	12
4	Ball Valve Sealing Principle	15
5	Section View - Typical Ball Valve	18
6	PESDV Shutdown Loop	20
7	Piper Alpha, Major Explosion	21
8	PESDV Leakage (Effectiveness) Testing Arrangement	29
9	Safe Location of PESDV	40
10	Fusible Plug at the PESDV location	40
11	UV Detector and Sprinklers	41
Appendix	ς Figure	
A1	Typical field network	57
A2	Remote Wellhead Platform(WHP)	58
A3	Three types of main facilities	58
A4	General Configuration for Pipelines ESDVs and valve	
	classification	59
A5	PESDV – North Erawan	60
A6	PESDV – South Erawan	61
A7	PESDV – Platong	62
A8	PESDV – Satun	63
A9	PESDV – Funan	64
A10	PESDV – Palin	65
B1	Grove B5 Ball Material Specifications	67

LIST OF FIGURES (continue)

Appendix Figure		Page
D1	Piper AlphaPipeline connection of Pipe field	90
D2	The Piper Alpha platform: west elevation (simplified)	93
D3	The Piper Alpha platform: east elevation (simplified)	93
E1	Drallim Hook Up to Junction Box	112
E2	Drallim Device Hook Up Diagram	112
E3	Drallim Stroke Test Diagnosis Diagram	113
E4	Neles Valvguard Device and Hook Up Diagram	113
E5	Dynatorque D-Stop Mechanical Device	115
E6	Crane ValveWatch Device and Hook Up	116

LIST OF SYMBOLS

m Mass discharged in kg/s

Cd Discharge coefficient (1.0 for gases)

Mw Molecular weight in kg/kmol

Tg Temperature of the vessel in K

Pcrit Critical pressure ratio

P Ambient pressure Pa

Pg Pressure of the vessel Pa

K Isentropic expansion factor (Cp/Cv)

 P_{final} inal pressure (absolute - psia) = final pressure (psig) + 14.7

P_{initial} Initial pressure (absolute - psia) = 14.7 psia if system depressurized

V_{system} Volume of system (piping and launcher/receiver – feet3)

T Time take to reach final pressure (minutes)

 P_{final} Final pressure (absolute - psia) = final pressure (psig) + 14.7

m Mass discharged in kg/s

Cd Hole area in m²

Mw Molecular weight in kg/kmol

Tg Temperature of the vessel in K

Pcrit Critical pressure ratio

P Ambient pressure, Pascal

K Isentropic expansion factor (Cp/Cv)

LIST OF ABBREVIATIONS

PESDVs Pipeline Emergency Shutdown Valves

PSD Process Shutdown

ESV Emergency Shutdown Valve

GoT Gulf of Thailand

CPP Central Processing Platform

LQ Living Quarters

WHP Wellhead Platforms

CP Compression Platform

API American Petroleum Institute

RP Recommended Practice

ESD Emergency Shutdown

PIG Pipeline Indicating Gauge

TSR Temporary Safe Refuge

ISO International Organization of Standards

ASME American Society of Mechanical Engineers

UV Ultraviolet

TSR Temporary Safe Refuge

IR Infrared

HC's Hydrocarbons

SI Statutory Instrument

CFR Code of Federal

ISA The Instrumentation, System and Automation Society

IEC The International Electrotechnical Commission

SIL Safety Integrity Level

JWC Jakrawan Well Platform C

JCPP Jakrawan Central Processing Platform

SWJ Satun Well Platform J

EPC Erawan Well Platform C

JWA Jakrawan Well Platform A

LIST OF ABBREVIATIONS (continue)

FCPP Funan Central Processing Platform

SWE Satun Well Platform E

SCPP Satun Central Processing Platform

UK United Kingdom

PVST partial valve stroke testing

UKOOA United Kingdom Offshore Operators Association

PSIg Pound per Squared-Inch gage

MMSCFD Standard Million Cubic Feet per Day

PFD failure on demand

MOL Min Oil Line

SSIV Sub Sea Isolation Valve

UKCS United Kingdom Continental Shelf

FBR Full Bore pipeline Rupture

BS British Standard

MAOP Maximum Allowable Operating Pressure

OIM Offshore Installation Manager