TABLE OF CONTENTS

i

TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	v
INTRODUCTION	1
OBJECTIVES	5
LITERATURE REVIEW	6
MATERIALS AND METHODS	55
RESULTS AND DISCUSSION	81
CONCLUSION	203
LITERATURE CITED	208
APPENDICES	235
Appendix A: Using of lignin-degrading enzymes in biopulping process	236
Appendix B: Culture media	239
Appendix C: Reagents	242
Appendix D: Published papers	250

LIST OF TABLES

Table

1

2

3

4

5

6

7

8

9

Enzymes involved in lignin degradation and their main reactions Distribution of lignin-degrading enzymes in fungi Effect of various phenolic and nonphenolic compounds on lignin-degrading enzymes production in fungi Lignin-degrading enzymes production on various solid substrates by microorganisms Using of different statistical designs for medium optimization Catalytic activities of laccases with various substrates of white-rot fungi Chemical properties of laccases from white-rot fungi Comparison of the properties of laccase, MnP and LiP from white-rot fungi Comparison of N-terminal amino acid sequences of laccases, MnP and LiP 10 Laccase immobilized on different supports Some prices of commercially available lignin-degrading enzymes

11	Some prices of commercially available lignin-degrading enzymes	52
12	Experimental design combinations for the factors and	
	levels used for the optimization of laccase production	
	based on substrates, inducers and concentrations	64
13	Seven factors in three levels Box–Behnken design,	
	ten replications of the centre point used to design	
	the best medium for Ganoderma sp. KU-Alk4	65
14	Wavelengths resulting maximum absorbance (λ_{max}) of	
	various dyes	68

Page

8

10

17

22

24

32

35

36

37

42

LIST OF TABLES (Continued)

Table

15 Experimental design combinations for factors and levels used for optimisation of the laccase entrapment in Cu-alginate bead based alginate composition and, concentration and copper sulphate as 71 cross-linking agent 16 The coded and Latin Square Experimental Design 71 17 Comparison of liquid and solid state cultures of Ganoderma sp. KU-Alk4. 115 18 Seven factors in three levels Box–Behnken design ten replications of the centre point used to design the best medium for Ganoderma sp. KU-Alk4 119 19 The analysis of variance of the Box-Behnken experimental design for the laccase production by Ganoderma sp. KU-Alk4 121 20 Comparison of laccase production by Ganoderma sp. KU-Alk4 with some reference fungi 133 21 147 The Coded and Latin Square Experimental Design 22 Analysis of variance of the effects of co-polymer type (F₁), concentrations of polymer (F_2) and gel inducer (F_3) on immobilized yield of laccase of Ganoderma sp. KU-Alk4 148 23 Analysis of variance of the effect of co-polymer type (F_1) and concentrations of polymer (F_2) and gel inducer (F_3) on indigo carmine decolorization by immobilized laccase of Ganoderma sp. KU-Alk4 150 24 Analysis of variance of the effect of co-polymer type (F_1) and concentrations of polymer (F_2) and gel inducer (F_3) on repeat sequencing batch decolorization 152 25 Purification steps of laccase isozymes from Ganoderma sp. KU-Alk4 cultured in G1% Kirk's medium 169

Page

LIST OF TABLES (Continued)

Table Page 26 Purification steps of laccase isozymes from Ganoderma sp. KU-Alk4 cultured in G4% Kirk's medium 171 27 Molecular weight of laccase isozymes from Ganoderma sp. KU-Alk4 176 28 Comparison of N-terminal amino acid sequences of Ganoderma sp. KU-Alk4 laccases and the other fungal laccases 178 29 Substrate specificity of laccase isozymes from Ganoderma sp. KU-Alk4 184 30 Rates of oxidation of various substrates catalyzed by KULac 1 and 3 from Ganoderma sp. KU-Alk4 185 31 Effect of various reagents and organic solvents on laccase isozymes from Ganoderma sp. KU-Alk4 188

Appendix Table

A1	Some chemical properties of the enzyme-treated pulp of	
	paper mulberry from the process of soaking the bark in the	
	lignin-degrading enzymes from KU-Alk4 for 12, 24, 36 and	
	48 h compared with that soaked in water	233

LIST OF FIGURES

Figure

1	The enzyme mechanisms of laccase, MnP and LiP	9
2	Structure of lignin	26
3	Chemical structures of lignin-related compounds	27
4	Three-dimensional structure of the Coprinus cinereus laccase.	30
5	Two possible spectroscopically models for peroxide bridging	
	at the trinuclear cluster site	30
6	Catalytic cycle of laccase	31
7	Scheme of principal methods of enzyme immobilization	41
8	Ganoderma sp. KU-Alk4	54
9	A 5 L-airlift bioreactor used in Indigo Carmine decolorization by	
	copper alginate immobilized laccase of Ganoderma sp. KU-Alk4	74
10	Time course of the lignin-degrading enzymes production by	
	Ganoderma sp. KU-Alk4 in Kirk's medium, pH 7.0 and incubated in	
	the different conditions	82
11	Effect of pH on production of laccase and MnP by	
	Ganoderma sp. KU-Alk4 in Kirk's medium	85
12	Induction control of laccase production of Ganoderma sp. KU-Alk4	
	in Kirk's medium pH 8.0 by 0.85 mM veratryl alcohol	88
13	Effect of some phenolic compounds as inducer to the	
	laccase production of Ganoderma sp. KU-Alk4	
	cultivated in Kirk's medium pH 8.0	91
14	Effect of various carbon sources, each 1%, on laccase production of	
	Ganoderma sp. KU-Alk4 cultivated in Kirk's medium pH 8.0	94
15	Effect of glucose concentration on laccase production of	
	Ganoderma sp. KU-Alk4 in Kirk's medium pH 8.0	97
16	Catabolite repression control of lignin degrading enzymes production	
	by Ganoderma sp. KU-Alk4 in Kirk's medium pH 8.0	100

Page

Figure

17	Effect of copper ion on laccase production of	
	Ganoderma sp. KU-Alk4 cultivated in Kirk medium pH 8.0	102
18	Effect of manganese ion on laccase production of	
	Ganoderma sp. KU-Alk4 cultivated in Kirk medium pH 8.0.	104
19	Effect of shaking rate on laccase production Ganoderma sp.	
	KU-Alk 4 in Kirk medium pH 8.0	106
20	Cultivation of Ganoderma sp. KU-Alk4 on solid substrates	
	composed of agricultural products	109
21	(A) Commercial method for preparing inoculum of mushroom	
	in Thailand. (B) Cultivation of Ganoderma sp. KU-Alk4 on	
	solid substrates of corn, sweet sorghum or rice grain, respectively,	
	in 9 days at room temperature	110
22	Lignin-degrading enzymes from Ganoderma sp. KU-Alk4	
	cultivated on agricultural solid substrates	111
23	Induction control of production of MnP from Ganoderma sp.	
	KU-Alk4 cultivated on agricultural solid substrates.	113
24	Induction control of production of laccase from	
	Ganoderma sp. KU-Alk4 cultivated on agricultural solid substrates	114
25	Laccase activity and growth curve of Ganoderma sp. KU-Alk4	
	in non-optimized Kirk's liquid medium with 10 g/L glucose and	
	0.22 g/L ammonium atrtrate. Initial pH was 7.0 and no pH controlled	
	throughout the experiment	117
26	Laccase production by Ganoderma sp. KU-Alk4 at time	
	course of fermentation in the selected optimized media by	
	the Box-Behnken factorial designed	120

Figure

vii

27	Graphical analysis of the relationship between carbon sources,	
	type and concentration and the laccase produced by Ganoderma sp.	
	KU-Alk4 at pH 4.0(\circ), 6.0(\Box) and 8.0(Δ)	124
28	Graphical analysis of the relationship between nitrogen type and	
	concentration and the laccase produced by Ganoderma sp.	
	strain KU-Alk4 at pH 4.0(\circ), 6.0(\Box) and 8.0(Δ)	125
29	Graphical analysis of the relationship between inducer (mM),	
	veratryl alcohol, guaiacol and ferulic acid (c) and	
	concentration and the laccase produced by Ganoderma sp.	
	KU-Alk4 at pH 4.0(\circ), 6.0(\Box) and 8.0(Δ)	126
30	Observation and prediction of laccase activity of	
	Ganoderma sp. KU-Alk4 calculated with the model	128
31	Confirmatory runs using the best medium: glycerol (40 g/L),	
	yeast extracts (0.22 g/L) and veratryl alcohol (0.85 mM) at pH 6.0	129
32	Optimum pH of crude laccase from Ganoderma sp. KU-Alk4	
	cultured in pH 8.0 Kirk's medium with 1% glucose (o),	
	4% glucose (\Box) and pH stability at 1 h for crude enzyme of	
	1% glucose (\bullet), 4% glucose (\blacksquare)	136
33	Optimum temperature of crude laccase from Ganoderma sp.	
	KU-Alk4 cultured in pH 8.0 Kirk's medium with 1% glucose (o),	
	4% glucose (\Box) and temperature stability at 1 h for	
	crude enzyme of 1% glucose (\bullet), 4% glucose (\blacksquare)	136
34	Decolorization of various dyes by the crude enzymes of	
	Ganoderma sp. KU-Alk4 cultivated in Kirk's medium with	
	1% (G1%) and 4% glucose (G4%)	139

Figure

Page

35	Typical Indigo carmine dye decolorization by free laccase of	
	Ganoderma sp. KU-Alk4 at 25°C	141
36	Activity of the immobilization laccase that entrapped in	
	alginate bead with different kinds of cross linking agents	144
37	Stability of free laccase of Ganoderma sp. KU-Alk4	
	in the presence of 0.15 M of the different cations	145
38	Effect of alginate composition (\circ), alginate concentration (\Box)	
	and CuSO ₄ concentration (Δ) on immobilization yield of laccase	
	of <i>Ganoderma</i> sp. KU-Alk4	149
39	Effect of alginate composition (\circ), alginate concentration (\Box)	
	and $CuSO_4$ concentration (Δ) on Indigo Carmine decolorization	
	by immobilized laccase of Ganoderma sp. KU-Alk4	151
40	Effect of alginate composition (\circ), alginate concentration (\Box)	
	and $CuSO_4$ concentration (Δ) on repeat sequencing batch of	
	Indigo Carmine decolorization by immobilized laccase of	
	Ganoderma sp. KU-Alk4	153
41	Contour diagram of total Indigo Carmine removed affected by	
	alginate concentration and CuSO ₄ concentration at	
	alginate type A using Latin Square Design	155
42	Confirmatory run of the best immobilization treatment: alginate A	
	at 3.6% w/v and 0.15 M CuSO ₄ as cross-linking agent	156
43	Indigo Carmine decolorization in 5 L-airlift bioreactor using	
	immobilized laccase of Ganoderma sp. KU-Alk4 entrapped in	
	Cu-alginate bead	159

viii

Figure

44	Comparison of Indigo Carmine decolorization by Cu-alginate	
	immobilized laccase of Ganoderma sp. KU-Alk4 in the 5 L-	
	airlift bioreactor system with different airflow rates	162
45	Percent activity retained by Ganoderma sp. KU-Alk4	
	laccase immobilized in Cu-alginate bead along dye	
	decolorization in 5 L-airlift reactor with different air flow rate	164
46	Effect of glucose concentrations on laccase production and	
	mycelial dry weight (MDW) of Ganoderma sp. KU-Alk4	166
47	Zymograms of laccase isozymes monitored in the crude	
	enzyme of Ganoderma sp. KU-Alk4 grown in G1%, (A),	
	and G4%, (B), Kirk's media	167
48	Protein and activity profiles of laccase isozymes of	
	Ganoderma sp. KU-Alk4 grown in 1% glucose medium,	
	from DEAE-Toyopearl column	170
49	Elution profile of KULac 3, KULac 4 and KULac 5 from	
	G4% culture of Ganoderma sp. KU-Alk4 on	
	DEAE-Toyopearl column	172
50	SDS-PAGE of the purified laccase isozymes from	
	Ganoderma sp. KU-Alk4	174
51	Non-denaturing native PAGE (10%) of laccase isozymes	
	from <i>Ganoderma</i> sp. KU-Alk4	175
52	(A) Optimum pH and (B) pH stability for KULac 1; (\bigcirc),	
	KULac 2; (\triangle), KULac 3; (\blacksquare) and KULac 5; (\blacklozenge)	180
53	(A) Effect of temperature on the activity and	
	(B) thermal stability of KULac 1; (\bigcirc), KULac 2; (\triangle),	
	KULac 3; (\blacksquare) and KULac 5; (\blacklozenge)	182

Figure		Page
54	Structure of the rRNA gene cluster and positions of fungal	
	PCR primers	189
55	Score of ITS4 sequences producing significant alignments	
	compare between Ganoderma sp. KU-Alk4 and	
	15 other strains that had the closest relation	191
56	Comparison of ITS4 sequences from Ganoderma sp.	
	KU-Alk4 (Query) and Ganoderma philippii (Sbjct)	192
57	Fruiting body of Ganoderma sp. KU-Alk4 (A) and	
	Ganoderma philippii (B)	193
58	Score of 18S rDNA sequences producing significant	
	alignments compare between Ganoderma sp. KU-Alk4	
	and 15 other strains that had the closest relation	194
59	Comparison of 18S rDNA sequences from Ganoderma sp.	
	KU-Alk4 (Query) and Trametes versicolor (Sbjct)	195
60	Comparison of 18S rDNA sequences from Ganoderma sp.	
	KU-Alk4 (Query) and Ganoderma australe (Sbjct)	198
61	Phylogenetic relation of Ganoderma sp. KU-Alk4 and	
	other fungi constructed by neighbor-joining method from	
	the MEGA 2 program	202

Appendix Figure

A1	Electron microscopic picture of paper mulberry bark pulped	
	with the lignin-degrading enzymes of KU-Alk4 for 48 h	238
C1	Standard curve of protein (bovine serum albumin) assay	
	by Lowry-Folin method	244

Appendix	x Figure	Page
C2	Standard curve of molecular weight standard protein from	
	SDS-PAGE	247
C3	Standard curve of molecular weight standard protein from	
	native-PAGE by Hedrick and Smith method	248