TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	iv
INTRODUCTION	1
OBJECTIVES	5
LITERATURE REVIEW	8
MATERIALS AND METHODS	32
RESULTS AND DISCUSSION	52
CONCLUSION AND RECOMMENDATION	111
Conclusion	111
Recommendation	114
LITERATURE CITED	116
APPENDICES	134
Appendix A SUZ-4 Synthesis Conditions and Autoclave Reactors	135
Appendix B Nanostructures Sorbents for Mercury Capture Experiment	143
Appendix C Saito-Foley Cylindrical Pore Model	146
Appendix D Elemental Dispersion X-ray Analysis (EDS) Results	149
Appendix E Concept of Inductively Coupled Plasma Mass Spectrometry	
Analysis	153
Appendix F Overview concept of zeta potential	160

LIST OF TABLES

Table Page 1 Concentrations of elements identified in samples of fly ash from similar coal fired power facilities 28 Gel compositions for synthesis of SUZ-4 zeolite 2 33 3 List of experiments performed for SUZ-4 zeolite powder and zeolite membrane synthesis 35 4 List of experiments performed for nanocomposite synthesis 38 5 Impinger solution for sampling 47 6 Experimental condition for screening study of nanostructured sorbents 48 Effect of stirring for 4 days crystallization time at $SiO_2/Al_2O_3 =$ 7 33 53 8 Effect of different SiO₂/Al₂O₃ at stirring around 300 rpm for 4 days crystallization 54 9 BET surface area and pore volume of synthesized zeolite with different SiO₂/Al₂O₃ ratios for 4 days crystallization 57 10 Effect of different SiO₂/Al₂O₃ at stirring around 300 rpm for 2 days crystallization 59 11 BET surface area and pore volume of synthesized zeolite with different SiO₂/Al₂O₃ ratios for 2 days crystallization 62 Conditions and results for reproducible SUZ-4 synthesis with 12 different H₂O/Al₂O₃ ratios 65 13 BET surface area and pore volume of reproducible zeolite at 69 $SiO_2/Al_2O_3 = 21.2$ with different H_2O/Al_2O_3 ratios 14 Specific surface area and particle size variation for different Si 78 and Ti precursor feed rates 15 Chemical bonding from FTIR analysis 85

ii

TABLE OF TABLES (Continued)

Table		Page
16	Specific surface area and particle size variation for different Si	
	and Al precursor feed rates	87
17	Properties of various sorbents used for the mercury capture	
	experiments	98
18	Initial rates of Hg capture for different Hg inlet concentrations	
	with UV irradiation	103
19	Summary of estimated parameters for an Hg inlet Hg	
	concentration of $75\pm1.9 \ \mu g/m^3$ with UV irradiation	105
20	Percentage of mercury extracted at different steps of the	
	sequential extraction study and total solid phase Hg concentration	
	for an inlet concentration of $75 \pm 1.9 \ \mu g/m^3$	107

Appendix Table

A1	Chemical of Al ⁺³ and Si ⁴⁺ sources for each experiments	136
A2	Gel compositions for each experiment on unsuccessful synthesis	
	of SUZ-4 zeolite powder with 300 ml stainless steel autoclave Parr	
	Model 4561	137
A3	Mullite ceramic properties (3Al ₂ O ₃ .2SiO ₂)	142
D1	Element normalized in quantification from one spot of sample	
	No. M2S	150

LIST OF FIGURES

Figure		Page
1	Relationship between structure-directing agents (SDA) and the	
	resulting zeolites	16
2	SUZ-4 zeolite topology and scheme (a) 10-ring viewed along [001]	
	4.1 x5.2 Å (b) 8- ring viewed along [010] 3.2 x 4.8 Å and (c) 8-ring	
	viewed along [110] 3.0 x 4.8 Å (3-dimensional) (d) schematic	
	representation of SUZ-4 multichannel system (e) columns along	
	the unit cell c-axis	21
3	Schematic diagram of FLAR for nanocomposite synthesis	36
4	Propose pathway of nanocomposites formation in high temperature	
	environment	39
5	Differential bed reactor (DBR) system used for mercury uptake	
	studies	46
6	Experimental setup for photocatalytic degradation of methyl	
	orange dye studies.	51
7	XRD patterns of zeolite SUZ-4 crystals prepared at $SiO_2/Al_2O_3 =$	
	33 for 4 days compared with different stirring speeds (a) 80 rpm (b)	
	300 rpm	53
8	XRD patterns of zeolite SUZ-4 crystals prepared at 155 $^{\circ}$ C for 4	
	days with different SiO_2/Al_2O_3 (a) 32.4 (b) 21.2 (c) 16.3	55
9	SEM images of zeolite SUZ-4 crystals prepared at 155 $^{\circ}$ C for 4	
	days with 300 rpm for different SiO_2/Al_2O_3 ratios (a) 32.4 (0.09 μm	
	dia.x 0.63 µm long) (b) 21.2 (0.07 µm dia.x 0.64 µm long) (c)	
	16.3 (0.09 μm dia.x 1.20 μm long)	56
10	Pore size distribution (SF method) of SUZ-4 zeolite for 4 days	
	synthesis time at different SiO ₂ /Al ₂ O ₃ ratios	58

Figure

Page

11	XRD patterns of zeolite SUZ-4 crystals prepared at 168 $^{\circ}$ C for 2	
	days with a different SiO_2/Al_2O_3 (a) 32.7 (b) 21.2 (c) 16.2 (d) 16.7	60
12	SEM images of zeolite SUZ-4 crystals prepared at 168 $^\circ$ C for 2	
	days with different SiO_2/Al_2O_3 (a) 33.3 (0.15 μm dia.x 1.09 μm	
	long) (b) 21.2 (0.1 µm dia.x 0.41 µm long) (c) 16.2 (0.12 µm	
	dia.x 1.23 µm long)	61
13	Pore size distribution (SF method) of SUZ-4 zeolite for 2 days	
	crystallization with different SiO ₂ /Al ₂ O ₃ ratios	62
14	XRD patterns comparison between 4 days and 2 days	
	crystallization time of SUZ-4 zeolite prepared at $SiO_2/Al_2O_3 = 21.2$	63
15	XRD patterns of reproducible SUZ-4 zeolite powder synthesis	
	prepared with different H ₂ O/Al ₂ O ₃ ratios	66
16	SEM images of zeolite SUZ-4 crystals prepared without seeding	
	(a) M1P (0.06 µm dia.x 0.62 µm long) (b) M2P (0.07 µm dia.x	
	0.63 µm long) (c) M4P (0.1 µm dia.x 0.65 µm long) (d) M5P (0.1	
	μm dia.x 0.97 μm long)	67
17	SEM images of zeolite SUZ-4 crystals prepared with seeding (a)	
	M1SP (0.09 µm dia. x 0.83 long) (b) M2SP (0.07 µm dia. x 0.51	
	long) (c) M4SP (0.08 µm dia. x 0.63 long) (d) M5SP (0.08µm dia.	
	x 0.7 long)	68
18	Pore size distribution (SF method) of reproducible SUZ-4 zeolite	
	powder of $SiO_2/Al_2O_3 = 21.2$ with different conditions	70

Figure

- SEM images of SUZ-4 zeolite membrane prepared for 4 days with SiO₂/Al₂O₃=21.2 cross-section and top view (a) M1 cross-section (84 μm thickness) (b) M1 top view of SUZ-4 crystals (0.27μm dia. x 4 μm long) and (c) M1S cross-section (19 μm thickness) (d) M1S Top view of SUZ-4 crystals (0.07 μm dia. x 0.52 μm long)
 SEM images of SUZ-4 zeolite membrane re-prepared for 4 days
- with SiO₂/Al₂O₃ =21.2 cross-section and top view (a) M2 crosssection (4 μ m thickness) (b) M2 top view of SUZ-4 crystals (0.08 μ m dia. x 0.6 μ long) (c) M2S cross-section (14 μ m thickness) (d) M2S top view of SUZ-4 crystals (0.07 μ m dia. x 0.47 μ m long)
- SEM images of SUZ-4 zeolite membrane prepared for 3.9 days with SiO₂/Al₂O₃=21.2 cross-section and top view (a) M4 cross-section (17.5 µm thickness) (b) M4 top view of SUZ-4 crystals (0.07 µm dia. x 0.73 µm long) (c) M4S cross-section (24.8 µm thickness) (d) M4S top view of SUZ-4 crystals (0.07 µm dia. x 0.71 µm long)
- SEM images of SUZ-4 zeolite membrane prepared for 4.9 days with SiO₂/Al₂O₃=21.2 cross-section and top view (a) M5 cross-section (41 µm thickness) (b) M5 top view of SUZ-4 crystals (0.1µm dia.x 0.88 µm long) (c) M5S cross-section (54 µm thickness) (d) M5S top view of SUZ-4 crystals (0.097 µm dia.x 0.76 µm long)
- FTIR spectra of as-synthesized SUZ-4 zeolite obtained from M2S
 powder for uncalcined and calcined SUZ-4 zeolites
- 24Zeta potential of mullite supporter and as-synthesized SUZ-4zeolite powder as a function of pH76

Page

72

73

74

75

Figure Page 25 XRD patterns of composite SiO₂-TiO₂ powder prepared at 4 inch 79 quench ring position with different precursor molar ratios 26 Specific surface area and particle size as a function of quench ring position (at precursor molar ratio Si: Ti= 4) at CH₄ flowrate of 1 and 1.8 lpm 80 27 TEM images of SiO_2 -TiO₂ composite molar ratio of Si:Ti = 4prepared with different quench ring positions (a) 2 inch at 1.8 lpm CH₄ flowrate (b) 7 inch at 1.8 lpm CH₄ flowrate (c) 2 inch at 1.0 lpm CH₄ flowrate (d) 7 inch at 1.0 lpm CH₄ flowrate 81 28 XRD patterns at low and high quench ring position for (a) pure 82 TiO_2 (b) SiO_2 - TiO_2 composite 29 FTIR spectra of SiO_2 -TiO₂ (a) with different silica content (b) with 84 different quench ring position 30 Zeta potential of SiO₂-TiO₂ composite as a function of pH for different quench ring position 86 31 XRD patterns of composite SiO₂-Al₂O₃ powder produced at 88 different precursor molar ratios 32 Specific surface area and particle size of SiO₂-Al₂O₃ as a function of quench ring position (at precursor molar ratio Si:Al = 2) for a 89 CH₄ flowrate of 1 lpm 33 TEM images of SiO₂-Al₂O₃ composites prepared at different conditions (a) quench ring position of 4 inch, precursor molar ratio of Si:Al = 0.6 (b) quench ring position of 4 inch, precursor molar ratio of Si:Al = 66 (c) quench ring position of 2 inch, precursor 91 molar ratio of Si:Al = 234 FTIR spectra of SiO_2 -Al₂O₃ (a) with different silica content and (b) with different quench ring position 93

Figure

35	Zeta potential of SiO ₂ -Al ₂ O ₃ composite as a function of pH for	
	different quench ring position	94
36	SEM images of (a) Iron Oxide Red (b) Trans OxideYellow (c)	
	Trans Oxide Red (d) Trans Oxide Brown (e) TiO ₂ (f) titania PILC	
	(g) synthetic SUZ-4 zeolite (h) synthetic Fe ₃ O ₄ magnetite	100
37	Hg^{0} capture efficiency in differential bed reactor for an inlet Hg	
	concentration of 75 \pm 1.9 μ g/m ³ (with/without UV).	101
38	Log-log plot of conversion versus inlet mercury concentration to	
	determine fitting parameter (α) and rate constant (k) The inlet Hg	
	concentration was fixed at 75 \pm 1.9 μ g/m ³	104
39	UV-vis absorption intensity at 460 nm for photocatalytic	
	degradation of methyl orange of pure TiO ₂ and different Si:Ti ratio	
	at 4 inch quench position.	108
40	UV-vis absorption intensity at 460 nm for photocatalytic	
	degradation of methyl orange of pure TiO_2 and different quench	
	ring position at Si:Ti = 4	109
41	UV-vis absorption intensity at 460 nm for photocatalytic	
	degradation of methyl orange of SUZ-4 zeolite, TiO ₂ -PILC and	
	TiO ₂	110

Appendix Figure

A1	Stainless steel autoclave- Pressure reactor Parr 300 ml, Model	
	4561, USA	138
A2	390ml Teflon-lined home-made design stainless steel autoclave	
	with circulating air drying oven (Forced convection BINDER	
	GmbH Model FP240, Germany)	139

Appendix Figure

Page

A3	Detailed design drawing of 390ml Teflon-lined home-	
	madestainless steel autoclave	140
A4	Thermal decomposition profile of TEAOH for uncalcined SUZ-4	
	zeolite at heating rate 5°C/min in air	141
B1	Schematic structure model of the titania pillar intercalated clay	144
B2	X-ray diffraction patterns of various sorbents(a) Iron Oxide Red (b)	
	Trans Oxide Yellow (c) Trans Oxide Red (d) Trans Oxide Brown	
	(e) titanium oxide (f) titanium dioxide pillared clay (g) synthetic	
	SUZ-4 zeolite (h) synthetic magnetite	145
D1	EDS for 4 days crystallization time at $SiO_2/Al_2O_3 = 21.2$	
	(SUZ-4 sample No. M2S)	150
D2	EDS for pure Al ₂ O ₃ (Au element from gold sputtering)	151
D3	EDS for pure SiO ₂ (Au element from gold sputtering)	151
D4	EDS for Si:Al = 24 (Au element from gold sputtering)	152
E1	ICP-MS Instrument Operation	157
F1	The development of a net charge at the particle surface	162
F2	The scattering of particles in the cell from laser droppler	
	velocimetry	164