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Hartree-Fock Method 
  
 The energy and many properties of a stationary state of a molecule can be obtained by 
solution of the Schrodinger partial differential equation, 
 

ψψ EH =  
 
Here H is Hamiltonian operator, a differential operatoe representing the total energy. E is the 
numerical value of the energy of the state. ψ is the wave function, the square of the wave 
function, ψ2, is interpreted as a measure of the probability distribution of the particles within the 
molecule. 
 The Hamiltonian H, like the energy inclassical mechanics, is the sum of kinetic and 
potential parts, 
 

H = T + V 
 
The kinetic energy operator T is a sum of differential operators, 
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The sum is over all particles I (nuclei + electrons) and mi is the mass of particle i. h is Planck’s 
constant. The potential energy operator is the coulomb interaction, 
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where the sum is over distinct pairs of particles (i,j) with electric charges ei, ej separated by a 
distance rij. For electrons, ei =-e, while for anucleus with atomic number Zi, ei = +Zie. 
Semiempirical Calculations 
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 Due to their greatly increased requirement for central processing unit time and storage 
space in the computer memory, ab initio quantum chemical methods are limited in their practical 
applicability. The approximate quantum chemical methods require significantly less 
computational resources. Semiempirical methods are based on the Roothaan-Hall . 
 
 In ab initio calculations all elements of the Fock matrix are calculated, irrespective of 
whether the basis functions µφ , νφ , σφ  and λφ are on the same atom, on atoms that are bounded 
or on atoms that are not formally boned. The semiempirical methods consider the Fock 
matrixelement in three groups: µµF  (the diagonal elements); µνF  (where µφ  and νφ  are on the 
same atom, and σφ and λφ  are on different atoms). 
 
 The greatest proportion of the time required to perform ab inito Hartree-Fock SCF 
calculation is invariably calculating and manipulating integrals. The most obvious way to reduce 
the computational effort is to neglect or approximate some of these integrals. Semiempirical 
methods achieve this is part by explicit considering into the nuclear core. The overlap matrix, S, 
is set equal to identity matrix, I. The main implication of this is that the Roothaan-Hall equations 
are simplified: FC = SCF becomes FC = CE. 
 
 The NDDO (neglect of diatomic differential overlap), this theory neglects differential 
overlap between atomic orbital on different atoms. 
 
 The elimination of three- and four-centre integrals greatly reduces the time and storage 
requirements for an NDDO calculation (which now increase as the square of the number of 
atoms) relative to that for a full Hartree-Fock treatmemt. 
 
 Three levels of NDDO theory are included in SPARTAN’S SEMI EMPIRICAL module: 
MNDO Modified Neglect of Diatomic Overlap 
 
 AM1 Austin Model 1 
 PM 3 MNDO Parametrization Method 3 
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 In all of these formalisms, only the valence electrons are considered. The one-electron 
terms are given by, 
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 Here, µ and ν are located on atom A and the summation is over all other atoms. ννU  is 
related to the binding energy of an electron in atomic orbital ν, and is determined from 
spectroscopic data.  µνU  is set to zero for µν ≠ . The second term in Equation represents the 
attraction on an electron on atom A from the nuclear framework. The two center integral involves 
only the s function on atom B.ZA is the charge of atom A without its valence electrons. 
 
 All one-centre, two-electronintegrals ( )µµυυ /  and ( )υµυµ /  are fitted to 
spectroscopic data. The two-centre, two electron repulsion integrals ( )λσυµ /  are approximated 
by classical multipole-multipole charge interactins between atoms Aand B The multipole chrge 
separations within an atomare treated as adjustable parameters, i.e. optimized to fit the 
experimentally derived one-centre integrals. 
 
 The µλβ terms appearing in the Fock matrix are the one-electron, two-center core 
resonance integrals and are approximated as, 
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Where S is the overlap integral between Slater orbitals     and     and    are adjustable 

parameters optimized using experimental thermo chemical data for simple molecules. Because all 
of the adjustable parameters are rooted in experimental data, these methods are known as 
semiempirical. As in ab initio Hartree-Fock calculations, an SCF procedure is used to converge 
on a density matrix, and the electronic energy. 
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 The three methods differ only in the core-replusion terms (they also differ in the detailed 
parameterization). Core repulsion includes nuclear repulsion and non-valence electron-electron 
repulsion, which are not explicitly considered in the calculation of the electronic energy. In the 
MNDO model, the core repulsion energy is given by, 
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where  is the intermolecular distance and    and    are adjustable parameters fit to give the correct 
empirical behavior. Details are provided in the original papers. MNDO tends to overestimate core 
repulsion between two atoms at van der Waals distances. For this reason, the AM1 model was 
developed. 
 

The AM1 and PM3 are based on MNDO (the name derives from the fact that PM3 is the 
third parametrization of MNDO, AM1 being considered the sedond). In AM1 a sum of Gaussians 
is employed to better represent the cor-core repulsion behavior at Vab der Waals distances just 
outside bonding distances. PM3 uses a similar core repulsion function, but differs in the 
parametrization procedure. 
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Molecular Orbital Theory 
 
 Molecular orbital theory is an approach to molecular quantum mechanics which uses 
one-electron functions or orbitals to approximate the full wave function. A molecular orbital, 
( )zyx ,,ψ , is a function of the Cartesian coordinates x, y, z of a single electron. The spin 

coordinates, ξ , also has to be included. This coordinate takes on one of two possible values 
( )2

1± , and measures the spin angular momentum component along the z axis in units of π2/h . 
 
 The simplest type of wave function appropriate for the description of an n-electron 
system would be in the form of a product of spin orbitals, 
 

( ) ( ) ( )nnproduct χχχψ ...21 21=  
 
where ( )iiχ is written for ( )iiiii zyx ξχ ,,, , the spin orbital of electron i. The spin orbitals may 
be arranged in a determinantal wave function. 
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Here the elements of the first row of the determinant contain assignations of electron 1 to all the 
spin orbitals nχχχ ,...,, 21 , the second row all possible assignations of electron 2, and so forth. 
 
 Some further properties of molecular orbital wave functions are wort noting. It is 
possible to force the orbitals to be orthogonal to each other, that is, 
 

∫= dxdydzS jiij ψψ *  
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This can be accomplished without changing the value of the whole wave function by mixing 
columns of the determinant. The spin functions, α  and β , are orthogonal by integration over 
spin space (actually summation over the two possible values of ξ ): 
 

( ) ( ) 0
2
1

2
1

2
1

2
1

=⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+=∑ ββαββαξβξα

ξ
 

 
Molecular orbitals may be normalized, that is 
 

1* == ∫ dxdydzS jiij ψψ  
 
By multiplication of the individual by a constant, normalization corresponds to the requirement 
that the probability of finding the electron anywhere in space is unity. Given 1=ijS , the 
determinantal wave function may be normalized by multiplication by a factor of ( ) 2

1
! −n  , that is, 

 
∫ ∫ =ΨΨ 1* 21 ndd τττ LL  

 
The determinantal wave function may be normalized by multiplication by a factor of ( ) 2

1
! −n . We 

can write down a full many-electron molecular orbital wave function for the closed-shell ground 
state of a molecule with n(even) electrons, doubly occupying n/2 orbitals: 
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The determinant is referred to as a Slater determinant. 
 
 
 
 



 62

Hatree-Fock Theory 
 
 An exact solution to the Schrodinger equation is not possible for any but the most trivial 
molecular systems. However, a number of simplifying assumptions and procedures do make an 
approximate solution possible for a large range of molecules. To simplify the treatment further, 
the next step is to assume thet the electrons are non-interacting. This implies that (apart from the 
constant nuclear-nuclear repulsion term) which can rewrite the total n-electron Hamiltonian as a 
sum of n one-electron Hamiltonians, 
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 This is clearly an oversimplication, since have neglected the electron-electron repulsion 
term 

ijr
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1
 defines the independent particle model. The one-electron Hamiltonians 

are termed core-Hamiltonians, since the only interactions included are those between the 
electrons and the bare nuclei. Including an average interaction term in the {h(i)}, these become 
effective one-electron Hamiltonians. As a consequence of Equation, the total wave function can 
be rewritten as a product of n single-particle wave functions, 
 

( ) ( ) ( ) ( )nn rrrr vvvv φφφψ ...2211=  
 
or, take the electron spin into account, 
 

( ) ( ) ( )nn xxx vvr χχχψ ...2211=  
 
 
 



 63

The spin orbitals ( ){ }ii xvχ  are the products of the spatial orbitals ( )ii rvφ  and the spin 
functions ( )( )ωα and ( )( )ωβ ; ixv denotes both the space and spin coordinates of electron i. The 
total independent particle spin-orbital wave function is called a Hartree-product. The 
corresponding eigenvalue is a sum of the single-particle spin-orbital energies, 
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 A further requirement on the state wave function is that it must be anti-symmetric with 
respect to the interchange of coordinate r (both space and spin) of any two electrons, 
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( ) ( )nn xxxxxx vvvvvv ,...,,,...,, 1221 ψψ ±=  
 
 It is also possible to write Equation in terms of a n x n determinant, a slater determinant, 
which has the same antisymmetric properties: 
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This commonly is written like: 

 
( ) ( ) ( ) ( )nn xxxn vvv χχχψ ,...,,! 2211

21−=  
 
It can easily be varied that the slater determinant obeys the Pauli principle, as the determinant 
then becomes zero. The pre-factor ( ) 21! −n  is a normalization constant, and the { }iχ  are assumed 
orthonormal. By antisym-metrizing the Hartree-product in the term of a Slater determinant, that 
the probability of finding any two electrons at the same point in space (i.e. 1xv = 2xv ) is zero. 
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 Through the wave functions, the effective potential is generated. This potential allows to 
refine wave functions, from which a new potential is obtained. The procedure is repeated until a 
stable, self-consistent solution is reached. Due to the iterative procedure, the initial guess of the 
wave function, can of course be chosen. However, the better the initial guess is, the easier it is to 
reach a stable solution to the eigenvalue problems in a relatively short computational time, is 
provided by the variation principle. This can be stated in the following way. Given any 
approximate wave function, satisfying the correct boundary conditions, the expectation value of 
the energy obtained by this wave function never lies below the exact energy of the ground state. 
Expressed in mathematical terms: 
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 A conceptually appealing model for the (trial) wave function of our molecular system, is 
to regard it as being constructed from molecular orbitals (MO). This description in analogous to 
the method used for the atomic orbitals (AO). The MO’s, the elements of the wave function 
determinant, are in turn thought of as being constructed by a Linear Combination of Atomic 
Orbitals (LCAO), 
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 The variationsl principle leads to following equations describing the molecular orbital 
expansion coefficients, icυ , derived by Roothaan and by Hall: 
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Equation can be rewritten in matrix form: 
 

εSCFC =  
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With 
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Where coreH µυ , core-Hamiltonian matrix defined as 
 

( ) ( ) ( )∫= 111*
11 υµυ ϕϕ hdrH core  

 
The matrix P is the density matrix or change- and bond-order matrix, 
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The matrix S is the overlap matrix, indicating the overlap between orbitals. 

 
( ) ( )∫= 11*

1 υµµυ φφdrS  
 
 The term ( )λσµυ  in Equation signified the two-electron repulsion integrals, defined 
as 
 

( ) ( ) ( ) ( ) ( )∫ −= 2221 *1
12

*
21 σλυµ φφφφλσµυ rdrdr  

 
 The (initial) wave function is used to generated an effective otential, which apply this 
potential in order to refine the coefficient matrix. The modified MO’s form the new input in the 
Roothaan or Pople-Nesbet equations, and a new potential is generated. The iterative procedure is 
repeated until convergence is reached, i.e. when the changes in energy and/or charge density in 
two subsequent iterations are below a pre-set threshold value. 
 

µυµυµυ GHF core +=
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 Before a more technical description of the SCF-procedure is presented, first need to 
define a new transformation matrix X, used for ortogonalisation of the basis set. This 
orthogonolization can be either symmetric or canonical. A symmetric orthonalization implies that 
X is formed through the relation 
 

τUUsSX 2121 −− ==  
 
Where S is the overlap matrix, U is an unitary matrix diagonalizes S, and the diagonal matrix of 
the eigenvalues of S is given by the relations. In the canonical orthogonalization procedure, X is 
instead given by 
 

21−=UsX  
 
 Consider a new coefficient matrixC′ related to the old coefficient matrix C by 
 

,1CXC −=′    1−= XCC  
 
where assumed that X possesses an inverse. Substituting 1−= XCC  into the Roothaan equations 
gives 
 

εCSXCFX ′=′  
 
Multiplying on the left by τX gives 
 

( ) ( ) εττ CSXXCFXX ′=′  
 
If define a new matrix τF by 
 

FXXF ττ =  
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And use ( ) 0
1

=−∑
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εCCF ′=′′  

 
 Matrix Equation can be solved using standard methods. The matrix element of the 
Hartree-Fock Hamiltonian operator are dependent of other orbitals through the element , and the 
Roothaan equations are solved by first assuming an initial set of linear expansion coefficients. 
The whole process is then reported until the coefficients no longer change within a given 
tolerance on repeated iteration. The solution is then said to be self-consistent and the method is 
then referred to as the SCF method.  


