

รายงานฉบับนี้เสนอการพัฒนาออกแบบและประกอบสร้างเครื่องวิเคราะห์ดีสชาร์จบางส่วนที่ใช้ไมโครคอมพิวเตอร์เป็นฐาน เพื่อใช้ในการตรวจจับดีสชาร์จบางส่วน ในอุปกรณ์ไฟฟ้าแรงสูง ตามข้อกำหนดของมาตรฐาน IEC60270 และใช้วิเคราะห์หาสาเหตุที่ทำให้เกิด PD ในอุปกรณ์ไฟฟ้าแรงสูง ลักษณะของระบบวัดที่ใช้เป็นแบบวิชีตรัง โดยมีช่วงความถี่ที่วัด 40 ถึง 420 kHz ความไวของภาคตรวจจับ PD เมื่อใช้ทดสอบวัสดุทดสอบทั่วไปที่มีค่าความจุ 1 nF และใช้ตัวเก็บประจุดับปลิบขนาด 1 nF จะให้ความไวต่ำกว่า 1 pC เครื่องที่ออกแบบสร้างนี้ใช้คอมพิวเตอร์เป็นฐาน มีวงจรภาคดิจิตอลที่โปรแกรมไว้ใน FPGA บนแผงวงจรที่ออกแบบให้ติดตั้งอยู่ภายในคอมพิวเตอร์ ซึ่งทำการประมวลผลและแสดงผลแบบเวลาจริง การใช้เครื่องวิเคราะห์ดีสชาร์จบางส่วนวิเคราะห์หาสาเหตุที่ทำให้เกิด PD ในอุปกรณ์ไฟฟ้าแรงสูงนั้น เครื่องจะทำการตรวจวัดและบันทึกข้อมูลลงในไฟล์คำนวณเมตริกซ์การกระจาย $H_n(\phi, q)$ และแสดงผลแบบ 3 มิติ คำนวณค่าคุณลักษณะทางแฟร์กตัลจากการกระจาย $H_n(\phi, q)$ จากนั้นจะทำการวิเคราะห์ค่าคุณลักษณะและจำแนกกลุ่มข้อมูลโดยใช้วิธี Centour score เพื่อหาสาเหตุที่ทำให้เกิด PD โดยอัตโนมัติ เครื่องวิเคราะห์ดีสชาร์จบางส่วนนี้สามารถใช้ทดสอบในห้องที่ไม่มีชีลด์ได้หากมีสัญญาณรบกวนไม่มากนัก

คำสำคัญ : เครื่องวิเคราะห์ดีสชาร์จบางส่วน, การตรวจวิเคราะห์การฉนวน, เอฟพีจีเอ

Abstract

This report presents the development, design and construction of a microcomputer-based partial discharge (PD) analyzer for high voltage equipment. The PD measuring system was designed in accordance with IEC60270, and for analyzing the cause of PD in high voltage equipment. The PD measuring system was designed for straight method with the measuring frequency range of 40 to 420 kHz. The sensitivity of the detector is better than 1 pC for test object and coupling capacitor with each 1 nF. Digital circuits of the PC-based analyzer were programmed into Field Programmable Gate Arrays (FPGA) on the PCB which fitted inside PC. The measuring system operates in real time for processing and display of PD data. To analyze PD data for insulation diagnosis purpose, PD signal is measured and recorded to a file. $H_n(\phi, q)$ distribution matrix is calculated and display in 3 dimensions. After that, fractal features are derived from $H_n(\phi, q)$ distribution and automatic classification of defects using Centour score method will finally be performed. The advantages of the designed partial discharge analyzer are easy in operation and measurement outside the shielding room can be performed in moderate environmental interference.

Keyword : Partial Discharge Analyzer , Insulation Diagnosis , FPGA