บทที่ 1

บทนำ

1.1 ความเป็นมาของงานวิจัย

ในปัจจุบันได้มีการนำวัสดุไดอิเล็กตริกไปใช้ในงานทางด้านอิเล็กทรอนิกส์อย่างกว้างขวาง ด้วยเหตุนี้จึง มีการศึกษาและพัฒนาวัสดุไดอิเล็กตริกเพื่อให้มีคุณภาพและประสิทธิภาพสูง โดยในงานวิจัยนี้มีความสนใจใน การศึกษาและพัฒนาวัสดุแบเรียมเซอร์โคเนตไททาเนต (BaZr_xTi_{1-x}O₃, BZT) เนื่องจากเป็นวัสดุอิเล็กทรอนิกส์ ที่ปราศจากองค์ประกอบของสารตะกั่ว และมีค่าได้อิเล็กตริกสูงและค่าการสูญเสียทางอิเล็กตริกที่ต่ำ การ สังเคราะห์ BZT สามารถสังเคราะห์ได้หลายวิธี เช่น วิธีปฏิกิริยาสถานะของแข็ง (Solid state reaction) วิธีการเผาไหม้ (Combustion) วิธีการตกตะกอน (Precipitation) ซึ่งแต่ละวิธีจะให้คุณสมบัติและลักษณะ ทางกายภาพของ BZT ที่แตกต่างกัน โดยพบว่าวิธีการตกตะกอนเป็นวิธีการสังเคราะห์ท่สั้น ดังนั้นในงานวิจัยนี้จึง ได้นำวิธีการตะกอนมาประยุกต์ใช้กับวิธีโซโนเคมี (Sonochemical method) ซึ่งเป็นการใช้คลื่นอัลตร้าโซนิ กกระตุ้นเพื่อให้เกิดปฏิกิริยาทางเคมีมาใช้สังเคราะห์ผงผลึก BZT ซึ่งจะทำให้ได้ผงผลึกที่มีอนุภาคขนาดเล็กใน ระดับนาโนและมีขนาดและรูปร่างที่ใกล้เคียงกัน

1.2 วัตถุประสงค์ของโครงงาน

1.2.1 เพื่อศึกษาและสังเคราะห์แบเรียมเซอร์โคเนตไททาเนต Ba(Zr_{0.3}Ti_{0.7})O₃ (BZT) ด้วยวิธีโซโน เคมี

1.2.2 เพื่อเตรียม BZT ที่มีความบริสุทธิ์สูงและมีขนาดอนุภาคนาโนที่มีขนาดใกล้เคียงกัน

1.3 ขอบเขตของโครงงาน

1.3.1 ศึกษาวิธีการสังเคราะห์และปัจจัยที่มีผลต่อการสังเคราะห์แบเรียมเซอร์โคเนตไททาเนต
 Ba(Zr_{0.3}Ti_{0.7})O₃ (BZT) โดยวิธีโซโนเคมี

1.4 ขั้นตอนของการวิจัยและวิธีการดำเนินงาน

- 1.4.1 ศึกษาค้นคว้าข้อมูลและทบทวนเอกสารทางวิชาการที่เกี่ยวข้อง
- 1.4.2 จัดเตรียมวัสดุ อุปกรณ์ และสารเคมี
- 1.4.3 สังเคราะห์ผงผลึกแบเรียมเซอร์โคเนตไททาเนต Ba(Zr_{0.3}Ti_{0.7})O₃ (BZT) โดยวิธีโซโนเคมี
- 1.4.4 ตรวจสอบและวิเคราะห์โครงสร้างผลึกและลักษณะทางกายภาพของผงผลึกที่สังเคราะห์ได้

1.5 ผลที่คาดว่าจะได้รับ

1.5.1 สามารถเข้าใจถึงหลักการ และวิธีการสังเคราะห์แบเรียมเซอร์โคเนตไททาเนต (BZT) วิธีโซโน เคมี

1.5.2 สามารถสังเคราะห์แบเรียมเซอร์โคเนตไททาเนต (BZT) ด้วยวิธีโซโนเคมี เพื่อให้ได้ผลึกที่มี ความบริสุทธิ์สูง และมีขนาดอนุภาคนาโนที่มีขนาดใกล้เคียงกัน

บทที่ 2

ทฤษฎีและหลักการ

2.1 โครงสร้างและคุณสมบัติ

แบเรียมเซอร์โคเนตไททาเนต BaZr_xTi_{1-x}O₃ (BZT) มีโครงสร้างแบบเพอรอฟสไกต์ (Perovskite) โดยมีโครงสร้างพื้นฐานแบบ ABO₃ ดังที่แสดงในรูปที่ 2.1 ซึ่งโครงสร้างนี้ประกอบด้วย ที่ตำแหน่ง A จะเป็น อะตอมของไอออนบวกที่มีรัศมีอะตอมขนาดใหญ่ (Large A-site cation) และมีเลขออกซิเดชันต่ำ เช่น K⁺, Na⁺, Ca²⁺, Sr²⁺, Ba²⁺ และ Pb²⁺ ที่ตำแหน่ง B ของหน่วยเซลล์ (Unit cell) ประกอบด้วย อะตอมของ ไอออนบวกที่มีรัศมีอะตอมขนาดเล็กและมีเลขออกซิเดชันสูง เช่น Ta⁵⁺, Ti⁴⁺, Zr⁴⁺, Sn⁴⁺ บรรจุอยู่ตรงกลาง ของหน่วยเซลล์ ซึ่งถูกล้อมรอบด้วยออกซิเจนที่จัดเรียงกันแบบออกตระฮีดรัล (Octahedral) โดยที่ตำแหน่ง A และ B สามารถบรรจุไอออนบวกที่มีประจุที่แตกต่างกันได้มากกว่า 1 ตัว ซึ่งจะเรียกว่าโครงสร้างเพอรอฟส ไกต์เชิงซ้อน

รูปที่ 2.1 แสดงโครงสร้างแบบเพอรอฟสไกต์ (Perovskite) ของ BaZr_xTi_{1-x}O₃ (BZT) [1]

แบเรี่ยมเซอร์โคเนตไททาเนต (Ba(Ti_{1-x}Zr_x)O₃, BZT) จัดเป็นสารประกอบเพอรอฟสไกต์ออกไซด์เชิงซ้อน [2] ที่เป็นสารละลายของแข็งของแบเรียมไททาเนต (BaTiO₃, BT) และแบเรียมเซอร์โคเนต (BaZrO₃, BZ) ซึ่ง เกิดขึ้นจากการแทนที่ของเซอร์โคเนียม (Zr⁴⁺) ในตำแหน่งของไททาเนียม (Ti⁴⁺) แล้วทำให้โครงสร้างมีความ เสถียรตัวมากยิ่งขึ้น โดยพบว่าสมบัติไดอิเล็กตริกของ BZT จะขึ้นกับอัตราส่วนของเซอร์โคเนียมต่อไททาเนียม (Zr:Ti) ที่มีอยู่ในองค์ประกอบของ BZT (Ba(Ti_{1-x}Zr_x)O₃) [3] โดยพบว่าเมื่ออัตราส่วนของ Zr อยู่ในช่วงที่ 0 \leq Zr (x) < 0.15 วัสดุ BZT จะแสดงสมบัติเป็นสารเฟอร์โรอิเล็กตริก และเมื่ออัตราส่วนของ Zr (x) = 0.15 BZT จะเกิดการเปลี่ยนแปลงโครงสร้างผลึกที่อุณหภูมิในช่วงกว้างเพียงแค่ครั้งเดียว ซึ่งเป็นผลจากการรวมตัว ของการเปลี่ยนโครงสร้างผลึกเดิมของ BaTiO₃ ที่สามอุณหภูมิ (Cubic-tetragonal ที่ 130 °C, tetragonal orthorhombic ที่ 0 °C, และ orthorhombic-rhombohedral ที่ -90 °C) และเมื่ออัตราส่วนของ Zr เพิ่ม มากยิ่งขึ้นเป็น 0.15 \leq Zr (x) \leq 0.42 BZT จะแสดงสมบัติเป็นสารเฟอร์โรอิเล็กตริกที่แสดงสมบัติรีแลกเซอร์ (Relaxor ferroelectric) กล่าวคือจะแสดงค่าสภาพยอมสัมพัทธ์ที่สูง และแสดงพฤติกรรมการเปลี่ยนแปลงค่า สภาพยอมสัมพัทธ์ขึ้นกับอุณหภูมิไม่มากนัก และเมื่ออัตราส่วนของ Zr (x) > 0.42 BZT จะแสดงสมบัติเป็น สารแอนทิเฟอร์โรอิเล็กตริก (Antiferroelectric) [4]

2.2 การสังเคราะห์แบเรียมเซอร์โคเนตไททาเนต (BZT)

โดยผงผลึก BZT นั้นสามารถสังเคราะห์ได้จากวิธีการต่าง ๆ เช่น วิธีปฏิกิริยาสถานะของแข็ง (Solid state reaction และ mixed oxide) และวีธีเคมีเปียก (Wet-chemical process) โดย Bhalla และคณะ [5-7] ได้ รายงานการศึกษาสารประกอบ Ba(Ti_{1-x}Zr_x)O₃ เมื่อ x = 0.15, 0.20, 0.30, 0.35. 0.40, 0.45, 0.50 และ 0.60) ที่เตรียมขึ้นจาก BaCO₃, ZrO₂ และ TiO₂ โดยวิธีปฏิกิริยาสถานะของแข็งและทำการเผาแคลไซน์ (calcination) ที่อุณหภูมิ 1200 ℃ เป็นเวลา 2 ชั่วโมง ตามด้วยการเผาผนึก (Sintering) ที่อุณหภูมิ 1500-เป็นเวลา 10-15 ชั่วโมง และพบว่าวัสดุ BZT ที่เตรียมได้จากวิธีนี้มีค่าคงที่ไดอิเล็กตริก 1560 °C เปลี่ยนแปลงตามอัตราส่วนของ Zr:Ti โดยมีค่าไดอิเล็กตริกและอุณหภูมิการเปลี่ยนโครงสร้าง (อุณหภูมิคูรี (T_) ลดต่ำลงเมื่ออัตราส่วน Zr:Ti เพิ่มมากขึ้น ผงผลึก BZT ยังสามารถเตรียมได้โดยวิธี auto-combustion ซึ่งเป็น กระบวนการ wet-chemical process ซึ่งทำได้โดยการผสมสารตั้งต้นกับสารเชื้อเพลิงและสารออกซิแดนซ์ (Fuel-oxidant ยกตัวอย่างเช่น citrate-nitrate, glycine-nitrate และ urea-nitrate) เพื่อให้เกิดปฏิกิริยา การสลายตัวจากการคายความร้อน (Exothermic decomposition) เนื่องจากกระบวนการดีไฮเดรชั่น (Dehydration) ของสารละลายของสารเชื้อเพลิงและสารออกซิแดนซ์และทำให้เกิดเป็นสารออกไซด์ที่มี โครงสร้างตามที่ต้องการ [8, 9] โดยสุขชูและผดุงทรัพย์ [10] ได้รายงานการงานการศึกษาการสังเคราะห์ Ba(Ti_{0.80}Zr_{0.20})O₃ โดยเริ่มต้นจากการผสมสารตั้งต้น BaCO₃, Ba(Ti_{0.85}Zr_{0.15})O₃ และ TiO₂, ZrO(NO₃)₂.xH₂O, HNO₃ และ urea (CH₄N₂O) เข้าด้วยกัน จากนั้นทำการให้ความร้อนที่อุณหภูมิ 120 [°]C ้จนกระทั้งสารละลายเกิดการก่อตัวเป็นเจลและเกิดการเผาไหม้โดยอัตโนมัติในที่สุด โดยเถ้าผลิตภัณฑ์ที่เกิดขึ้น ้ถูกนำไปเผาแคลไซน์ที่อุณหภูมิ 1150 °C เป็นเวลา 4 ชั่วโมง ตามด้วยการขึ้นรูปและเผาผนึกที่อุณหภูมิ 1400 °C เป็นเวลา 4 ชั่วโมง โดยพบว่าวัสดุที่สังเคราะห์ได้แสดงลักษณะโครงสร้างแบบเพอรอฟสไกต์ เป็นส่วนใหญ่ และค่าคงที่ไดอิเล็กตริกของ Ba(Ti_{0.85}Zr_{0.15})O₃ และ Ba(Ti_{0.80}Zr_{0.20})O₃ ที่สังเคราะห์ได้มีค่าประมาณ 2000

และ 3500 ตามลำดับ อย่างไรก็ตามผง BZT ที่สังเคราะห์ได้จากวิธี Auto-combustion ที่รายงานโดยสุขชู และผดุงทรัพย์ยังมีความบริสุทธิ์ที่ไม่สูงนัก อีกทั้งยังต้องทำการเผาแคลไซน์ที่อุณหภูมิสูง (1150 ℃) อีกด้วย

รูปที่ 2.3 รูปแบบ XRD ของ Ba(Zr_{0.1}Ti_{0.9})O₃ (BZT10) Ba(Zr_{0.2}Ti_{0.8})O₃ (BZT20) และBa(Zr_{0.3}Ti_{0.7})O₃ (BZT30) ที่เตรียมจาก NaOH เข้มข้น 10 M [3]

การเตรียม BZT โดยการใช้กระบวนการเคมีเปียก ยังสามารถทำได้โดยวิธีอื่น ๆ เช่น วิธีโซลเจล (Sol-gel technique) [11] วิธีไฮโดรเทอร์มอล (Hydrothermal process) [12] และวิธีการตกตะกอนร่วม (Co-[13] โดยเมื่อเปรียบเทียบกับวิธีอื่น ๆ แล้ว พบว่าวิธีการตกตะกอนร่วมมีข้อดีกว่ามาก precipitation) เนื่องจากเป็นวิธีที่มีประสิทธิภาพ สามารถทำได้ง่ายและมีราคาถูกเนื่องจากใช้สารตั้งต้นที่มีราคาไม่สูงนัก โดย Reddy และคณะ [13] ได้รายงานการเตรียม BZT (Ba(Ti_{1-x}Zr_x)O₃ เมื่อ x = 0.10, 0.20 และ 0.30) โดย วิธีการตกตะกอนร่วม [3] โดยใช้สารตั้งต้นเป็น BaCl₂.2H₂O ZrOCl₂.8H₂O และ TiCl₄ และทำการ ตกตะกอนร่วมกับสารละลายโซเดียมไฮดรอกไซด์ (NaOH) ที่ความเข้มข้น 10 โมลาร์ และ 15 โมลาร์ โดยทำ การสังเคราะห์ BZT ในสัดส่วนโมลต่าง ๆ ดังนี้คือ $Ba(Zr_xTi_{1-x})O_3$ เมื่อ x = 0.10 0.20 และ 0.30 ใน ้ขั้นตอนการสังเคราะห์ทำโดยผสมสารตั้งต้นเข้าด้วยกันแล้วนำมาตกตะกอนลงในสารละลายโซเดียมไฮดรอก ไซด์ที่มีอุณหภูมิ 75 องศาเซลเซียส จะทำให้ได้เป็นตะกอนของ BZT ตกลงมาแล้วนำผง BZT ที่ได้จากวิธี ตกตะกอนนี้ไปทำการตรวจวัดการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) ดังแสดงในรูปที่ 2.3 และ 2.4 จากผลที่ได้ พบว่าความเข้มข้นของสารละลายโซเดียมไฮดรอกที่ความเข้มข้น 15 M จะไม่มีการเจือปนของพีค BaCO3 ซึ่ง แสดงให้เห็นว่าผง BZT นั้นมีความบริสุทธิ์ ซึ่งแสดงให้เห็นว่าอัตราส่วนของสารตั้งต้นและค่า pH ของระบบมี ผลอย่างมากต่อความบริสุทธิ์ของ BZT ที่ได้ โดยพบว่า BZT ที่สังเคราะห์ได้จากการใช้สารละลายโซเดียมไฮ

ดรอกไซด์ (NaOH) เข้มข้น 15 M มีความบริสุทธิ์สูง และมีขนาดอนุภาคเฉลี่ยประมาณ 30 nm อีกทั้งยังมี สมบัติในการเผาขึ้นรูปที่ดี (Sinterability) มีความหนาแน่นสูงและมีสมบัติทางไดอิเล็กตริกที่ดีขึ้นอีกด้วย

รูปที่ 2.4 รูปแบบ XRD ของ Ba(Zr_{0.1}Ti_{0.9})O₃ (BZT10) , Ba(Zr_{0.2}Ti_{0.8})O₃ (BZT20) และ Ba(Zr_{0.3}Ti_{0.7})O₃ (BZT30) ที่เตรียมจาก NaOH เข้มข้น 15 M [3]

ซึ่งจากผลที่ได้นี้แสดงให้เห็นถึงความเป็นไปได้ที่จะปรับปรุงสมบัติของ BZT โดยการประยุกต์ใช้วิธีการ ตกตะกอนร่วมกับวิธีโซโนเคมี (Sonochemical process) ซึ่งเป็นวิธีการสังเคราะห์สารโดยอาศัยการผ่านคลื่น อัลตร้าโซนิกที่มีความเข้มข้นสูง (High density ultrasonic radiation (20 kHz–10 MHz) เข้าไปใน สารละลายเพื่อให้เกิดปรากฏการณ์อคูสติคคาวิเตชั่น (Acoustic cavitation) [14]ที่ประกอบไปด้วยการเกิด โพรงอากาศ, การขยายตัวและการยุบตัวของโพรงอากาศในสารสะสายของเหลว ซึ่งทำให้เกิดความร้อนและ ความดันที่สู่งมาก (5000–25000 K) รวมทั้งมีอัตราการเย็นตัวอย่างรวดเร็ว (10¹⁰ K/s) โดยปรากฏการณ์นี้จะ เปลี่ยนแปลงไปตามตำแหน่งต่าง ๆ ที่มีการเกิดและการยุบตัวของโพรงอากาศ ซึ่งเป็นการเพิ่มการเกิดปฏิกิริยา เคมีและส่งผลทำให้สารที่สังเคราะห์ได้มีอนุภาคขนาดนาโนที่มีขนาดและรูปร่างที่ใกล้เคียงกัน ซึ่งมีข้อดีคือทำ ให้วัสดุที่สังเคราะห์ได้มีพื้นที่ผิวเพิ่มมากขึ้นและมีการแสดงสมบัติแบบเดียวกัน โดยภาพของเครื่องโชนิเคเตอร์ (Sonicator) ได้แสดงไว้ในรูปที่ 2.5 สำหรับการสังเคราะห์โลหะออกไซด์โดยวิธีโซโนเคมีนั้น Xu และคณะ [15] ได้รายงานการสังเคราะห์แบเรี่ยมไททาเนต (BaTiO₃) โดยกระบวนการโซโนเคมีในสภาวะที่เป็นเบสแก่ โดยใช้ BaCl₂.2H₂O และ TiCl₄ เป็นสารตั้งต้น โดยพบว่า BaTiO₃ ที่สังเคราะห์ได้มีรูปร่างและขนาดที่ใกล้เคียง กันคือมีลักษณะเป็นทรงกลมและมีขนาดที่ชื้นกับความเข้มข้นของสารตั้งต้น โดยขนาดอนุภาคของ BaTiO₃ ที ได้จากสังเคราะห์โดยวิธีโซโนเคมีอยู่ในช่วง 600-800 nm และ 60-70 nm ขึ้นกับอัตราส่วนโมลของ Ba/Ti ซึ่ง ได้แสดงไว้ในรูปที่ 2.6 และ 2.7 ซึ่งจากผลการวิจัยนี้แสดงให้เห็นว่าวิธีโซโนเคมีสามารถนำมาใช้ในการ สังเคราะห์วัสดุเซรามิกส์ที่มีโครงสร้างแบบเพอร์รอฟสไกต์ได้ อย่างไรก็ตามยังไม่พบรายงานวิจัยที่ได้ ทำการศึกษาเกี่ยวกับการสังเคราะห์ BZT โดยใช้วิธีโซโนเคมี ดังนั้นการศึกษาและพัฒนาการสังเคราะห์ BZT โดยการประยุกต์ใช้วิธี โซโนเคมีเพื่อให้ได้วัสดุที่มีขนาดอนุภาคนาโนและมีขนาดและรูปร่างที่ใกล้เคียงกันจึงมี ความน่าสนใจเป็นอย่างยิ่ง

ร**ูปที่ 2.5** แสดงภาพเครื่องโซนิเคเตอร์ (Sonicator)

รูปที่ 2.6 แสดงสัณฐานวิทยาของแบเรียมไททาเนตโดยอัตราส่วนระหว่างแบเรียมต่อไททาเนียมที่ได้ จากการสังเคราะห์โดยวิธีโซโนเคมีโดยใช้อัตราส่วนโมลของ Ba²⁺/Ti⁴⁺ a) 1.1:1.0 b) 1.2:1.0 c) 1.5:1.0 เวลาในการสังเคราะห์ 40 นาที 150 W/cm² และอุณหภูมิประมาณ 80 ℃ [15]

รูปที่ 2.7 แสดงสัณฐานวิทยาของแบเรียมไททาเนตโดยความเข้มข้นของสารตั้งต้น a) 0.1, b) 0.2, c) 0.45 และ d) 0.72 โมลาร์ ตามลำดับเวลาในการสังเคราะห์ 40 นาที 150 W/cm² และอุณหภูมิ ประมาณ 80 ℃ [15]

บทที่ 3

วิธีดำเนินโครงงาน

3.1 เครื่องมือและอุปกรณ์

- 3.1.12 กระดาษยูนิเวอร์แซลอินดิเคเตอร์ 3.1.1 ปิเปต 3.1.2 บิวเรต 3.1.13 อะลูมิเนียมฟอยล์ 3.1.3 กระบอกน้ำกลั่น 3.1.14 ขั้นหล่อน้ำ 3.1.15 เครื่องชั่งดิจิตอล 4 ตำแหน่ง 3.1.4 แท่งคนสาร 3.1.16 เตาให้ความร้อน 3.1.5 ช้อนตักสาร 3.1.17 เครื่องปั่นกวน 3.1.6 ลูกยาง 3.1.18 เครื่องหมุนเหวี่ยง 3.1.7 กระจกนาฬิกา 3.1.19 เตาเผา 3.1.8 กรวย
- 3.1.0
 11.19
 เศาสา

 3.1.9
 กระบอกตวง
 3.1.20
 เทอร์โมมิเตอร์

 3.1.10
 ขวดวัดปริมาตร
 3.1.21
 เครื่องอัดไฮโดรลิก
- 3.1.11 บีกเกอร์ 3.1.22 หลอดเซนติฟิวส์
- 3.1.23 หลอดหยด
- 3.1.24 ตู้อบ บริษัท Fisher Scientific U.S.A
- 3.1.25 แก็สอาร์กอน (Ar gas), ความบริสุทธิ์ 99.97%, บริษัท Praxair. INC Thailand
- 3.1.26 เครื่องโซนิเคเตอร์ (Sonitor) รุ่น VC 750, บริษัท SONICS & MATERIAL.INC U.S.A
- 3.1.27 เครื่องฟูเรียร์ทรานสฟอร์มอินฟราเรดสเปกโตมิเตอร์ (Fourier transform infraredspectrometer, FT-IR) รุ่น 8900, บริษัท Perkin Elmer
- 3.1.28 เครื่องรามานสเปกโทรมิเตอร์ (Raman Spectrometer) รุ่น T64000, บริษัท Jobin Yvon
- 3.1.29 เครื่องตรวจสอบการเลี้ยวเบนรังสีเอ็กซ์ (X-ray diffractometer, XRD) รุ่น D8 Advance, บริษัท Bruker AG Thailand
- 3.1.30 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning electron microscope, SEM) รุ่น JSM-5200 บริษัท Philips

3.2 สารเคมี

3.2.1 แบเรียมคลอไรด์ไดไฮเดรท (Barium chloride : BaCl₂.2H₂O) : ความบริสุทธิ์ 99% จาก บริษัทFluka

3.2.2 เซอร์โครเนียมออกซีคลอไรด์ ออกตาไฮเดรท (Zirconium oxychloride octahydrate : ZrOCl₂.8H₂O) : ความบริสุทธิ์ 99.5% จากบริษัท Sigma-Aldrich

3.2.3 ไททาเนียมคลอไรด์ (Titanium chloride : TiCl₄) : ความบริสุทธิ์ 99% จากบริษัท Waka

3.2.4 โซเดียมไฮดรอกไซด์ (Sodium hydroxide : NaOH) : ความบริสุทธิ์ 97% จาก บริษัท CarlaErba Reagents

3.2.5 น้ำปราศจากไอออน (Deionised water)

3.2.6 กรดฟอร์มิก (Fomic acid : HCOOH) : ความบริสุทธิ์ 85% จากบริษัท Carla Erba Reagents

3.3 สมการแสดงปฏิกิริยาเคมีที่ใช้ในการสังเคราะห์ BZT

ในงานวิจัยนี้จะทำการสังเคราะห์ BaZr_{0.3}Ti_{0.7}O₃ จากวิธีการตกตะกอนและวิธีโซโนเคมีในสภาวะเบส โดยสมการแสดงปฏิกิริยาที่ใช้ในการสังเคราะห์ BZT ได้แสดงไว้ในสมการที่ 3.1

 $BaCl_{2}.2H_{2}O + 0.3ZrOCl_{2}.8H_{2}O + 0.7TiCl_{4} + 5.4 \text{ NaOH} \longrightarrow Ba(Zr_{0.3}Ti_{0.7})O_{3} + 5.4NaCl + 6.1H_{2}O + 1/2H_{2}$ (3.1)

3.4 การเตรียมสารละลาย (Stock solution)

้วิธีการคำนวณในการเตรียมสารละลายได้แสดงไว้ในภาคผนวก ก

<u>3.4.1 การเตรียมสารละลาย BaCl₂.2H₂O เข้มข้น 1 โมลาร์</u>

ชั่ง BaCl₂.2H₂O 24.6732 กรัม ใส่บีกเกอร์ขนาด 50 มิลลิลิตร จากนั้นละลายด้วยน้ำปราศจาก ไอออน ถ่ายใส่ขวดวัดปริมาตรขนาด 100 มิลลิลิตร แล้วปรับปริมาตรด้วยน้ำปราศจากไอออน

<u>3.4.2 การเตรียมสารละลาย ZrOCl₂.8H₂O เข้มข้น 1 โมลาร์</u>

ชั่ง ZrOCl₂.8H₂O 32.3872 กรัม ใส่บีกเกอร์ขนาด 50 มิลลิลิตร จากนั้นละลายด้วยน้ำปราศจาก ไอออน ถ่ายใส่ขวดวัดปริมาตรขนาด 100 มิลลิลิตร แล้วปรับปริมาตรด้วยน้ำปราศจากไอออน

<u>3.4.3 การเตรียมสารละลาย TiCl₄ เข้มข้น 1 โมลาร์</u>

ตวงน้ำปราศจากไอออน 20 มิลลิลิตร ใส่ในบีกเกอร์ขนาด 50 มิลลิลิตร นำไปแซ่ในตู้เย็นให้แข็งเพื่อ ควบคุมอุณหภูมิให้ต่ำกว่า 5 องศาเซลเซียส จากนั้นนำออกมาแล้วปิเปตสารละลาย TiCl₄ 1.55 มิลลิลิตร ใส่ ลงไปโดยทำการปั่นกวนและควบคุมอุณหภูมิของสารละลายให้ต่ำกว่า 5 องศาเซลเซียส เพื่อป้องกันการเกิดไท ทาเนียมไฮดรอกไซด์ (Ti(OH)₄) โดย TiCl₄ ที่เตรียมได้จะเป็นสารละลายใสปราศจากตะกอนขาวขุ่นของ (Ti(OH)₄)

<u>3.4.4 การเตรียม NaOH เข้มข้น 15 โมลาร์</u>

เตรียมน้ำปราศจากไอออน 80 มิลลิลิตร ใส่บีกเกอร์ขนาด 500 มิลลิลิตร นำไปหล่อเย็นไว้ในอ่างน้ำ จากนั้นชั่ง NaOH 61.8558 กรัม แล้วค่อย ๆ นำไปละลายในน้ำปราศจากไอออน จนหมด จากนั้นถ่ายใส่ขวด วัดปริมาตรขนาด 100 มิลลิลิตร ปรับปริมาตรด้วยน้ำปราศจากไอออน

<u>3.4.5 การเตรียม NaOH เข้มข้น 20 โมลาร์</u>

เตรียมน้ำปราศจากไอออน 90 มิลลิลิตร ใส่บีกเกอร์ขนาด 500 มิลลิลิตร นำไปหล่อเย็นไว้ในอ่างน้ำ จากนั้นชั่ง NaOH 82.4742 กรัม แล้วค่อย ๆ นำไปละลายในน้ำปราศจากไอออน จนหมด จากนั้นถ่ายใส่ขวด วัดปริมาตรขนาด 100 มิลลิลิตร ปรับปริมาตรด้วยน้ำปราศจากไอออน

3.5 วิธีการทดลอง

3.5.2 กระบวนการสังเคราะห์ BaZr_{0.3}Ti_{0.7}O₃ ด้วยวิธีโซโนเคมี

1. ปีเปต ZrOCl₂ . 8H₂O, TiCl₄ และ BaCl₂ .2H₂O ตามอัตราส่วนที่ต้องการดังที่แสดงไว้ใน ภาคผนวก ก ในบีกเกอร์ขนาด 100 จะได้สารผสมเกิดขึ้น

2. เติม NaOH ความเข้มข้น 15 โมลาร์ หรือ 20 โมลาร์ ปริมาตร 40 ml ลงในแชมเบอร์สำหรับใส่ สารตัวอย่างพร้อมทั้งผ่านแก๊สอาร์กอน (Ar gas) ลงไปในสารละลาย NaOH เพื่อกำจัดก๊าซคาร์บอนไดออกไซด์

 ถ่ายสารผสมลงในบิวเรตแล้วค่อย ๆ หยดสารผสมลงในแชมเบอร์ที่บรรจุ NaOH โดยในระหว่างที่ หยดสารผสมให้ทำการผ่านคลื่นอัลตร้าโซนิกลงไปในสารละลายเป็นเวลา 30 นาที โดยใช้กำลังไฟฟ้า 750 วัตต์ พร้อมทั้งผ่านแก๊สอาร์กอนลงไปด้วย

 นำตะกอนที่ได้มาล้างด้วยน้ำปราศจากไอออน แล้วนำไปเหวี่ยงแยกตะกอนด้วยเครื่องปั่นเหวี่ยง แล้วนำตะกอนมาวัด pH ด้วยกระดาษยูนิเวอร์เซลอินดิเคเตอร์ จนกระทั่งมี pH เท่ากับ 7

5. นำตะกอนที่ได้ไปอบให้แห้งที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง

6. นำสารที่สังเคราะห์ได้ไปตรวจสอบโครงสร้างและสมบัติต่าง ๆ ด้วยเครื่อง XRD FT-IR Raman spectroscopy และ SEM

ร**ูปที่ 3.1** แสดงขั้นตอนกระบวนการสังเคราะห์ BZT โดยวิธีโซโนเคมี

บทที่ 4

ผลการวิจัยและอภิปราย

4.1 การตรวจสอบเอกลักษณ์โดยเทคนิคการเลี้ยวเบนของรังสีเอกซ์ (X-ray diffraction, XRD)

ทำการสังเคราะห์ผงผลึกแบเรียมเซอร์โคเนตไททาเนต (BaZr_{0.30}Ti_{0.70}O₃; BZT) ด้วยวิธีโซโนเคมีใน สภาวะเบสที่มีความเข้มข้น 15 และ 20 โมลาร์ แล้วนำสารที่ได้ไปตรวจสอบโครงสร้างผลึกด้วยเทคนิคการ เลี้ยวเบนของรังสีเอกซ์ (XRD) โดยผลที่ได้แสดงไว้ในรูปที่ 4.1 จากผลที่ได้พบว่ารูปแบบการเลี้ยวเบนของรังสี เอกซ์ของผงผลึกที่สังเคราะห์ได้มีการแยกตัวของ XRD พีกที่ชัดเจน และตรงกับรูปแบบการเลี้ยวเบนของรังสี เอกซ์ของ BZT ที่มีโครงสร้างแบบเพอร์รอฟสไกต์ (JCPDS no.31-0174) แสดงให้เห็นว่าสามารถเตรียมผง ผลึก BZT โดยตรงได้จากกระบวนการโซโนเคมีในสภาวะเบสที่ความเข้มข้นสูง (≥15 โมลาร์) โดยไม่ต้องใช้ กระบวนการเผาแคลไซน์ (Calcination)

รูปที่ 4.1 แสดงผล XRD ของ BZT ที่สังเคราะห์ด้วยวิธีการโซโนเคมีเมื่อใช้ NaOH เข้มข้น (a) 15 และ (b) 20 โมลาร์

จากรูปแบบการเลี้ยวเบนของรังสีเอกซ์ของผงผลึกที่สังเคราะห์ได้ยังพบพีคแปลกปลอมซึ่งตรงกับ รูปแบบการเลี้ยวแบนของแบเรียมคาร์บอเนต (BaCO₃) ซึ่งเป็นผลมาจากการทำการสังเคราะห์สารในระบบ เปิด (Open-air synthesis system) ทำให้แบเรี่ยมเกิดปฏิกิริยากับก๊าซคาร์บอนไดออกไซด์ (CO₂) แล้วเกิด เป็นสารประกอบคาร์บอเนต ซึ่งสารประกอบคาร์บอเนตเหล่านี้สามารถถูกกำจัดออกได้โดยการทำการ สังเคราะห์ในระบบปิดที่สมบรูณ์ หรือทำการล้างสารที่สังเคราะห์ได้ด้วยกรดฟอร์มิก (Formic acid) [16] จาก การคำนวณหาขนาดผลึกจากรูปแบบการเลี้ยวเบนของรังสีเอกซ์โดยใช้สมการของ เดอบาย-เชียเลอร์ (Debye-Scherrer) (ดังแสดงไว้ในภาคผนวก ข) พบว่าขนาดผลึกของ BZT ที่สังเคราะห์จากสภาวะเบสที่มีความ เข้มข้น 15 โมลาร์ มีขนาด 13.9 ± 0.02 nm และ ที่ความเข้มข้น 20 โมลาร์มีขนาด 16.1 ± 0.02 nm

ร**ูปที่ 4.2** แสดงผล FT-IR ของผงผลึก BZT ด้วยวิธีโซโนเคมีโดยใช้ NaOH เข้มข้น 15 และ 20 โมลาร์

4.2 การตรวจสอบเอกลักษณ์ของสารด้วยเครื่องฟูเรียทรานส์ฟอร์มอินฟราเรดสเปกโตมิเตอร์ (FT-IR)

จากนั้นนำสารเคราะห์ที่ได้ไปตรวจสอบเอกลักษณ์ด้วยเครื่องฟูเรียทรานส์ฟอร์มอินฟราเรดสเปกโต มิเตอร์ โดยรูปที่ 4.2 แสดงอินฟราเรดสเปกตรัมของผงผลึก BZT ที่สังเคราะห์ด้วยวิธีโซโนเคมีโดยใช้ความ เข้มข้นของโซเดียมไฮดรอกไซด์เท่ากับ 15 และ 20 โมลาร์ พบว่าสารที่สังเคราะห์ได้จากทั้งสองสภาวะมีการ ดูดกลืนแสงอินฟราเรดที่เลขคลื่นเท่ากับ 540 cm⁻¹ ซึ่งตรงกับช่วงการดูดกลืนแสงที่แสดงเอกลักษณ์ของโลหะ ออกไซด์ที่มีโครงสร้างแบบเพอร์สไกต์ (BO₆ octrahedra, เมื่อ B = Ti or Zr) [17] และการช่วงดูดกลืนแสง ของสารประกอบคาร์บอเนตที่ 1450 cm⁻¹ [18]

4.3 การตรวจสอบเอกลักษณ์ของสารด้วยเครื่องรามานสเปกโตรสโกปี (Raman Spectroscopy)

นำสารที่สังเคราะห์ได้ไปตรวจสอบเอกลักษณ์ด้วยเทคนิครามานสเปกโตรสโกปี โดยผลที่ได้ดังแสดงใน รูปที่ 4.3 พบว่าสารที่สังเคราะห์ได้จากวิธีโซโนเคมีจากสภาวะ NaOH เข้มข้น 15 และ 20 โมลาร์ แสดงรามาน โหมด (Raman modes) ตรงกับที่ได้มีการรายงานไว้ก่อนหน้านี้ [19, 20] โดยพบรามานโหมด A₁(TO) ที่ ตำแหน่ง 185 220 300 และ 512 cm⁻¹ ซึ่งเกี่ยวข้องกับความไม่สมมาตรภายในโครงสร้างของออกตระฮี ดรอล BO₆ เมื่อ B คือ Zr หรือ Ti (Asymmetry within the BO₆ octahedra) รามานโหมดในช่วง 600-800 cm⁻¹ ซึ่งตรงกับการบิดเบี้ยวของออกตระฮีดรอล ZrO₆ (Locally distorted ZrO₆ octrahedra) และแสดง เอกลักษณ์ของเฟอโรอิเล็กตริกรีแล็กเซอร์ (Ferroelectric relaxor phase) และรามานโหมดของ BaCO₃ ที่ ตำแหน่ง 135 155 และ 694 cm⁻¹ [18, 21] โดยช่วงการดูดกลืนแสงของโหมดเหล่านี้จะมีความเข้มลดลดใน ผงผลึก BZT ที่สังเคราะห์ได้จากสภาวะที่ใช้ NaOH เข้มข้น 20 โมลาร์ ซึ่งผลที่ได้จากเทคนิครามานสเปกโตรส โกปีสอดคล้องกับผลที่ได้จากการตรวจสอบโครงสร้างผลึกด้วยเทคนิค XRD ที่ความเข้มของพีค XRD ของ BaCO₃ ลดลดในรูปแบบการเลี้ยวเบนของรังสีเอกซ์ของ BZT ที่สังเคราะห์ได้จาก NaOH เข้มข้น 20 โมลาร์ (ดังแสดงในรูปที่ 4.1) แสดงให้เห็นว่าการสังเคราะห์ผงผลึก BZT ในสภาวะเบสความเข้มข้น 20 โมลาร์ สามารถลดการเกิดสารปนเปื้อนที่เกิดจากการเกิดสารประกอบคาร์บอเนต ซึ่งคาดว่าเป็นผลมาจากในสภาวะที่ มีความเข้มข้นของไฮดรอกไซด์ไอออนสูง (OH) การเกิดสารประกอบ BZT จะเกิดขึ้นได้ดีกว่าการเกิด สารประกอบคาร์บอเนต [13]

รูปที่ 4.3 แสดงผลการการวิเคราะห์ด้วยเทคนิครามานสเปคโตรสโกปีของ BZT ที่สังเคราะห์ด้วยวิธีโซโนเคมี โดยใช้ NaOH เข้มข้น (a) 15 และ (b) 20 โมลาร์

4.4 การตรวจสอบสัณฐานวิทยาโดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning electron microscopy, SEM)

เมื่อนำผงผลึก BZT ที่เตรียมได้จากวิธีโซโนเคมีในสภาวะเบสที่มีความเข้มข้น 15 และ 20 โมลาร์ ไป ทำการตรวจสอบลักษณะสัณฐานวิทยาโดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด ดังแสดงในรูปที่ 4.4 และ 4.5 พบว่าของผงผลึก BZT มีลักษณะรูปร่างทรงกลมที่เกาะตัวกันเป็นกลุ่มก้อน (Agglomerates) และมี ขนาดอนุภาคที่ใกล้เคียงกัน โดยมีขนาดอนุภาคเฉลี่ย 137 ± 14 nm และ 51 ± 6 nm สำหรับสารที่เตรียมได้ ้จากการใช้สภาวะเบสที่มีความเข้มข้น 15 และ 20 โมลาร์ตามลำดับ ซึ่งอนุภาคที่เกิดขึ้นเกิดจากรวมตัวกันโดย การเติบโตในลักษณะแบบซ้อนทับกันขึ้นของผลึกขนาดเล็ก (Epitaxial growth of primary nanocrystals) ซึ่งขนาดของอนุภาคที่ได้จากเทคนิค SEM สอดคล้องกับผลการวัดขนาดผลึกที่ได้จากเทคนิค XRD ที่มีขนาด 13.9 ±0.02 nm สำหรับ BZT ที่เตรียมได้จากการใช้สภาวะเบสที่มีความเข้มข้น 15 โมลาร์ และ 16.1 ± 0.02 nm สำหรับ BZT ที่เตรียมได้จากการใช้สภาวะเบสที่มีความเข้มข้น 20 โมลาร์ แสดงให้เห็นถึงอนุภาคของ BZT ที่เกิดจากการรวมตัวของผลึกขนาดเล็ก โดยลักษณะสัณฐานของผงผลึกที่เตรียมได้จากงานวิจัยนี้มีความ คล้ายคลึงกับงานวิจัยของ Dang และคณะที่ได้รายงานถึงการเตรียมแบเรียมไททาเนต (BaTiO₃) โดยวิธีโซโน ้ เคมี [22, 23] ซึ่งแสดงให้เห็นว่าการใช้วิธีโซโนเคมีที่ทำโดยการผ่านคลื่นอัลตร้าโซนิกความถี่สูงเพื่อช่วยในการ เกิดปฏิกิริยาจะส่งผลให้ได้สารประกอบโลหะออกไซด์ที่มีขนาดนาโนเมตรและมีรูปปร่างลักษณะเฉพาะตัว จาก รูปที่ 4.4 และ 4.5 ยังแสดงให้เห็นอีกว่าผงผลึก BZT ที่เตรียมได้ในสภาวะเบสที่ความเข้มข้น 20 โมลาร์ มี ขนาดอนุภาคที่เล็กกว่าผงผลึกที่เตรียมได้ในสภาวะเบสที่ความเข้มข้น 15 โมลาร์ ซึ่งสอดคล้องกับผล XRD ที่ ้ความเข้มของรูปแบบการเลี้ยวแบนของรังสีเอกซ์ของผงผลึก BZT ที่เตรียมได้จากสภาวะเบสที่ความเข้มข้น 20 โมลาร์ มีค่าต่ำกว่าความเข้มของรูปแบบการเลี้ยวแบนของรังสีเอกซ์ของผงผลึก BZT ที่เตรียมได้จากสภาวะ เบสที่ความเข้มข้น 20 โมลาร์ ซึ่งผลของขนาดอนุภาคของ BZT ที่เล็กกว่าเมื่อใช้ความเข้มข้นของ NaOH เป็น 20 โมลาร์ เป็นผลเนื่องมาจากการที่สารละลายยิ่งมีความเข้มข้นของโลหะไฮดรอกไซด์สูง (Hydrolyzed metal species) จะทำให้สารละลายอยู่ในสภาวะอิ่มตัวยิ่งยวด (Supersaturated solution) และพร้อมที่จะ ้เกิดการแยกตัวเป็นผลึกมากยิ่งขึ้น จึงทำให้กระบวนการเกิดผลึก (Nucleation) เกิดขึ้นได้ดีกว่ากระบวนการโต ของผลึก (Grain growth) [24]

รูปที่ 4.4 แสดงสัณฐานวิทยาของ BZT ที่สังเคราะห์ได้จากวิธีโซโนเคมี โดยที่ใช้ NaOH เข้มข้น 15 โมลาร์ <u>หมายเหต</u>ุ กำลังขยายในแต่ละภาพที่แสดงไม่เท่ากัน

รูปที่ 4.5 แสดงสัณฐานวิทยาของ BZT ที่สังเคราะห์ได้จากวิธีโซโนเคมี โดยที่ใช้ NaOH เข้มข้น 20 โมลาร์ <u>หมายเหต</u>ุ กำลังขยายในแต่ละภาพที่แสดงไม่เท่ากัน

สรุปผลวิจัยและข้อเสนอแนะ

5.1 สรุปผลงานวิจัย

ในงานวิจัยนี้ได้ศึกษาการสังเคราะห์ผงผลึกแบเรียมเซอร์โคเนตไททาเนต (BaZr_{0.30}Ti_{0.70}O₃; BZT) ด้วย ้วิธีโซโนเคมี โดยใช้สารตั้งต้นเป็นเซอร์โคเนียมออกซีคลอไรด์ (ZrOCl₂.8H₂O) ไททาเนียมเตตระคลอไรด์ (TiCl₄) และแบเรียมคลอไรด์ไดไฮเดรต (BaCl₂.2H₂O) แล้วทำการผ่านคลื่นอัลตร้าโซนิกเพื่อให้เกิดผลึกเป็น เวลา 30 นาทีในสภาวะที่เป็นเบสสูง โดยใช้ความเข้มข้นของโซเดียมไฮดรอกไซด์ (NaOH) เป็น 15 หรือ 20 ้ โมลาร์ ในระบบปิดที่มีการผ่านแก็สอาร์กอนลงไปในสารละลาย จากนั้นนำสารที่สังเคราะห์ได้ไปทำการตรวจ พิสูจน์เอกลักษณ์ด้วยเทคนิคการเลี้ยวเบนของรังสีเอกซ์ (x-ray diffraction, XRD) อินฟราเรดสเปกโทรสโกปี (FT-IR) รามานสเปกโทรสโกปี (Raman spectroscopy) และตรวจสอบลักษณะทางกายภาพและโครงสร้าง ้จุลภาคด้วยเทคนิคจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscopy, SEM) เพื่อ ศึกษาถึงผลของสภาวะเบสที่ใช้ในการสังเคราะห์ที่มีต่อลักษณะทางกายภาพและโครงสร้างจุลภาคของผลึก โดยผลที่ได้จากเทคนิค XRD พบว่ารูปแบบการเลี้ยวเบนของรังสีเอกซ์ของผงผลึกที่สังเคราะห์ได้ด้วยวิธีโซโน เคมีโดยใช้ NaOH เข้มข้น 15 และ 20 โมลาร์ ตรงกับรูปแบบการเลี้ยวเบนของรังสีเอกซ์ของ BZT ที่มี โครงสร้างแบบเพอร์รอฟสไกต์ (JCPDS no.31-0174) แสดงให้เห็นว่าสามารถเตรียมผงผลึก BZT โดยตรงได้ ้จากวิธีโซโนเคมีในสภาวะเบสที่ความเข้มข้นสูง (≥15 โมลาร์) จากรูปแบบการเลี้ยวเบนของรังสีเอกซ์ของผง ้ผลึกที่สังเคราะห์ได้ยังพบพีคแปลกปลอมซึ่งตรงกับรูปแบบการเลี้ยวแบนของแบเรียมคาร์บอเนต (BaCO₃) จากนั้นนำสารที่สังเคราะห์ได้ไปทำการตรวจวิเคราะห์เพื่อยืนยันโครงสร้างโดยเทคนิค FT-IR และรามานสเปค ์ โตรสโกปี จากเทคนิค FT-IR แสดงให้เห็นว่าสารที่สังเคราะห์ได้แสดงการช่วงดูดกลืนแสงอินฟราเรดที่เลขคลื่น ้ เท่ากับ 540 cm⁻¹ ซึ่งตรงกับช่วงการดูดกลืนแสงที่แสดงเอกลักษณ์ของโลหะออกไซด์ที่มีโครงสร้างแบบเพอร์ รอฟสไกต์ (BO6 octrahedra, เมื่อ B = Ti or Zr) [17] และการช่วงดูดกลืนแสงของสารประกอบคาร์บอเนตที่ 1450 cm⁻¹ [18] ส่วนการตรวจสอบเอกลักษณ์ด้วยเทคนิครามานสเปกโตรสโกปีพบว่าสารที่สังเคราะห์ได้ แสดงรามานโหมด A₁(TO) ที่ตำแหน่ง 185 220 300 และ 512 cm⁻¹ ซึ่งเกี่ยวข้องกับความไม่สมมาตรภายใน โครงสร้างของออกตระฮีดรอล BO6 เมื่อ B คือ Zr หรือ Ti (Asymmetry within the BO6 octahedra) รา มานโหมดในช่วง 600-800 cm⁻¹ ซึ่งตรงกับการบิดเบี้ยวของออกตระฮีดรอล ZrO₆ (Locally distorted ZrO₆ octrahedra) และแสดงเอกลักษณ์ของเฟอโรอิเล็กตริกรีแล็กเซอร์ (Ferroelectric relaxor phase) และรามานโหมดของ BaCO3 ที่ตำแหน่ง 135 155 และ 694 cm⁻¹ [18, 21] โดยช่วงการดูดกลืนแสงของ

์โหมดเหล่านี้ที่เกี่ยวข้องกับสารประกอบคาร์บอเนตจะมีความเข้มลดลดในผงผลึก BZT ที่สังเคราะห์ได้จาก สภาวะที่ใช้ NaOH เข้มข้น 20 โมลาร์ ซึ่งสอดคล้องกับผลที่ได้จากเทคนิค XRD ที่ความเข้มของพีค XRD ที่ ี แสดงถึง BaCO₃ ลดลดในผงผลึก BZT ที่สังเคราะห์ได้จากสภาวะที่ใช้ NaOH เข้มข้น 20 โมลาร์ แสดงให้เห็น ้ว่าการสังเคราะห์ผงผลึก BZT ในสภาวะเบสความเข้มข้น 20 โมลาร์ สามารถลดการเกิดสารประกอบ คาร์บอเนต ซึ่งคาดว่าเป็นผลมาจากในสภาวะที่มีความเข้มข้นของไฮดรอกไซด์ไอออนสง (OH) การเกิด ้สารประกอบ BZT จะเกิดขึ้นได้ดีกว่าการเกิดสารประกอบคาร์บอเนต [13] จากการตรวจสอบลักษณะสัณฐาน ้วิทยาโดยใช้เทคนิค SEM พบว่าของผงผลึก BZT มีลักษณะรูปร่างเป็นทรงกลมที่เกาะตัวกันเป็นกลุ่มก้อนและ มีขนาดอนุภาคที่ใกล้เคียงกัน โดยมีขนาดอนุภาคเฉลี่ย 137 ± 14 nm และ 51 ± 6 nm สำหรับสารที่เตรียม ้ได้จากการใช้สภาวะเบสที่มีความเข้มข้น 15 และ 20 โมลาร์ตามลำดับ ซึ่งอนุภาคที่เกิดขึ้นเกิดจากรวมตัวกัน ้โดยการเติบโตในลักษณะแบบซ้อนทับกันขึ้นของผลึกขนาดเล็ก โดยพบว่าขนาดของอนุภาคที่ได้จากเทคนิค SEM สอดคล้องกับผลการวัดขนาดของผลึกที่ได้จากเทคนิค XRD ที่มีขนาด 13.9 ± 0.02 nm สำหรับ BZT ที่ เตรียมได้จากการใช้สภาวะเบสที่มีความเข้มข้น 15 โมลาร์ และ 16.1 ± 0.02 nm สำหรับ BZT ที่เตรียมได้ ้จากการใช้สภาวะเบสที่มีความเข้มข้น 20 โมลาร์ แสดงให้เห็นว่าอนุภาคของ BZT ที่เกิดจากการรวมตัวของ ้ ผลึกขนาดเล็ก โดยยังพบอีกว่าผงผลึก BZT ที่เตรียมได้ในสภาวะเบสที่ความเข้มข้น 20 โมลาร์ มีขนาดอนุภาค ี้ที่เล็กกว่าผงผลึกที่เตรียมได้ในสภาวะเบสที่ความเข้มข้น 15 โมลาร์ ซึ่งสอดคล้องกับผลที่ได้จากเทคนิค XRD ้โดยการที่ BZT มีขนาดอนุภาคที่เล็กกว่าเมื่อใช้ความเข้มข้นของ NaOH เป็น 20 โมลาร์ นั้น เป็นผล เนื่องมาจากการที่เมื่อสารละลายยิ่งมีความเข้มข้นของโลหะไฮดรอกไซด์สูง (Hydrolyzed metal species) ้จะทำให้สารละลายอยู่ในสภาวะอิ่มตัวยิ่งยวด (Supersaturated solution) และพร้อมที่จะเกิดการแยกตัว เป็นผลึกมากยิ่งขึ้น จึงทำให้กระบวนการเกิดผลึก (Nucleation) เกิดขึ้นได้ดีกว่ากระบวนการโตของผลึก (Grain growth)

5.2 ข้อเสนอแนะ

ในการสังเคราะห์สารควรทำในระบบปิดที่สมบรูณ์เพื่อป้องกันการเกิดสารปนเปื้อนคาร์บอเนต หรืออาจจะใช้ วิธีการล้างผงผลึก BZT ที่สังเคราะห์ได้ด้วยกรดฟอร์มิกเพื่อกำจัดสารปนเปื้อนคาร์บอเนต

เอกสารอ้างอิง

- Rout, S.K., et al., Photoluminescence property of Ba(Zr_{0:25}Ti_{0:75})O₃ powders prepared by solid state reaction and polymeric precursor method. Physica B, 2009. 404: p. 3341-3347.
- 2. Phungjitt, N., et al., The structural phase and microstructure of perovskite $Ba(Ti_{1-x}Zr_x)O_3$ ceramics using the combustion route. Functional Materails Letter, 2009. 2: p. 169-174.
- 3. Cai, W., et al., Effect of Mn doping on the dielectric properties of $BaZr_{0.2}Ti_{0.8}O_3$ ceramics. Journal of Materials Science: Materials in Electronics, 2009. 21(4): p. 317-325.
- 4. Dixit, A., et al., Dielectric and Tunable Properties of $BaZr_xTi_{1-x}O_3$ Thin Films. Ferroelectrics Letters, 2005. Section 32 p. 131 - 137.
- 5. Yu, Z., R. Guo, and A.S. Bhalla, Dielectric behavior of $Ba.Ti_{1-x}Zr_xO_3$ single crystals. Journal of Applied Physics, 2000. 88(1): p. 415.
- Maiti, T., R. Guo, and A.S. Bhalla, Electric field dependent dielectric properties and high tunability of BaZr_xTi_{1-x}O₃ relaxor ferroelectrics. Applied Physics Letters, 2006. 86: p. 122909-3.
- 7. Maiti, T., R. Guo, and A.S. Bhalla, Enhanced electric field tunable dielectric properties of BaZr_xTi_{1-x}O₃ relaxor ferroelectrics. Applied Physics Letters, 2007. 90: p. 182901-3.
- Purohit, R.D. and A.K. Tyagi, Auto-ignition synthesis of nanocrystalline BaTi₄O₉ powder. Journal of materials Chemistry, 2002. 12: p. 312-316.
- 9. Aruna, S.T. and A.S. Mukasyan, Combustion synthesis and nanomaterials. Current Opinion in Solid State and Materials Science, 2008. 12(3-4): p. 44-50.
- 10. Sookchoo, P. and L. Pdungsap, The dielectric properties of Barium zirconate titanate ceramics prepared by auto-combustion method. M.Sc Thesis (Applied Analytical and Inorganic)-Chemistry Mahidol University, 2008.
- Binhayeeniyi, N., et al., Physical and electromechanical properties of barium zirconium titanate synthesized at low-sintering temperature. Materials Letters. 64(3): p. 305-308.
- Lee, B.W. and S.-B. Cho, Preparation of BaZr_xTi_{1-x}O₃ by the hydrothermal process from peroxo-precursors. Journal of the European Ceramic Society, 2005. 25(12): p. 2009-2012.
- 13. Reddy, S.B., K.P. Rao, and M.S.R. Rao, Nanocrystalline barium zirconate titanate synthesized at low temperature by an aqueous co-precipitation technique. Scripta Materialia, 2007. 57(7): p. 591-594.

- 14. Gedanken, A., Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry, 2004. 11(2): p. 47-55.
- 15. Xu, M., et al., Sonochemical synthesis of monosized spherical BaTiO₃ particles. Powder Technology, 2006. 161(3): p. 185-189.
- Chen, K.-Y. and Y.-W. Chen, Preparation of barium titanate ultrafine particles from rutile titania by a hydrothermal conversion. Powder Technology, 2004. 141(1쀓2): p. 69-74.
- 17. Chakrabarti, N. and H.S. Maiti, Chemical synthesis of barium zirconate titanate powder by an autocombustion technique. Journal of Materials Chemistry, 1996. 6(7): p. 1169-1173.
- Pasierb, P., et al., Structural properties of Li2CO3le "BaCO3 system derived from IR and Raman spectroscopy. Journal of Molecular Structure, 2001. 596(1le "3): p. 151-156.
- Dobal, P.S., et al., Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO₃-BaZrO₃ system. J. Appl. Phys., 2001. 89(2001): p. 8085.
- 20. Dobal, P.S., et al., Phase transition behavior of BaZrxTi1-xO3 ceramics. Journal of Raman Spectroscopy, 2001. 32(1): p. 69-71.
- 21. Maxim, F., et al., Kinetic Study of the Static Hydrothermal Synthesis of BaTiO₃ Using Titanate Nanotubes Precursors. Crystal Growth & Design. 11(8): p. 3358-3365.
- 22. Dang, F., et al., A new effect of ultrasonication on the formation of BaTiO3 nanoparticles. Ultrasonics Sonochemistry, 2010. 17(2): p. 310-314.
- Dang, F., et al., Growth of BaTiO₃ nanoparticles in ethanol-water mixture solvent under an ultrasound-assisted synthesis. Chemical Engineering Journal, 2011. 170(1): p. 333-337.
- 24. Boschini, F., et al., Rapid synthesis of submicron crystalline barium zirconate $BaZrO_3$ by precipitation in aqueous basic solution below $100^{\circ}C$. Journal of the European Ceramic Society, 2009. 29(8): p. 1457-1462.

ภาคผนวก

ภาคผนวก ก

<u>การคำนวณปริมาตรสารที่ใช้ในการสังเคราะห์</u>

1. สารเคมีที่ใช้

1. แบเรียมคลอไรด์ไดไฮเดรท (Barium chloride : BaCl₂.2H₂O) : มวลโมเลกุล 244.2647, ความบริสุทธิ์ 99%

2. เซอร์โครเนียมออกซีคลอไรด์ ออกตาไฮเดรท (Zirconium oxychloride octahydrate: ZrOCl₂.8H₂O) : มวลโมเลกุล 322.2525, ความบริสุทธิ์ 99.5%

3. ไททาเนียมคลอไรด์ (Titanium chloride: TiCl₂) : มวลโมเลกุล 189.6799, ความบริสุทธิ์ 99%

4. โซเดียมไฮดรอกไซด์ (Sodium hydroxide: NaOH) : มวลโมเลกุล 40, ความบริสุทธิ์ 97%

5. น้ำปราศจากไอออน (Deionised water)

6. กรดฟอร์มิก (Formic acid : HCOOH) : มวลโมเลกุล 46.0254, ความบริสุทธิ์ 85%

2. การเตรียมสารละลายตั้งต้น

สูตรที่ใช้ในการคำนวณ

 $\frac{g(\%\text{purity})}{\text{MW}} = \frac{\text{Mv}}{1000}$

โดยที่

g	คือ	น้ำหนักสารที่ต้องชั่ง	หน่วยเป็น	กรัม
MW	คือ	มวลโมเลกุล	หน่วยเป็น	กรัม/โมล
Μ	คือ	ความเข้มข้น	หน่วยเป็น	โมล/ลิตร
V	คือ	ปริมาตร	หน่วยเป็น	ນີຄລີລີตร
% purity	คือ	ความบริสุทธิ์ของสาร	หน่วยเป็น	%wt

2.1 การเตรียมสารละลาย BaCl₂.2H₂O เข้มข้น 1 M ปริมาตร 100 ml

$$\frac{g\left(\frac{99}{100}\right)}{244.2647} = \frac{1(100)}{1000}$$

ดังนั้นต้องชั่ง BaCl₂.2H₂O มา 24.6732 กรัม มาละลายในน้ำปราศจากไอออน แล้วปรับปริมาตรให้เป็น 100 ml

2.2 การเตรียมสารละลาย ZrOCl₂.8H₂O เข้มข้น 1 M ปริมาตร 100 ml

$$\frac{g\left(\frac{99.5}{100}\right)}{32.2525} = \frac{1(100)}{1000}$$

g = 32.3872 g

ดังนั้นต้องชั่ง ZrOCl₂.8H₂O มา 32.3872 กรัม มาละลายในน้ำปราศจากไอออน แล้วปรับปริมาตรให้เป็น 100 ml

2.3 การเตรียม NaOH เข้มข้น 15 M ปริมาตร 100 ml

$$\frac{g\left(\frac{97}{100}\right)}{40} = \frac{15(100)}{1000}$$

g = 61.8558 g.

ดังนั้นต้องชั่ง NaOH มา 61.8558 กรัม มาละลายในน้ำปราศจากไอออน แล้วปรับปริมาตรให้เป็น 100 ml

2.4 การเตรียม NaOH เข้มข้น 20 M ปริมาตร 100 ml

$$\frac{g\left(\frac{97}{100}\right)}{40} = \frac{20(100)}{1000}$$
$$g = 82.4742 g$$

ดังนั้นต้องชั่ง NaOH มา 82.4742 กรัม มาละลายในน้ำปราศจากไอออน แล้วปรับปริมาตรให้เป็น 100 ml

2.5 การเตรียมสารละลาย TiCl₄ เข้มข้น 1 M ปริมาตร 20 ml

$$\frac{g\left(\frac{99}{100}\right)}{132.7759} = \frac{1(20)}{1000}$$

g = 2.6823 g

จากสูตร

$$D = \frac{m}{v}$$

$$v = \frac{2.6832}{1.7260}$$

$$v = 1.55 \text{ mL}$$

ดังนั้นต้องปีเปต TiCl₄ มา 1.55 มิลลิลิตร หยดลงในน้ำปราศจากไอออนปริมาตร 20 ml ที่มีอุณหภูมิต่ำกว่า 5 องศาเซลเซียส แล้วทำการปั่นกวนให้เป็นเนื้อเดียวกัน

3. การสังเคราะห์ Ba(Zr_{0.3}Ti_{0.7})O₃ ด้วยวิธีโซโนเคมี

จากสมการ

BaCl₂.2H₂O + 0.3ZrOCl₂.8H₂O + 0.7TiCl₄ + 5.4 NaOH → Ba(Zr_{0.3}Ti_{0.7})O₃ + 5.4NaCl + 12.7H₂O

ถ้าต้องการสังเคราะห์ Ba(Zr_{0.3}Ti_{0.7})O₃ จำนวนดังต่อไปนี้ **5 กรัม** ดังนั้นใช้สารตั้งต้นเป็นปริมาณ

3.1 สารละลาย BaCl₂.2H₂O เข้มข้น 1 M

BZT	246.2002	กรัม	ใช้	BaCl ₂ .2	2H ₂ O	244.264	7 กรัม	
BZT	5	กรัม		ใช้	BaCl ₂ .	2H ₂ O	<u>4.9607</u>	กรัม

จากสูตร

 $\frac{g}{MW} = \frac{Mv}{1000}$ $\frac{4.9607}{244.2647} = \frac{1(v)}{1000}$

v = 20.31 mL

ดังนั้นต้องปีเปต BaCl₂.2H₂O มา 20.31 มิลลิลิตร

3.2 สารละลาย ZrOCl₂.8H₂O เข้มข้น 1 M

BZT	246.2002	กรัม	ใช้	ZrOCl ₂ .8H ₂ O	96.6758	กรัม
BZT	5	กรัม	ใช้	ZrOCl ₂ .8H ₂ O	1.9634	กรัม

จากสูตร

$\frac{g}{Mw} = \frac{Mv}{1000}$					
<u>-</u> : 3:	1.9 22.	63 25	4 25 =	<u>1(v)</u> 1000	
	V	=	6.09	mL	
6.09	มิส	าลิลิ	ัตร		

3.3 สารละลาย TiCl₄ เข้มข้น 1 M

ดังนั้นต้องปีเปต ZrOCl₂.8H₂O มา

BZT	246.2002	กรัม	ใช้	TiCl ₄	132.7759	กรัม
BZT	5	กรัม	ใช้	TiCl ₄	2.6962	กรัม

จากสูตร

 $\frac{g}{Mw} = \frac{Mv}{1000}$ $\frac{2.6965}{189.6799} = \frac{1(v)}{1000}$ v = 14.22 mL

ดังนั้นต้องปีเปต TiCl4 มา 14.22 มิลลิลิตร

ตารางแสดงปริมาณสารที่ใช้ในการเตรียมสารเคมี

แสดงปริมาณสารตั้งต้นที่ใช้ในการเตรียม BaZr_{0.3}Ti_{0.7}O₃ โดยวิธีโซโนเคมี

สารเคมี	เมื่อต้องการ BZT 1 g	เมื่อต้องการ BZT 5 g	
	ปริมาตรที่ต้	องใช้ (ml)	
1 M BaCl ₂ .2H ₂ O	4.13	20.30	
1 M ZrOCl ₂ . 8H ₂ O	1.22	6.09	
1 M TiCl ₄	2.84	14.22	

ภาคผนวก ข

<u>การคำนวณหาขนาดผลึกของแบเรียมเซอร์โคเนตไททาเนต</u>

การคำนวณหาขนาดอนุภาคของแบเรียมเซอร์โคเนตไททาเนตจะใช้ในการคำนวณจากสมการของเด อบาย-เชียเลอร์ (Debye-Scherrer equation) ดังนี้

สูตร

$$D = \frac{k\lambda}{\beta \cos \theta}$$

โดยที่

- D = ขนาดอนุภาค
- k = ค่าคงที่ มีค่าเท่ากับ 0.9
- λ = ค่าความยาวคลื่นของรังสีเอกซ์ มีค่าเท่ากับ 1.5406 อังสตรอม
- β = ค่า FWHM ของพีคในมุมเรเดียนที่ 2 **θ**
- θ = มุมของการเลี้ยวเบน

ประวัติย่อผู้วิจัย

ชื่อ	(ภาษาไทย)	:	ดร. ปานไพลิน สีหาราช
	(ภาษาอังกฤษ)	:	Dr. Panpailin Seeharaj
	ตำแหน่งวิชาการ	:	อาจารย์

สถานที่ติดต่อ : ภาควิชาเคมี คณะวิทยาศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง เลขที่ 1 ถนนฉลองกรุง เขตลาดกระบัง กรุงเทพฯ 10520

โทรศัพท์	:	02-329-8400 ต่อ 650
โทรสาร	:	02-329-8428
E-mail	:	kspanpai@kmitl.ac.th

ประวัติการศึกษา :

ชื่อย่อปริญญา	สาขา	สถาบันที่จบ	ปีที่จบ
วทบ.	เคมีอุตสาหกรรม	สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ	2544
วทม.	วัสดุศาสตร์	สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ	2547
PhD	Materials (Engineering)	Imperial College London	2553

สาขาวิชาที่เชี่ยวชาญ: Energy materials, Composite materials, Solid state materials, Oxygen separation membranes, Solid oxide fuel cells, Gas sensor, Nanomaterials และ Electroceramics

ทุนการศึกษาและทุนวิจัยที่เคยได้รับ

ปี พ.ศ.	ทุนการศึกษาและทุนวิจัย	สถาบันที่ให้
2546-2547	ทุนการศึกษาในระดับปริญญาโท	สถาบันวิทยาศาสตร์และเทคโนโลยีแห่งชาติ
2549-2553	ทุนการศึกษาในระดับปริญญาเอก	กระทรวงวิทยาศาสตร์
2551, 2552	ทุนเพื่อเข้าร่วมงานสัมมนาวิชาการ	Institute of Materials and Metal, UK
2552	ทุนเพื่อเข้าร่วมงานสัมมนาวิชาการ	Imperial College trust
2554	ทุนพัฒนานักวิจัยใหม่	สำนักงานกองทุนสนับสนุนการวิจัย และ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหาร ลาดกระบัง
2554	ทุนส่งเสริมนักวิจัย	คณะวิทยาศาสตร์ สถาบันเทคโนโลยีพระจอม เกล้าเจ้าคุณทหารลาดกระบัง
2554	ทุนพัฒนานักวิจัยใหม่	สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหาร ลาดกระบัง

ผลงานวิจัย ผลงานวิจัยที่ตีพิมพ์ในวารสารระดับนานาชาติ

1. S. Supothina, **P. Seeharaj**, S. Yoriya and M. Sriyudthsak. "Synthesis of tungsten oxide nanoparticles by acid precipitation method". Ceramics International. 2007;33: 931-936.

2. **P. Seeharaj**, A. Berenov, E. Raj, R. Rudkin and A Atkinson. "Mixed-conducting LSC/CGO composites for passive oxygen separation membranes". Solid State Ionics. 2011 ;192: 638-641.

3. **P. Seeharaj** and A. Atkinson. "Diffusion and conductivity of mixed-conducting Ag/CGO composites". Solid State Ionics. 2011 ;204-205: 46-52.

4. C. Nopsiri, R. Muanghlua, S. Niemcharoen, B. Boonchom, **P. Seeharaj** and N. Vittayakorn. "Non-isothermal kinetics of the thermal decomposition of sodium oxalate $Na_2C_2O_4$ ". Journal of Thermal Analysis and Calorimetry. 2012 ;107: 1023 -1029. 5. **P. Seeharaj**, B. Boonchomb, P. Charoonsuk, P. Kim-Lohsoontornd and N. Vittayakorna. "Barium zirconate titanate nanoparticles synthesized by sonochemical method". Ceramics International. 2012. (Accepted to be published)

6. P. Kim-Lohsoontorn, **P. Seeharaj**, N. Laosiripojana. "Preliminary study of metal-supported solid oxide electrolysis cell exposed to extreme operating conditions". will be published in TIChE International Conference 2012 proceeding, Bangkok Thailand. Oct 2012.

7. **P. Seeharaj**, P. Charoonsuk, P. Kim-Lohsoontorn and N.Vittayakorn. "Combustion synthesis and characterization of barium zirconate titanate nanoparticles. The 8th Asian Meeting on Ferroelectrics (AMF-8), Dec 2012. Selected article will be published in Ferroelectrics.

8. **P. Seeharaj**, S. Wirunchit, P. Charoonsuk and N. Vittayakorn. "Phase formation of nanocrystalline $Ba(Zr_{0.3}Ti_{0.7})O_3$ prepared by co-precipitation in aqueous basic solution". The 8th Asian Meeting on Ferroelectrics (AMF-8), Dec 2012. Selected article will be published in Ferroelectrics.

ผลงานวิชาการอื่นๆ

1. **P. Seeharaj**, J. Muenduang, B. Chimma C. Boonpanaid and N. Pangwiwat "An investigation of Nickel in Solution by Flow Injection Analysis." BSc. Special Project, 2001 KMITNB, Thailand.

2. **P. Seeharaj** and S. Supothina "Phase Formation of Crystalline WO₃ Powder Prepared by Precipitation Method". *20th Congress in Electron microscope Societies of Thailand* Proceeding, Bangkok, Thailand, 2003.

3. S. Supothina, **P. Seeharaj** and S. Yoriya. "Synthesis of WO₃ Nanoparticles for Liquidfield Petroleum Gas Sensor". *2003 International: Advanced in Petrochemical and Polymer in the New Millennium* Proceeding, Bangkok, Thailand, 2003.

4. **P. Seeharaj**, S. Yoriya and S. Supothina. "Nanocrystalline WO₃ Thick film Sensor for iso-Butane Sensing".5th international meeting of Pacific Rim Ceramic Societies Proceeding, Nagoya, Japan, 2003. **5.** P. Seeharaj, R. Rudkin and A. Atkinson. "Development of novel materials for passive oxygen separations membranes". *The 2nd International Congress on Ceramics*. Proceeding, Verona, Italy, 2008.