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 In recent years, the Finite Difference Time Domain (FDTD) is the most often 

used method for evaluating of electromagnetic fields in human tissue. This research 

presents a study of heating effects resulted from using a mobile phone operating near a 

Metal Wall. Apparently, the FDTD is suitable for this model because the FDTD 

technique allows the users to specify any material at all points within the computational 

physical domain and the absorbing layer. The simulated physical domain consists of a 

mobile phone, an artificial human head and a Metal Wall. Obviously, the dipole antenna 

is presented as a mobile phone and it operates on 900 MHz and 1.8 GHz. In this case, the 

absorbing boundary condition is implemented using Perfectly Matched Layer (PML). 

The Specific Absorption Rate (SAR) is computed and averaged on a tissue mass of one 

gram and ten grams which are specified as SAR 1-g and SAR 10-g, respectively. The 

main purpose of this research is to compare SAR resulted from a mobile phone operated 

at two different frequencies, 900 MHz and 1.8 GHz, in the close proximity to a Metal 

Wall. Correspondingly, the average power (Pavg) absorbed in various human tissues is 

computed with a distance between an antenna and a Metal Wall as a varying parameter 

( l ). In this case, results from the simulation show that the computed SAR 1-g and SAR 

10-g are not exceed the limitation value established by various standard institutes, 1.6 

watts per kilogram, but it is dramatically decreasing as the distance get shorter. Last but 

not least, the average power absorbed in all tissue models with a mobile phone operated 

at 1.8 GHz has an average power lower than those operated at 900 MHz except for the 

average power absorbed in muscle (6< l <8 cm) and eye (6 < l < 10 cm). 

 

 

     /  /  

Student’s signature  Thesis Advisor’s signature   

 



ACKNOWLEDGEMENTS 

 

 First and foremost, I would like to thank Associate Professor Dr. Nuttaka 

Homsup and Professor Dr. Wiroj Homsup. They introduced me into the theories and 

experimental aspects of the Finite Difference Time Domain (FDTD). Also, a special 

thank goes to my committee members, Assistant Professor Dr. Wachira Chongburee 

and Assistant Professor Dr. Waroth Kuhirun. They helped me complete writing this 

Ph.D. thesis. A thousand thanks for my English teacher, Dr. Issariya Thaveesilpa, who 

taught me how to write academic papers. Besides, I take this opportunity with much 

pleasure to thank my MATLAB’s teacher, Mr. Sanee Tangsatit. I am also greatly 

indebted to my math teachers: Miss Sasiprapa Thanharuk and Mr. Wiwat Roongkaew. 

 

 I would like dedicate all my works to my parents: Mr. Siew-Leng Sae-Ju, Mrs. 

Oui-Siew Sae-Ju, Mrs. Thorn Lumsmuth, Mr. Jaroong Jariyanorwich, Mrs. Tamtong 

Jariyanorwich, Mrs. Supeewong Pavasopon, Mrs. Tabtim Ampornpong and Mr. Pooris 

Saipet. Mrs. Tamtong Jariyanorwich had trained me with the smart technique “How to 

take notice any objects at first glance and instantaneously keep them in our memory” 

so I can apply this method for my study and daily life until now. Besides, special 

sincere thank goes to Mrs. Tabtim Ampornpong, who had adopted me for her son. 

 

 I wish to thank the Abbot of Wat Parinayok Worawihan, Phra Amorn Metajarn 

Sukon Papragaro, for his hospitality before I was settled to a permanent residence in 

Bangkok. Besides, I wish to acknowledge the supports of my friends: Mr. Komgrich 

Opasnawakun, Dr. Sittipong Jarernprasert, Dr. Orraya Porniammongkol, Mr. Pitipong 

Promla, Mr. Somsak Limvipas, Mr. Suphavut Udomthanakornkul, Mr. Sopon 

Deesomsak, Mr. Aekapol Hirunyaaekapap, Mr. Sirichai Sasataradol (Sae-Wong), Mr. 

Nipon Pimpuch, Mr. Meta Polpasee, Mr. Piranat Virunha, Mr. Songkran Pisanupoj 

and Mr. Vuttichai Kesornpatumanun. During the completion of my Ph.D. thesis, they 

shared their experiences in international conferences with me. 

 

Terapass  Jariyanorawiss 

June, 2010 



 
 

 
i 

TABLE OF CONTENTS 

 

Page 

 

TABLE OF CONTENTS                                                                                                i 

LIST OF TABLES                                                                                                         ii 

LIST OF FIGURES                                                                                                        v 

LIST OF ABBREVIATIONS                                                                                    xvii 

INTRODUCTION                                                                                                          1 

OBJECTIVES                                                                                                                4 

LITERATURE REVIEW                                                                                              5 

MATERIALS AND METHODS                                                                               149 

 Materials                                                                                                         149

 Methods                                                                                                          149 

RESULTS AND DISCUSSION                                                                                180 

 Results                                                                                                            180 

 Discussion                                                                                                      209 

CONCLUSION AND RECOMMENDATIONS                                                       210 

 Conclusion                                                                                                      210 

 Recommendations                                                                                          210 

LITERATURE CITED                                                                                              212 

APPENDIX                                                                                                                221 

 Appendix A The diagram of the electromagnetic simulation software      222 

CURRICULUM VITAE                                                                                            228 

 

 



 
 

 
ii 

LIST OF TABLES 

 

Table                                                                                                                        Page 

 

1 The % of the absolute error between the Exact Solution and 

MoM (N = 512)                                                                                           59 

2 The % of the absolute error between the Exact Solution and  

MoM (N = 128)                                                                                           59 

3 The % of the absolute error between the Exact Solution and  

MoM (N = 32)                                                                                             59 

4 The % of the absolute error between the Exact Solution and  

MoM (a = l / 2048)                                                                                      68 

5 The % of the absolute error between the Exact Solution and  

MoM (a = l / 1024)                                                                                      68 

6 The % of the absolute error between the Exact Solution and  

MoM (a = l / 512)                                                                                        68 

7 The % of the absolute error between the Exact Solution and  

MoM (a = l / 256)                                                                                        69 

8 The iteration rounds in the Gauss-Seidel method  

depending on RE
 

                                                                                   74 

9 The comparison of iteration rounds between the Gauss-Seidel method  

and the Multigrid method depending on RE
 

                                         76 

10 The comparison of iteration rounds between the Gauss-Seidel method  

and the Multigrid method with an expandable basis  

depending on RE
 

                                                                                   80 

11 The comparison of iteration rounds between the Gauss-Seidel method  

and the Multigrid method with a compensatory basis  

depending on RE
 

                                                                                   84 

12 The iteration rounds in the Gauss-Seidel method  

depending on RLE
 

                                                                                 86 



 
 

 
iii 

LIST OF TABLES (Continued) 

 

Table                                                                                                                        Page 

 

13 The comparison of iteration rounds between the Gauss-Seidel method  

and the Multigrid methods depending on RLE
 

                                     89 

14 The relation between Gray scale and types of cell in human head            130 

15 Electromagnetic parameter values in human head for 900 MHz  cf      132 

16 Electromagnetic parameter values in human head for 1.8 GHz  cf        133 

17 The comparison table of the spatial-average SARCell-1 1-g,  

SARCell-2 1-g and SARCell-3 1-g in the reference model                             142 

18 The comparison table of the spatial-average SARCell-1 1-g,  

SARCell-1 10-g, and the average power absorbed by a human head 

in the reference model                                                                               143 

19 The comparison table of the average power absorbed  

by any material in a human head between  

900 MHz and 1.8 GHz in the reference model                                          144 

20 Sample of parameters for simulate feeding-gap of the dipole antenna, 

41
l



                                                                                                       184   

21 Comparison of SAR between reference model and compact model  

at 900 MHz                                                                                                192 

22 Comparison of SAR between reference model and compact model  

at 1.8 GHz                                                                                                  193 

23 The comparison table of SAR 1-g, SAR 10-g and the average power 

absorbed (Pavg) by a human head respecting to l ,  

frequency = 900 MHz                                                                                197 

24 The comparison table of SAR 1-g, SAR 10-g and the average power 

absorbed (Pavg) by a human head respecting to l ,  

frequency = 1.8 GHz                                                                                 201 

 



 
 

 
iv 

LIST OF TABLES (Continued) 

 

Table                                                                                                                        Page 

 

25 The comparison table of the average power absorbed (Pavg)  

by materials in the human head respecting to l ,  

frequency = 900 MHz                                                                                203 

26 The comparison table of the average power absorbed (Pavg)  

by materials in the human head respecting to l ,  

frequency = 1.8 GHz                                                                                 204 



 
 

     v 

LIST OF FIGURES 

 

Figure                                                                                                                      Page 

 

1 The commercial dipole antenna                                                                     5 

2 Formation of electric field lines for a dipole antenna                                    6 

3 The stationary wave current for various center-fed dipoles                          7 

4 The input impedance of a dipole antenna                                                      8 

5 The impedance matching                                                                               8 

6 The current maximum does not occur at the input terminal                        10 

7 The comparison graph between the radiation impedance and  the input 

impedance, radius of a dipole (a) = l / 128 λ                                               12 

8 The comparison graph between the radiation impedance and  the input 

impedance, radius of a dipole (a) = l / 256 λ                                               13 

9 The comparison graph between the radiation impedance and  the input 

impedance, radius of a dipole (a) = l / 512 λ                                               14 

10 The comparison graph between the radiation impedance and  the input 

impedance, radius of a dipole (a) = 0.00001 λ                                            15 

11 Local and global basis                                                                                 21 

12 A set of pulse basis functions                                                                      22 

13 Geometry for the calculation of potentials                                                  29 

14 Thin wire dipole of length l  and radius a                                                   31 

15 The incident electric field                                                                            34 

16 The delta-gap or the infinitesimal gap model                                              36 

17 Behavior of the vector potential function zA  in the vicinity of  

the input region of the antenna                                                                    37 

18 The segmentation of dipole antenna                                                            41 

19 Relative current magnitude of a dipole antenna, 

, 512 and /1024
4

l  N   a l


                                                                    45  



 
 

     
vi 

LIST OF FIGURES (Continued) 

 

Figure                                                                                                                      Page 

 

20 Relative current phase of a dipole antenna,  

, 512 and /1024
4

l  N   a l


                                                                    45 

21 Relative current magnitude of a dipole antenna, 

, 512 and /1024
2

l  N   a l


                                                                    46  

22 Relative current phase of a dipole antenna,  

, 512 and /1024
2

l  N   a l


                                                                    46 

23 Relative current magnitude of a dipole antenna, 

, 512 and /1024l  N   a l                                                                     47  

24 Relative current phase of a dipole antenna,   
, 512 and /1024l  N   a l                                                                     47 

25 Relative current magnitude of a dipole antenna, 

3
, 512 and /1024

2
l  N   a l                                                                  48  

26 Relative current phase of a dipole antenna, 
3

, 512 and /1024
2

l  N   a l                                                                  48 

27 Relative current magnitude of a dipole antenna, 

2 , 512 and /1024l  N   a l                                                                   49  

28 Relative current phase of a dipole antenna, 
2 , 512 and /1024l  N   a l                                                                   49 

29 The comparison graph of relative current distribution on a dipole  

antenna, l = 0.25, 0.50, 1.00, 1.50 and 2.00 λ,  

N = 512 and a = l / 1024                                                                              50 

30 The input impedance of a dipole antenna, N = 512 and a = l / 1024           51 

 



 
 

     
vii 

LIST OF FIGURES (Continued) 

 

Figure                                                                                                                      Page 

 

31 The comparison graph of the antenna input resistance between  

the Exact Solution (a = 0.00001 λ) and MoM (N = 512)                            52 

32 The comparison graph of the antenna input reactance between  

the Exact Solution (a = 0.00001 λ) and MoM (N = 512)                            53 

33 The comparison graph of the antenna input resistance between  

the Exact Solution (a = 0.00001 λ) and MoM (N = 128)                            54 

34 The comparison graph of the antenna input reactance between  

the Exact Solution (a = 0.00001 λ) and MoM (N = 128)                            55 

35 The comparison graph of the antenna input resistance between  

the Exact Solution (a = 0.00001 λ) and MoM (N = 32)                              56 

36 The comparison graph of the antenna input reactance between  

the Exact Solution (a = 0.00001 λ) and MoM (N = 32)                              57 

37 The illustration of the absolute error between the Exact Solution  

and MoM                                                                                                     58 

38 The comparison graph of the antenna input resistance between  

the Exact Solution (a = 0.00001 λ) and MoM (a = l / 2048 λ)                    60 

39 The comparison graph of the antenna input reactance between  

the Exact Solution (a = 0.00001 λ) and MoM (a = l / 2048 λ)                    61 

40 The comparison graph of the antenna input resistance between  

the Exact Solution (a = 0.00001 λ) and MoM (a = l / 1024 λ)                    62 

41 The comparison graph of the antenna input reactance between  

the Exact Solution (a = 0.00001 λ) and MoM (a = l / 1024 λ)                    63 

 



 
 

     
viii 

LIST OF FIGURES (Continued) 

 

Figure                                                                                                                      Page 

 

42 The comparison graph of the antenna input resistance between  

the Exact Solution (a = 0.00001 λ) and MoM (a = l / 512 λ)                      64 

43 The comparison graph of the antenna input reactance between  

the Exact Solution (a = 0.00001 λ) and MoM (a = l / 512 λ)                      65 

44 The comparison graph of the antenna input resistance between  

the Exact Solution (a = 0.00001 λ) and MoM (a = l / 256 λ)                      66 

45 The comparison graph of the antenna input reactance between  

the Exact Solution (a = 0.00001 λ) and MoM (a = l / 256 λ)                      67 

46 The flow chart of Gauss-Seidel method using RE
 

                                73 

47 RE
 

 computed by the Gauss-Seidel method                                           74 

48 The flowchart of Multigrid method using RE
 

                                       75 

49 The cover area of using basis in the Multigrid method                               76 

50 RE
 

computed by the Multigrid method, N = 100                                   77 

51 RE
 

computed by the Multigrid method, N = 512                                   77 

52 RE
 

computed by the Multigrid method, N = 1,024                                78 

53 The cover area of using basis in the Multigrid method   

with an expandable basis                                                                             79 

54 RE
 

computed by the Multigrid method with an expandable basis, 

 N = 100                                                                                                       80 

55 RE
 

computed by the Multigrid method with an expandable basis,  

N = 512                                                                                                        81 

56 RE
 

computed by the Multigrid method with an expandable basis,  

N = 1,024                                                                                                     81 



 
 

     
ix 

LIST OF FIGURES (Continued) 

 

Figure                                                                                                                      Page 

 

57 The cover area of using basis in Multigrid method  

with a compensatory basis                                                                           83 

58 RE
 

computed by the Multigrid method with a compensatory basis,  

N = 100                                                                                                        85 

59 RE
 

computed by the Multigrid method with a compensatory basis,  

N = 512                                                                                                        85 

60 RE
 

computed by the Multigrid method with a compensatory basis,  

N = 1,024                                                                                                     86 

61 RLE
 

computed by the Gauss-Seidel method                                          87 

62 The flowchart of Multigrid method using RLE
 

                                     88 

63 RLE
 

computed by the Gauss-Seidel method and  

the Multigrid methods, N = 100                                                                  90 

64 RLE
 

computed by the Gauss-Seidel method and  

the Multigrid methods, N = 512                                                                  90 

65 RLE
 

computed by the Gauss-Seidel method and  

the Multigrid methods, N = 1,024                                                               91 

66 The V-Shape algorithm of the Multigrid methods                                      91 

67 The central difference scheme                                                                     94  

68 The Yee’s cell model                                                                                   96 

69 The physical Yee’s cell model                                                                    96 

70 The model of the incorrect boundary layer                                               101 

71 Cross-section of the applied incorrect boundary layer (Timestep = 50)   101 

72 Cross-section of the applied incorrect boundary layer (Timestep = 100) 102 

73 Cross-section of the applied incorrect boundary layer (Timestep = 300) 102 

74 Illustration of complex coordinates stretching                                          104 

75 Illustration of anisotropic material and isotropic material                        105 



 
 

     x 

LIST OF FIGURES (Continued) 

 

Figure                                                                                                                      Page 

 

76 The spatial conductivity of PML in x-axis                                                112 

77 The spatial conductivity of PML in y-axis                                                112 

78 The spatial conductivity of PML in z-axis                                                112 

79 The intersection of spatial conductivity in x,y,z-axis                                113 

80 The relationship of spatial conductivity with Maxwell’s equations  

in both Equation (154) and Equation (155)                                               114 

81 Cross-section of the applied absorbing boundary layer (PML)  

to the computational domain (Timestep = 50)                                          116 

82 Cross-section of the applied absorbing boundary layer (PML)  

to the computational domain (Timestep = 100)                                        116 

83 Cross-section of the applied absorbing boundary layer (PML)  

to the computational domain (Timestep = 300)                                        117 

84 Cross-section of the applied absorbing boundary layer (PML)  

to the computational domain (Timestep = 1000)                                      117 

85 Comparison cross-section of the applied incorrect boundary layer and  

the applied absorbing boundary layer (PML) at timestep = 300               118 

86 Global error illustration                                                                             121 

87 Comparison between Global error and PML layers                                  122 

88 Comparison between Global error and maximum conductivity                122 

89 The quaternary H - field around the narrow feeding gap                         124 

90 The one-cell gap model of a thin-wire dipole antenna                              124 

91 Geometry for the reference model                                                             128 

92 MRI Images of PD, T1 and T2 at layer 26th                                              129 

93 MRI machine                                                                                             130 

94 Artificial human head cross-section at layer 26th created by computer     131 

95 Artificial human head side view created by computer                              131 

96 Cell surface with in inhomogeneous medium                                           134 

97 ,x yE E  and zE field components                                                               136 



 
 

     
xi 

LIST OF FIGURES (Continued) 

 

Figure                                                                                                                      Page 

 

98 Sample figure of the spatial-average SAR 1-g, located at the position  

closed to dipole feeding gap                                                                      138 

99 Sample figure of the spatial-average SAR 10-g, located at the position 

closed to dipole feeding gap                                                                      139 

100 Sample figure of the spatial-average SARCell-1 1-g, SARCell-2 1-g,  

and so on located by the incremental n                                                     140 

101 The comparison graph of the normalized spatial-average SARCell n 1-g  

at various distances in a human head between the method of using  

averaged dielectric constant in a human head and the simple method      141 

102 The comparison bar of the spatial-average SARCell-1 1-g, 

SARCell-2 1-g and SARCell-3 1-g in the reference model                             142 

103 The comparison bar of the spatial-average SARCell-1 1-g and  

SARCell-1 10-g between 900 MHz and 1.8 GHz in the reference model    143 

104 The comparison bar of the average power absorbed by any material  

in a human head between 900 MHz and 1.8 GHz 

 in the reference model                                                                              144 

105 The simulation of a mobile phone located at 1 cm from a human head  

and a mobile phone operated at 900 MHz (the reference model).  

The simulation start from 0 and end with 1000 t                                     146 

106 The simulation of a mobile phone located at 1 cm from a human head  

and a mobile phone operated at 1.8 GHz (the reference model).  

The simulation start from 0 and end with 1000 t                                     147 

107 The quaternary H - field around the one-cell gap model                          149 

108 Guideline for the formulation of the one-cell gap model                          150 

109 Field locations and geometry for thin wire                                                151 

110 Field locations of the improved one-cell gap model                                 153 

111 Field locations of the infinitesimal gap model                                          155 

112 The improved one-cell gap model is the infinitesimal gap model            157 



 
 

     
xii 

LIST OF FIGURES (Continued) 

 

Figure                                                                                                                      Page 

 

113 The summary of the improved one-cell gap model or  

the infinitesimal gap model                                                                       158 

114 The H - field component no.1                                                                   159 

115 Spatial field locations for H - field component no.1                                 160 

116 The summary of the finite gap model no.1                                                162 

117 Spatial field locations for H - field component no.2                                 163 

118 The summary of the finite gap model no.2                                                165 

119 Spatial field locations for H - field component no.3                                 166 

120 The summary of the finite gap model no.3                                                168 

121 Spatial field locations for H - field component no.4                                 169 

122 The summary of the finite gap model no.4                                                171 

123 Spatial zE - field locations surround the dipole                                         174 

124 The two general forms of the dipole feeding gap                                      176 

125 The Electromagnetic Cycle (EM-Cycle)                                                   177 

126 Geometry for the simulated dipole feeding gap                                        178 

127 Geometry for the reduced domain                                                             178 

128 Geometry for the FDTD simulation of a mobile phone operating near  

a Metal Wall                                                                                              179 

129 Sample of the feeding signal for the one-cell gap model,  

the infinitesimal gap model and the finite gap model, 21
l



                 180 

130 Comparison of the electromagnetic field (ETotal, dB) simulated by  

the one-cell gap model, the infinitesimal gap model and  

the finite gap model 0 0.85
z

z





, respectively, at timestep = 100             181 

 

 

 



 
 

     
xiii 

LIST OF FIGURES (Continued) 

 

Figure                                                                                                                      Page 

 

131 Comparison of the electromagnetic field (ETotal, dB) simulated by  

the one-cell gap model, the infinitesimal gap model and  

the finite gap model 0 0.85
z

z





, respectively, at timestep = 200             182 

132 Sample of the feeding signal for the one-cell gap model,  

the infinitesimal gap model and the finite gap model, 41
l



,  

Timestep = 4096                                                                                        183 

133 The input impedance simulated by the commercial software, XFDTD    185 

134 The input impedance simulated by MoM and the FDTD programming   185 

135 Comparison the input impedance simulated by MoM, N = 128,  

and the one-cell gap model, 0/ 256l r                                                      186 

136 Comparison the return loss simulated by MoM, N = 128,  

and the one-cell gap model, 0/ 256l r  , ZS = 50 Ω                                  186 

137 Comparison the return loss simulated by MoM, N = 128,  

and the one-cell gap model, 0/ 256l r  , ZS = 75 Ω                                  187 

138 Comparison the return loss simulated by MoM, N = 128,  

and the one-cell gap model, 0/ 256l r  , ZS = 73 + j42.5 Ω                      187 

139 Comparison the input impedance simulated by MoM, N = 128,  

and the infinitesimal gap model, 0/ 256l r                                              188 

140 Comparison the return loss simulated by MoM, N = 128,  

and the infinitesimal gap model, 0/ 256l r  , ZS = 50 Ω                           188 

141 Comparison the return loss simulated by MoM, N = 128,  

and the infinitesimal gap model, 0/ 256l r  , ZS = 75 Ω                           189 

142 Comparison the return loss simulated by MoM, N = 128,  

and the infinitesimal gap model, 0/ 256l r  , ZS = 73 + j42.5 Ω              189 

 



 
 

     
xiv 

LIST OF FIGURES (Continued) 

 

Figure                                                                                                                      Page 

 

143 Comparison the input impedance simulated by MoM, N = 128,  

the infinitesimal gap and the finite gap model, 0/ 256l r                        190 

144 Comparison the return loss simulated by MoM, N = 128,  

the infinitesimal gap and the finite gap model, 0/ 256l r  ,  

ZS = 50 Ω                                                                                                   190 

145 Comparison the return loss simulated by MoM, N = 128,  

the infinitesimal gap and the finite gap model, 0/ 256l r  ,  

ZS = 75 Ω                                                                                                   191 

146 Comparison the return loss simulated by MoM, N = 128,  

the infinitesimal gap and the finite gap model, 0/ 256l r  ,  

ZS = 73 + j42.5 Ω                                                                                       191 

147 The simulation of a mobile phone located at 1 cm from  

a human head with a truncated domain and a mobile phone operated  

at 900 MHz. The simulation start from 0 and end with 1000 t                192 

148 The simulation of a mobile phone located at 1 cm from  

a human head with a truncated domain and a mobile phone operated  

at 1.8 GHz. The simulation start from 0 and end with 1000 t                  193 

149 Top view of tE  in the simulated physical domain  

(Operating frequency = 900 MHz and l = 1 cm.)                                   194 

150 Top view of tE  in the simulated physical domain  

(Operating frequency = 900 MHz and l = 5 cm.)                                   194 

151 Top view of tE  in the simulated physical domain  

(Operating frequency = 900 MHz and l = 10 cm.)                                 195 

152 Top view of tE  in the simulated physical domain  

(Operating frequency = 900 MHz and l = 15 cm.)                                 195 

 



 
 

     
xv 

LIST OF FIGURES (Continued) 

 

Figure                                                                                                                      Page 

 

153 Top view of tE  in the simulated physical domain  

(Operating frequency = 900 MHz and l = 20 cm.)                                 196 

154 Top view of tE  in the simulated physical domain  

(Operating frequency = 1.8 GHz and l = 1 cm.)                                     198 

155 Top view of tE  in the simulated physical domain  

(Operating frequency = 1.8 GHz and l = 5 cm.)                                     198 

156 Top view of tE  in the simulated physical domain  

(Operating frequency = 1.8 GHz and l = 10 cm.)                                   199 

157 Top view of tE  in the simulated physical domain  

(Operating frequency = 1.8 GHz and l = 15 cm.)                                   199 

158 Top view of tE  in the simulated physical domain  

(Operating frequency = 1.8 GHz and l = 20 cm.)                                   200 

159 Spatial- average SAR 1-g respecting to the distance between  

the Metal Wall and the antenna, l                                                           202 

160 Spatial- average SAR 10-g respecting to the distance between  

the Metal Wall and the antenna, l                                                           202 

161 Total average power absorbed in human head  

respecting to the distance between the Metal Wall and the antenna, l   205 

162 The average power absorbed (Pavg) in Skin 

respecting to the distance between the Metal Wall and the antenna, l   205 

163 The average power absorbed (Pavg) in Bone 

respecting to the distance between the Metal Wall and the antenna, l   206 

164 The average power absorbed (Pavg) in Muscle 

respecting to the distance between the Metal Wall and the antenna, l   206 

165 The average power absorbed (Pavg) in Fat 

respecting to the distance between the Metal Wall and the antenna, l   207 

 



 
 

     
xvi 

LIST OF FIGURES (Continued) 

 

Figure                                                                                                                      Page 

 

166 The average power absorbed (Pavg) in Eye 

respecting to the distance between the Metal Wall and the antenna, l   207 

167 The average power absorbed (Pavg) in Brain 

respecting to the distance between the Metal Wall and the antenna, l   208 

168 The average power absorbed (Pavg) in Blood 

respecting to the distance between the Metal Wall and the antenna, l   208 

169 The practical dipole                                                                                   210 

170 How to insert interested material to the EM-Cycle                                   211 

 

Appendix Figure 

 

A1 The diagram of how to verify the electromagnetic simulation software   223 

A2 The diagram of the reference model                                                          224 

A3 The diagram of the dipole feeding gap model                                           225 

A4 The diagram of the proposed model                                                          226 

A5 The diagram of the electromagnetic simulation software                          227 



 
 

 
xvii 

LIST OF ABBREVIATIONS 

 

ANSI  = American National Standards Institute 

CST ®  = Computer Simulation Technology 

EM-Cycle  = Electromagnetic Cycle  

EMC  = Electromagnetic Compatibility 

EMI   = Electromagnetic Interference 

FCC  = Federal Communications Commission 

FDA  = Food and Drug Administration 

FDTD  = Finite Difference Time Domain 

IEEE  = Institute of Electrical and Electronics Engineers 

LAN  = Local Area Network 

MATLAB®  = Matrix Laboratory 

MoM  = Method of Moments, Moment Methods 

MRI  = Magnetic Resonance Imaging 

NCRP  = National Council on Radiation Protection and  

    Measurements 

Pavg   = Average Power 

PEC   = Perfect Electric Conductor 

PML  = Perfectly Matched Layer 

RE   = Round Error 

RECAPE  = Research Center of Applied Electromagnetic 

RF   = Radio Frequency 

RLE  = Relative Error 

SAR  = Specific Absorption Rate 

XFDTD®  = 3D Electromagnetic Simulation Software 

 

 

 



 1 

IMPLEMENTATION OF  
PERFECTLY MATCHED LAYER (PML)  

IN THE FINITE DIFFERENCE TIME DOMAIN (FDTD) 
SIMULATION OF A MOBILE PHONE OPERATING 

NEAR A METAL WALL 
 

INTRODUCTION 
 

 In recent years wireless communication has gained popularity because of its 

mobile capability. In other words, the users can access to the communication network 

without hooking up to a communication outlet. Mobile phone, for example, is 

commonly used wireless communication equipment that allows the users to be free 

from the telephone outlet. The mobile capability is achieved by the radiation. All 

mobile phones have an antenna which plays a key role in the radiation. The antenna 

produces electromagnetic wave to carry the information from the transmitter to the 

remote receiver. Dipole is one of the simplest antennas, which is usually integrated 

with commercial wireless communication devices such as a mobile phones, Local 

Area Network (LAN), routers and etc. The dipole is made from a two metal wire with 

a center fed. In theory, the feeding gap must be infinitesimal gap. However, in 

practical, it does have a physical dimension. 

 

 It is believed that the invisible electromagnetic wave generated by the 

continuous power fed to the antenna is harmful to the human, especially to the 

operating user. Although, there is no strong scientific evidence to prove that the using 

mobile phone can lead to health hazards—memory loss, headache, tumor and cancer, 

however, the Food and Drug Administration (FDA) has been continued to monitor the 

updated scientific research reports on these topic. Correspondingly, the Federal 

Communications Commission (FCC) has released guidelines specifying the limits for 

the human exposure to the radio frequency (RF) emissions from the hand-held mobile 

phones in terms of the Specific Absorption Rate (SAR). SAR is a measure of the rate 

of absorption of the RF energy by the human body. The limit of SAR is 1.6 watts per 

kilogram (1.6 W/kg), which is averaged over one gram mass of tissues. It is known as 

“SAR 1-g”. The commercial mobile phone is required to meet this specification. 
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 SAR determination can be implemented by either experimental based 

measurement or computer simulation. In order to setup the experimental measurement, 

an artificial human head is to be built. Typically, the dimension is based on a size of a 

large adult male head. The human head model is then filled with a type of liquid that 

has the same dielectric properties as a human head tissue. A scientific probe is inserted 

to measure the SAR. The probe establishes a reference point in the phantom closed to 

the mobile phone. 

 

 Computer simulation is much cheaper than the first technique. The researchers 

usually create a dipole antenna as well as the wireless mobile phone in the computer 

model. Fortunately, dipole antennas are easy to be model on the computer. Specially, 

the dipole model acts as electromagnetic source. Meanwhile, a realistic human head 

can be modeled by a technique of Magnetic Resonance Imaging (MRI). Also, the 

absorbing boundary condition is implemented using an absorbing boundary layer. 

 

 Both experiment and simulation, in practice, focus on the frequency bands of 

900 MHz and 1.8 GHz, which are the bands assigned for commercial mobile phone. It 

is obvious that the SAR increases as the transmit power increases. Many researches 

draw the same conclusion that SAR is frequency dependent; the absorption at 1.8 GHz 

is lower than at 900 MHz. Both parameters, in practice, cannot be adjusted. The 

interest then goes to the answer of the question “Is there any other way to reduce the 

SAR value?” 

 

 This research covers theoretical development on generalization of feeding gap 

models for dipole antenna, invention of generally-used the Finite Difference Time 

Domain (FDTD) simulation tools and investigation of a method to reduce the SAR. 

The one-cell gap model, the infinitesimal gap model and the finite gap model are 

generalized. It is shown that the improved one-cell feeding gap of FDTD simulation is 

similar to the infinitesimal gap model. Correspondingly, the advantage of the finite gap 

model is that it represents a good model of the practical dipole antenna. Furthermore, 

the finite gap’s equations are compatible with the Electromagnetic Cycle (EM-Cycle). 

An FDTD computer program is developed and verified by comparing both the input 



 3 

impedance and the return loss with known values from the Exact Solution and the 

Moment Methods (MoM). In this case, Perfectly Matched Layer (PML) is used as the 

absorbing boundary layer through the investigation. In addition, PML acts as an 

electromagnetic fields absorbing layer and is backed by a Perfect Electric Conductor 

(PEC). The simulation sets a mobile phone at 1 cm from the artificial human head and 

sets the Metal Wall at 0-20 cm away from the mobile phone. Finally, this research 

shows that using a mobile phone operating near a Metal Wall in some cases can reduce 

the SAR value. 
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OBJECTIVES 
 

1. This research proposes how to verify the Finite Difference Time Domain 

(FDTD) programming. The FDTD programming was verified by comparison of the 

input impedance and the return loss to the Method of Moments (MoM). 

 

2. This research generalizes the Hallen’s Integral Equation in order to 

compute the antenna input impedance and return loss by MoM. It is implemented in 

the FDTD programming. 

 

3. This research proposes the Multigrid methods so as to improve the rate of 

convergence of Gauss-Seidel method. 

 

4. This research improves FDTD model for the feeding gap of a dipole 

antenna. Also, this research compares the input impedance and the return loss among 

the one-cell gap model, the infinitesimal gap model and the finite gap model. 

 

5. This research proposes that the simulation domain can be greatly reduced in 

order to save both computer simulation time and storage memory. 

 

6. This research studies the heating effect from a Metal Wall. 

 

7. In some cases, the simulation results show that SAR 1-g and SAR 10-g 

values are reduced when a mobile phone operating near a Metal Wall. 
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LITERATURE REVIEW 
 

The Verification of the Electromagnetic Simulation Software 

 

 All too commonly in the first section is about the verification of the 

electromagnetic simulation software (Appendix Figure A1), there are three important 

schemes: the Analytical Approach (the Exact Solution), the Moment Methods (MoM) 

and the Finite Difference Time Domain (FDTD), in order to simulate a dipole antenna. 

First of all, the Exact Solution is derived by Constantine A. Balanis (Balanis, 2005). 

Second, the MoM calculation is derived from Hallen’s Integral Equation and it has 

been generalized by Mei (Mei, 1965; Lan et al., 1999). Last but not least, the FDTD 

calculation is the time domain method; its solution covers a wide frequency range with 

a single simulation run. In conclusion, the FDTD calculation is the most popular field 

computational technique. The results are as the following aspects: 

 

1. The Analytical Approach (The Exact Solution) 

 

1.1 A dipole antenna 

 

  An antenna is defined by Oxford Advanced Learner’s Dictionary as “a 

piece of equipment made of wire or long straight pieces of metal for receiving or 

sending radio and television signals”. There are seven types of antennas: Wire 

Antennas, Aperture Antennas, Microstrip Antennas, Array Antennas, Reflector 

Antennas, Lens Antennas and Nano Antennas. Generally, a dipole antenna is a wire 

antenna; simplest and cheapest antenna, as shown in Figure 1. It should be noted that 

this section only simulates a dipole antenna. 

 

 

 

Figure 1   The commercial dipole antenna. 
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  There are three types of dipole antennas: an infinitesimal dipole, a small 

dipole and a finite length dipole. First, the infinitesimal dipole is the infinitesimal 

linear wire  l  . Unfortunately, it is impractical due to its dimension. Next, the 

small dipole is bigger than the infinitesimal dipole  / 50 /10l   . Its current 

distribution is set to be constant so a constant current distribution is not realizable. 

Last, the finite length dipole is very thin dipole  /2 ,  0l a    . In other words, 

the finite length dipole has a negligible diameter. 

 

1.2 Current distribution 

 

  In general, the electric lines of force are detached from a dipole antenna to 

form the Free-Space waves because two opposite charges  ,   are moving between 

the ends of the dipole antenna. The opposite charge leads to a displacement current 

density  j E


. Then, the displacement current density gives rise and fall to 

electromagnetic wave propagating outward from the dipole antenna, as shown in 

Figure 2. After that, this process is repeated itself. In addition, the moving charges is 

required to excite the fields but is not needs to sustain them and may exist in its 

absence. 
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Figure 2   Formation of electric field lines for a dipole antenna. 
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  It is apparent that the movement of two charges produces a stationary 

wave current, also known as current distribution. It is a wave current that remains in a 

constant position. In addition, it can arise in a dipole antenna as a result of interference 

between two charges traveling in opposite direction. In this case, current distribution is 

assumed to sinusoidal so that the dipole antenna is center-fed and the current vanishes 

at the end points  / 2, / 2Z Z , as shown in Figure 3. 
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Figure 3   The stationary wave current for various center-fed dipoles. 

 

1.3 Input impedance 

 

  Generally, the input impedance of an antenna is defined as the ratio of the 

voltage to current at its terminals, with no load attached. It is important that the input 

impedance always occurs at a pair of terminals of a dipole antenna. Besides, the dipole 

antenna is assumed isolated. The input impedance is consisted of real and imaginary 

parts   i i iZ f R jX  , as shown in Figure 4. The former, the input resistance iR  

represents power dissipation, which dissipated power in two ways: antenna heating 

and the radiation, respectively. The latter, the input reactance iX  represents power 
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stored in the near field of the antenna. Its behavior is a bit like the way a capacitor or 

inductor can store electrical energy and release it, returning to the generator. 

 

   
 

Terminal

Terminal

i i i

V f
Z f R jX

I f
  

 

 

Figure 4   The input impedance of a dipole antenna. 

 

  The input impedance of an ideal dipole antenna always matches the 

impedance of the signal generator, as shown in Figure 5, in order that an ideal dipole 

antenna will accept all the power sent to it from a generator and radiate it away into 

Free-Space— Maximum power transfer. Matching is obtained when i gR R . 

 

gR gX iR

iX

 

 

Figure 5   The impedance matching. 
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1.4 Radiation impedance 

 

  The radiation impedance of an antenna is defined as the ratio of the 

voltage to the maximum current, because some dipole: ,  2 ,L   etc., has zero current 

magnitude at input terminals. However, the radiation impedance is similar to the input 

impedance because it is consisted of real and imaginary parts   r r rZ f R jX  . This 

generalized impedance has a real part rR  representing a radiation resistance, and an 

imaginary part rX  representing a radiation reactance. The radiation impedance is 

shown as follow (Balanis, 2005) 

 

                                1
ln sin 2 2

2 2r i i iR C kl C kl kl S kl S kl


       

 

     1
       cos ln 2 2

2 2 i i

kl
kl C C kl C kl

          
                             (1) 

 

                             2 cos 2 2
4r i i iX S kl kl S kl S kl




     


 

     
22

       sin 2 2i i i

ka
kl C kl C kl C

l

        
   

                                  (2) 

  rR  = Radiation resistance. 

  rX  = Radiation reactance. 

  C  = 0.5772 (Euler’s constant). 

  iC  = The cosine integrals. 

  iS  = The sine integrals. 

  k  = Wavenumber
2


 
 
 

 , Wavelength per unit distance. 
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Figure 6   The current maximum does not occur at the input terminal. 

 

  For a dipole antenna of length l , the current at input terminal is related to 

the current maximum as the following equation 

 

Terminal Max sin
2

l
I I k   

 
                                           (3) 

 

  Clearly, the input resistance  iR can be derived from the radiation 

resistance  rR . The antenna itself assumed to be lossless so the power at the input 

terminal is equal to the power at the current maximum. 

 

                                                      ,Terminal ,MaxI IP P  

 

                                                 
2 2

Terminal Max

2 2
i r

I I
R R  

 

     
2

Max

Terminal
i r

I
R R

I
                                              (4) 
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  Replacing Equation (3) in Equation (4), thus the input resistance can be 

written as 

 

2sin
2

r
i

R
R

l
k


 
 
 

                                               (5) 

 

  Correspondingly, the input reactance  iX can be derived from Equation 

(2), with the same manner. Finally, the input reactance can be expressed as the 

following equation 

 

2sin
2

r
i

X
X

l
k


 
 
 

                                               (6) 

 

  The comparison graph between the radiation impedance and the input 

impedance is plotted by vary dipole length per wavelength  /l  . 
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Figure 7 The comparison graph between the radiation impedance and  the input impedance, radius of a dipole (a) = l / 128 λ. 
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Figure 8 The comparison graph between the radiation impedance and  the input impedance, radius of a dipole (a) = l / 256 λ. 

0.5 1 1.5 2 2.5 3
-1000

-500

0

500

1000

1500

Antenna length ()

R
es

is
ta

nc
e 

&
 R

ea
ct

an
ce

 (
 

)

 

 

 Radiation resistance
 Input resistance
 Radiation reactance
 Input reactance



 
14

 

 

Figure 9 The comparison graph between the radiation impedance and  the input impedance, radius of a dipole (a) = l / 512 λ. 
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Figure 10 The comparison graph between the radiation impedance and  the input impedance, radius of a dipole (a) = 0.00001 λ. 
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2. The Method of Moments (MoM) 

 

2.1 Inner product spaces 

 

  An inner product (or scalar product) on a complex vector space V is a 

mapping , :V V     such that, for all , ,x y z V and all  , (Young, 1988) 

 

2.1.1 , ,x y y x  is called Conjugate Symmetry. 

2.1.2 , ,x y x y   is called Linearity. 

2.1.3 , , ,x y z x z y z    is called Linearity. 

2.1.4 , 0x x   when 0x   is called Positive-definiteness. 

 

  An inner product space (or pre-Hilbert space) is a pair , ,V    where 

V is a complex vector space and ,   is an inner product on V . The property of an 

inner product space V is the following aspects 

 

2.1.5 , , ,x y z x y x z   . 

, ,

, ,

, ,

x y z y z x

             y x z x

             y x z x

  

 

 

 

, ,             x y x z  . 

2.1.6 , ,x y x y  . 

, , , ,x y y x y x x y      . 

2.1.7 ,0 0 0,x x  . 

2.1.8 If , ,x z y z  for all z V then x y . 

If , ,x z y z then  0 , 1 ,x z y z    

, , , 0,x z y z x y z z      .    x y  . 
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2.2 Linear operators 

 

  In computational electromagnetics or some important metric notions such 

as length, angle and the energy of physical systems can be expressed in terms of the 

inner product. Also, MoM is based on linear operator  L  and an inner product ,f g . 

An inner product ,f g  on a complex linear space is a complex-valued scalar 

satisfying (Pan, 2003) 

 

, ,f g g f                                                       (7) 

, , ,f g h f h g h     

                                       

 (8) 

2 0 if 0
,

0 if 0

       f
f f f

       f

 
  

                               (9) 

 

  Where the over bar denotes the complex conjugate. Corresponding, almost 

all of the mathematical equations can be expressed as (Young, 1988) 

 

Lf g                                                            (10) 

 

  Here L  is linear operator, g  is given excitation and f  is unknown 

function. The inverse operator of L is denoted as 1L . For instance, the typical solution 

is 

 

1f L g                                                        (11) 

 

  In computational electromagnetics, a linear operator is represented by a 

matrix. Moreover, the unknown function  f x  can be expanded in terms of the basis 

functions  nf x  with unknown coefficients n  namely 

 

1

N

n n
n

f f


                                                  (12) 
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1

N

n n
n

L f g


                                                            (13) 

 

  Multiplying both side of Equation (13) by the weighting (testing) function 

 mW  and taking the inner product ,   then 

 

1

, ,
N

m n mn
n

W Lf W g


                                                   (14) 

 

  This equation can be rewritten in matrix form as 

 

  ,mnl g                                                         (15) 

 

  It appears as 

 

  

 
1 1 1

1

, ,

Evaluated,

, ,

N

mn

N N N N N

W Lf W Lf

l

W Lf W Lf


 
   
  


  


 

  

1

2 Unknown,

N N N









 
 
  
 
 
 



 

  

1

2

1

,

,

,N N

W g

W g
g

W g


 
 
 
 
 
  


 

 

  Finally, this formal equation is solved to yield (Pan, 2003) 

 

  1

mnl g                                                (16) 
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2.3 The methods of weighted residual 

 

  Methods of weighted residual are useful to obtain approximate solutions to 

a differential governing equation. In order to explain the methods, we consider the 

following classical problem (Kwon and Bang, 1996) 

 

       
2

2
, 0 1

d U x
f x U x x  x

dx
       

 

  and boundary conditions are 

 

 
 
0 0

boundary condition
1 0

  U
 

  U





  

 

  First, we assume the trial function,     1U x ax x  , is selected as an 

approximate to  U x . Also, the trial function is chosen here such that it satisfies the 

boundary conditions a   0 0U   and   1 0U  , and it has one unknown coefficient a  

to be determined. Once a trial function is selected, residual is computed by substituting 

the trial function into the differential equation. That is, the residual  R x  becomes. 

 

          

   
 

2 2

2 2

2
2

2

/

1 2

R x d U x dx U x x

d ax ax
        ax ax x

dx

        ax a x a

   


   

   

 

 

  Because   U x  is different from the Exact Solution, the residual does not 

vanish for all values of x  within the domain. The next step is to determine the 

unknown constant a  such that the chosen test function best approximates the Exact 

Solution. In this case, the weighting function  W x  is selected and the weighted 

average of the residual over the problem domain is set to zero. That is 
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     
1

2

0

1 2 0W x R x dx ax a x a      

 

  In this research, we use Collocation method, which uses the Dirac delta 

function,  ix x  . Its definition is  
     x 0

0      x 0
x

 
 

. Also its properties are 

  1x dx




  and      
i

i

x

i i

x

f x x x dz f x









  . The sampling point ix  must be 

within the domain,  0 1ix  . In other words,    i iW x x x  . Let 0.5ix   and 

we substitute the test function into the weighted residual then 0.2222a  . The 

approximate solution becomes     0.2222 1U x x x   and  Collocation 0.5 0.0556f  .  

In order to improve the approximation solution, we use trial function as 

      2
1 21 1U x a x x a x x    . This trial function has two unknown constants to be 

determined. Computation of the residual using the present trial function yields 

 

       3 2
2 1 2 1 2 1 26 1 2R x a x a a x a a x a a         

 

  It is apparent that we need the same number of test functions as that of 

unknown constants, 1a  and 2a , in order that the constants can be determined properly. 

For instance,    1 1W x x x   and    2 2W x x x  . 

 

2.4 The generalized integral function 

 

  Let’s consider a single function  K z , whose expected value is 

 

   ,
b

a

K z U z d                                             (17) 

   K z  = Known function. 

   ,U z   = Unknown function of two variables. 
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  In this case, the unknown function is current distribution. The solution of 

 K z  is approximated by a linear combination of known basis function  ,iu z   and 

unknown coefficients ic , so called degrees of freedom (Harrington, 1993). 

 

   
1

, ,
N

i i
i

U z c u z 


                                           (18) 

 

  The basis functions are chosen to reasonable model the expected behavior 

of the unknown function throughout its domain. In numerical mathematic, a mixture of 

the basis functions builds interpolating function. If the basis functions have a local 

support in the domain, they are called local or sub-domain basis function. Local basis 

functions are defined on all the region of interests ( a b ) but each of them is non 

zero only on a sub-region of the intervals of interests. For example, the unit pulse 

function is the local basis. If their support spans the entire-domain, they are called 

global or entire-domain basis functions. For example, the Fourier expansion represents 

typical entire-domain approximation. If basis functions are normalized then 

coefficients ic  have got the meaning of sample values of the approximated functions. 

The application of sub-domain approximations is usually simpler than the application 

of entire-domain functions, and sub-domain basis functions have been favored by the 

most author ever since. 

 

1nx 1nx  nx

 

 

Figure 11 Local and global basis. 
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1C

2C
3C

1NC 

1x 2x 3x 4x 1Nx  Nx
 

 

Figure 12 A set of pulse basis functions. 

 

  A set of pulse basis functions is illustrated in Figure 12. Where the domain 

has been divided into N  points with 1N   subsegments/pulse. Every one of the 

segments has equal lengths. The pulse function is defined as 

 

  11     

0     elsewhere
n n

n

x x x
f x  




                                           (19) 

 

  Pulse functions comprise a simple and crude approximation to the solution 

over each segment, but they can greatly simplify the evaluation of MoM matrix 

elements (Gibson, 2007). 

 

  Substitution Equation (18) to Equation (17), the summation and the 

integration are swapped, then 

 

                                                
1

,
bn

i i
i a

K z c u z d R z 


    

      
1

,
bn

i i
i a

R z K z c u z d 


                                        (20) 

   R z  = Residual of approximation  ,U z  . 
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  A residual is an observable estimate of the function. If a residual is 

removing, the approximation function is very accurate. In order to solve for the 

unknown coefficients ic , Equation (20) is multiplying by weighting functions  jW z  

and integrating both sides. 

 

                                      
1

,
b b bn

j j i i
ia a a

W z R z dz W z K z c u z d 


 
  

 
    

 

  Corresponding to the method of weighted residual, then 

 

    0,    0,1,...,
b

j

a

W z R z dz i N                                      (21) 

       
1

,
b b bn

j j i i
ia a a

W z K z dz W z dz c u z d 


                              (22) 

 

  This research uses Point matching method (Collocation method), which is 

easy to grasp and straightforward to implement, may not yield an optimal 

convergence. In addition, Point matching method uses Dirac delta functions, which are 

place to points where the values of unknown coefficients are computed, as weighting 

functions. 

 

 
     0

0      0

z
z

z


 
 

 and its properties        1,  
a

a

z dz f z z a dz f a




 
 

 

      (23) 

   j jW z z z                                                 (24) 

 

  Due to the filtering property of Dirac delta function, the first integration is 

eliminated on both sides. Then, Equation (22) becomes (Raida, 2001) 

 

   
1

,
bn

j i i j
i a

K z c u z d 


                                    (25) 
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2.5 Maxwell equations and potentials 

 

m
B

E J
t


   



 
                                               (26) 

e
D

H J
t


  



 
                                                 (27) 

D  


                                                            (28) 

0B 


                                                                     (29) 

 

  Generally, these equations have a complete set of equations that govern 

electromagnetics. The consolidation of this set of equations, including the concept of 

displacement current density, was primarily due to J. C. Maxwell. Therefore, this set 

of equations bears his name. Maxwell’s first equation gives us a relation between 

electric and magnetic fields Ampere’s law, or Maxwell’s second equation for 

magnetostatics. Equation (28) essentially states that charge density is a source (or sink) 

of electric flux lines. Note that we can no longer say that all electric flux begins and 

terminates on charge, because the point form of Faraday’s law, Equation (26), shows 

that E , and hence D , may have circulation if a changing magnetic field is present. 

Thus the lines of electric flux may form closed loops. However, the converse is still 

true, and every coulomb of charge must have one coulomb of electric flux diverging 

from it. Equation (29) acknowledges the fact that “magnetic charges”, or poles, are not 

known to exist. Magnetic flux is always found in closed loops and never diverges from 

a point source. It is emphasized once again, that the magnetic flux density is 

solenoidal; having no source or sink. In addition to Maxwell’s equations, there are four 

medium-dependent equations , , eD E   B H   J E    
     

 and *
mJ M
 

. It is 

important that *
mJ M
 

 is the magnetic conductive current density (volts/meter2) 

and * is the magnetic resistivity (ohms/meter). These are called constitutive relations 

for the medium in which the Maxwellian fields exist; single valued, bounded and 

continuous functions of space and time with continuous derivatives. In conclusion, one 

may accurately state that if we study of Maxwell’s equations, we study of 

electromagnetic field theory (Hayt, 1989). 
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  In electrostatics and magnetostatics, it is often convenient to use auxiliary 

functions in analyzing an EM field. These auxiliary functions are the scalar electric 

potential V and vector magnetic potential A


. The desired field quantity E


or B


, could 

be found from the potential by differentiation. Although two potential functions are 

arbitrary, they are required to satisfy Maxwell’s equations. Their derivation is based on 

two fundamental vector identities 

 

0A 


                                                            (30) 

0V                                                              (31) 

 

  Equation (30), the divergence of the curl of any vector is identically zero. 

So, Equation (29)  0B 


 is satisfied if we define A


 such that 

 

B A 
 

                                                     (32) 

 

  Substitution Equation (32) into Equation (26) gives 

 

                                                         

 E A
t


   



 
 

                                                          

A
E

t


  





 
0

A
E

t

 
    


                                           (33) 

 

  This means that 
A

E
t






 is a conservative (zero curl) field and therefore a 

scalar V exists such that 
A

E V
t


  




  

A
E V

t


  




                                            (34) 
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  Thus, if we have the potential function V and A


, we can find the fields E


 

and B


from Equation (34) and Equation (32), respectively. The phasor representation 

allows us to replace the time derivations 
t




 by j  since 
j t

j te
j e

t







. It means that 

the complex exponential is the eigenfunction  Ax x  of the derivative operation. 

 

E j A V  
 

                                          (35) 

 

  Equation (32) and Equation (34) do not completely define A


. Moreover, 

Equation (34) is not exactly inviting for determining E


 because it contains both scalar 

and a vector potential. A pair of coupled equations for V and A


 may be obtained in the 

following way. First, as we have seen before, the vector identity is 

 

   2 A A A   
  

                              (36) 

2 2 2 2
x x y y z zA a A a A a A      


                    (37) 

 

  Laplacian of a vector  2 A


is occurring only in rectangular coordinates. 

In other coordinate systems, a result as simple as this equation does not occur. This 

point should be kept in mind. Substituting one of four medium-dependent equations 

B H
 

 into Equation (32) gives 

 

 1
H A


 

 
                                              (38) 

    = Permeability (H/m). 

 

  Substituting Equation (38) into Equation (27) and D E
 

 

 

A E J
t

 
  



  
                                        (39) 

    = Permittivity (F/m). 
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  Also, substituting Equation (34) into Equation (39) and assuming a linear, 

homogeneous medium, 

 

                                                    

A A V J
t t

          

  
 

2

2
A A V J

t t
   

    
 

  
                    (40) 

 

  Applying the vector identity 

 

 
2

2
2

A A A V J
t t

   
      

 

   
                    (41) 

 

  Second, substituting one of four medium-dependent equations D E
 

 

into Equation (28) 

 

E



  


                                                          (42) 

 

  Substituting Equation (34) into Equation (42) gives 

 

                                        

A
V

t




 
      


 

 2V A
t





    


                                                        (43) 

 

  Equation (41) can be rewritten as 

 

2
2

2
A A V A J

t t
             

   
                     (44) 

 

  In the area of vector calculus, Helmholtz’s theorem, also known as the 

vector theorem of calculus, states that any sufficiently smooth, rapidly decaying vector 
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field in three dimensions can be resolved into the sum of an irrotational (curl-free) 

vector field and a solenoidal (divergence-free) vector field. The term “Helmholtz’s 

theorem” can also refer to the following. Let C  be a vector field and d  is a scalar 

field on 3R  which are sufficiently smooth and which vanish faster than 21/ r  at 

infinity. Then there exists a vector field F such that d F and  F C  if 

additionally the vector field F  vanishes as r  , then F  is unique.  In other words, 

a vector field can be constructed with both a specified divergence and a specified curl, 

and if it also vanishes at infinity, it is uniquely specified by its divergence and curl. 

Now, we have already specified the curl of A


 in Equation (32). In order to completely 

define A


, we must also specify its convergence. Equation (43) and Equation (44) 

suggest very strongly that we choose 

 

A V
t

 
   




                                               (45) 

 

  Equation (45) is called Lorentz condition. If this is done, then A


 is said to 

be unique in the Lorentz gauge and Equation (43) and Equation (44) are uncoupled, for 

then we have 

 

2
2

2
vV V

t





   


                                                      (46) 

2
2

2
A A J

t
 

   


  
                                                      (47) 

 

  These are called the inhomogeneous scalar and vector Helmholtz wave 

equations, respectively. Thus Maxwell’s equations in term of the potentials V and A


 

reduce to the three equations, Equation (45) to Equation (47). In other words, the three 

equations are equivalent to the ordinary from of Maxwell’s equations in that potentials 

satisfying these equations always lead to a solution of Maxwell’s equations for E


 and 

B


 when used with Equation (32) and Equation (34). Integral solutions to Equation 

(46) and Equation (47) are the so-called retarded potentials. 

 



 29 

   
vol

,1
,

4

v r t R
V r t dv

R

 

 

 
 




                                (48) 

   
vol

,
,

4

J r t R
A r t dv

R


 

 
 

 
 

                                   (49) 

 

  The potentials given by Equation (48) and Equation (49) are called 

retarded potentials. In other words, a change in the source cannot be observed at the 

field point until a later time. It is apparent that the effect propagates at a velocity given 

by speed of light  1/  . If the region of interest does not include the source, then 

Equation (48) and Equation (49) are solutions to the homogeneous differential 

equations (wave equations). 

 

r
r



R r r 
 

 ,V r t


 ,v r t  


x

y

z

r
r


R r r 

 

 ,A r t


 ,J r t 
 

x

y

z

vol

vol

t t R   

t t R   

 

 

Figure 13 Geometry for the calculation of potentials. 
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  That is, to evaluate V at r


 and time t , the value of v at r


 and time 

t t R    , or retarded time, should be used in the integrand. In the same way, to 

evaluate A


 at r


 and time t , the value of J


 at r


 and t R   should be used. In 

addition, R  is the distance from any point in the source point to the observation point 

(Neff, 1987). 

 

  It is simpler to show Equation (49) in phasor form. There is no loss in 

generality in this approach because if the response to a general sinusoidal (phasor) 

excitation is known, then the response to any excitation can be found by Fourier 

methods of Equation (49). Additionally, a phase shifts in the frequency domain 

because a time shifts in the time domain. Therefore, the phasor form is 

 

                                                      

   
vol

, ,
4

j Re
A r J r dv

R

 

  






  
   

  

   
vol

, ,
4

jkRe
A r J r dv

R
  







  
   

                            (50) 

 

  k  = Wave number, Phase change constant (radians/meter, m-1). 

  
2

k



 . 

                    2 2,k  k     . 

  R  = The distance from any point in the source point to the observation           

                            point. 

  1
2

R kR



    is referred to radian distance. 

 

  which satisfies the phasor form of Equation (47) ; namely, 

 

2 2A A J     
  

                                                      (51) 
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2.6 Hallen’s Integral Equation 

 

x

z

zE

z

 I z

z y2d a

E

H

z

z z

ẑ

̂

̂

x

y






 22R z z   

R

2

l

x

y

z

2

l


2d a

zE

z

z

z z I z

 22R a z z  
R

 

 

Figure 14 Thin wire dipole of length l and radius a . 
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  This section simplify considerably in the special case of linear wire 

antenna, which is a thin cylindrical antenna. In addition, a perfectly conducting 

cylindrical antenna has radius a , extending between / 2 / 2l   z  l   . Let the 

antenna be located in a lossless homogeneous dielectric medium  0  . We assume a 

z-directed current on the cylinder, only axial electric field zE  is produced due to axial 

symmetry. Then Equation (35) becomes 

 

z zE j A V
z

 
  


                                               (52) 

 

  Also, Equation (45) becomes 

 

                                                        

zA j V
z


 


 

z

j
V A

z





                                               (53) 

 

  Substituting Equation (53) into Equation (52) gives 

 

                                                   

2

2 2z z z

j
E j A A

z


 


  


 

2

2 2

1
1z zE j A

k z

 

    
                                         (54) 

 

  According to Equation (50), 2 2k    and   is the angular frequency 

of the suppressed harmonic time variation j te  . In this case, Figure 14, the current 

sources are filamentary line currents along z-axis,  I z . The assumption that the 

radius of the wire is much smaller than its length means effectively that the current 

density  ,J r 
 

 will be z-directed and confined to zero transverse dimensions, that is 
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        ˆ,J r I z x y z     
 

. Inserting  ,J r 
 

 into Equation (50), it follows that 

the vector potential will be z-directed and cylindrically symmetric (Orfanidis, 2008). 

 

       
vol

ˆ ˆ,
4

jkRe
A r I z x y z dv z

R
   







    
 

 
       

vol

ˆ ˆ,
4

jkRe
A r I z x y z dx dy dz z

R
   







      
 

 
   

/2

/2

ˆ,
4

l jkR

l

e
A r I z dz z

R
 







  
 

  

  where  22R z z    , as shown in Figure 14. The z  integration is 

over the finite length of the antenna. Thus,    ˆ, ,zA r zA z 
 

, so that 

 

     
/2

/2

, ,
4

l jkR

z z

l

e
A a z A a z I z dz

R
 







                              (55) 

  R  = Distance between source point and observation point. 

     2 22 2R z z a z z        . 

  Source point is located at z . 

  Observation point is located at z . 

 

  Apparently,  ,
4

jkRe
G z z

R



   is the Free-Space Green’s function so that 

Equation (55) can be represented as 

 

   
/2

/2

,
l

z

l

A I z G z z dz


                                            (56) 

 

  Substituting Equation (56) into Equation (54) gives 
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   
/22

2 2
/2

1
1 ,

l
sct
z

l

E j I z G z z dz
k z




        
                             (57) 

 

  A thin wire dipole can be either receiving or transmitting antenna. 

Actually in both case, it is always driven by an external source. In receiving mode, it is 

done by an incident electric field (typically, a uniform plane wave if it is arriving from 

far distances). In transmitting mode, a thin wire dipole is receiving a power from a 

generator voltage applied to its input terminals. In conclusion, a source of thin wire 

dipole antenna is always referred to the external source field as the “Incident electric 

field  inc
zE ” (Orfanidis, 2008). 
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Figure 15 The incident electric field. 

 

Source: Orfanidis (2008) 
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  The incident electric field induces a current on the thin wire dipole. Then 

the induced current produces its own total electric field  total
zE . Furthermore, the total 

electric field in the vicinity of the cylinder can be expressed as a sum of the incident 

and scattered electric field, respectively (Poljak, 2007). The equation is 

 

total inc sct
z z zE E E                                                (58) 

 

  Assuming a perfectly conducting cylinder (PEC), the boundary conditions 

are the condition at the surface of a conductor whereby the tangential electric fields are 

zero  0total
zE  and the normal electric flux density is equal to the surface charge 

density on the conductor. Then, these boundary conditions are enough to determine the 

current distribution induced on the thin wire dipole  inc sct
z zE E  . To summarize, 

given an incident electric filed  inc
zE , Equation (57) can be solved for the current 

distribution   I z . Equation (57) can be rewritten as 

 

                           

   
/22

2 2 2
2 2

/2

, ,
l

inc
z

l

j
E k I z G z z dz  k

k z

   


        


  

   
/22

2
2

/2

,
l

inc
z

l

k I z G z z dz j E
z

 


        
                          (59) 

 

  Equation (59) is a second-order linear ordinary differential equation. This 

integral equation was first derived by Pocklington in 1897 (Stutzman and Thiele, 

1998). A modification of this equation was introduced by Hallen in 1938 (Hallen, 

1938) and is simpler to deal with from a numerical-computation point of. Furthermore, 

this equation has been generalized by Mei (Mei, 1965; Lan et al., 1999) to perfectly 

conducting wires of arbitrary shape. Hallen’s Integral Equation is computationally 

convenient since its kernel contains only /l r  term. Equation (59) can be rewritten in a 

compact form as 
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2
2

2
inc

z zk A j E
z


 

    

  

                                        (60) 

 

  Although the external source field inc
zE can be specified arbitrarily, there 

are two special model of practical importance. First model is delta-gap model, which 

imitates the way a transmitting thin wire dipole is fed by a transmission line. The other 

is an incident electric field, which is generally called uniform plane wave. In either 

model, the applied voltage sV  can be thought of as arising from an incident electric 

field  inc
zE , which exists only within the infinitesimal gap (Orfanidis, 2008). 
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l
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 
  

                                                  (61) 
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Figure 16 The delta-gap or the infinitesimal gap model. 

 

Source: Orfanidis (2008) 
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  If the limit 0z  , then inc
s zV E z   or /inc

z sE V z  . So as to maintain a 

finite value of sV  in the left-hand side of Equation (61) then inc
zE  must become 

proportionately large. This means that in this limit 

 

 inc
z sE V z 

  

                                                (62) 

 

  In this case  z  is Dirac delta function, which has the properties in 

Eqaution (23). The delta function used here is the same as that used in circuit theory, 

except the argument is z instead of the time. Substituting Equation (62) into Equation 

(60) gives 

 

 
2

2
2 z sk A j V z

z
 

      
                                      (63) 

 

  The potential zA  in Equation (63), must be continuous, and the first 

derivative of zA , namely, /zdA dz , should have a step change of amount 

 sj V z    at z = 0, so that the second derivative will have an impulse of the same 

strength. The behavior of zA  in the vicinity of z = 0 is shown in the following picture 

(Collin, 1985). 

 

zdA

dz

z
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z z
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2
zd A
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

0z 

sj V

 

 

Figure 17 Behavior of the vector potential function zA  in the vicinity of the input 

region of the antenna. 

 

Source: Colin (1985) 
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  Equation (63), the general solution over the interval / 2 / 2l   z  l    can 

be expressed as (Elliott, 2003). 

 

1 2cos sin , 0zA C kz C kz  z   

                                 

 (64) 

3 4cos sin , 0zA C kz C kz  z   

                                 

 (65) 

 

  with 1 2 3, ,C C C  and 4C  are constants. One can match these solutions across 

z = 0 by noting from Equation (60) that, if zA  is to be finite everywhere, the 

singularity in sV  at z = 0 must be matched by a singularity in / 0zdA dz  , since it 

cannot be accommodated by  2 0zk A . In order that zA  will be continuous at z = 0 

Equation (64) and Equation (65) indicate that 1 3C C . The derivative of zA  evaluated 

between 0z   and 0z   is 

 

         
00 2

1 2 3 42
00

sin 0 cos 0 sin 0 cos 0z zd A dA
kC k kC k kC k kC k

dz dz






   



      
0

2 4
0

z
s

dA
kC kC j V

dz










   

                                 

 (66) 

 

  Since the antenna is assumed symmetrical at z = 0, both zA  and zE  will 

be even function of z,    f z f z  , hence 

 

2 4C C 

                                                      

 (67) 

 

  and then we find that Equation (67) becomes 

 

2 2 2 2
s

s s

jj V j
C V V

k

 


     

                          

 (68) 

 /   , The characteristic or intrinsic wave impedance. 

 0 0 0/ 377 120        , The characteristic impedance of Free-Space. 
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  Substituting Equation (67) and Equation (68) into Equation (64) and 

Equation (65), respectively, gives the solution for zA  along the dipole antenna surface 

(King, 1953, 1956, 1959, 1967; King and Harrison, 1943; Fikioris and Wu, 2001). 

 

                                   
/2

1

/2

, cos sin
2

l

z s

l

j
A I z G z z dz C kz V k z




      

   
/2

/2

, cos sin
2

l
s

l

Vj
I z G z z dz A kz k z



       
 

                  

 (69) 

 

  which is a Fredholm Integral Equation of the first kind. If we let 

 

   
1

N

n n
n

I z I u z


  

                                           

 (70) 

 

  Substituting Equation (70) into Equation (69) gives 

 

       
/2

1/2

,
l N

n n
nl

I u z G z z dz R z D z


    
                             

(71) 

  cos sin
2

sVj
D z A kz k z


    
 

                                 

(72) 

 

       
/2

1/2

,
l N

n n
nl

R z D z I u z G z z dz


     
                            

(73) 

   R z  = Residual of approximation  I z . 

 

  Taking the inner products (moments) by multiplying either side of 

Equation (77) with a weighting function  mW z  and integrating both side. 

 

             
/2 /2 /2 /2

1/2 /2 /2 /2

,
l l l l N

m m n n m
nl l l l

R z W z dz D z W z dz I u z G z z dzW z dz
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          
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  According to Equation (21), the residual must be removed. By reversing 

the order of the summation and integration, 

 

         
/2 /2 /2

1/2 /2 /2

0 ,
l l lN

m n n m
nl l l

D z W z dz I u z G z z W z dzdz
  

       

         
/2 /2 /2

1 /2 /2 /2

,
l l lN

n n m m
n l l l

I u z G z z W z dzdz D z W z dz
   

      
              

 (74) 

 

  By method of weighted residual, the integration on either side of Equation 

(74) can be carried out numerically or analytically if possible. If we use the Point 

matching method by selecting the weighting function as Dirac delta function, 

   m mW z z z  , and its property,      
m

m

z

m m

z

f z z z dz f z









  . In addition, 

Equation (23) shows the integral of any function multiplied by  mz z   gives the 

value of function at mz . Then, Equation (74) becomes 

 

     
/2

1 /2

,
lN

n n m m
n l

I u z G z z dz D z
 

                                    (75) 

 

  Also, we choose pulse functions as the expansion function, 
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2 2

0, elsewhere,

n n n
n

z z
     z z z

u z
     

      
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  Equation (76) yields 

 

   
2
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n

n

z
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n m m
n z

z

I G z z dz D z



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                                  (77) 

 

  Substituting Equation (72) into Equation (77) gives 
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n m m
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z

Ve j
I dz A kz k z
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




 


     
 

                     (78) 

 

  Equation (78) will contain N  unknown variables, nI , and the unknown 

constant A . To determine the 1N   unknowns, we divide the dipole antenna into 

N segments. We choose segments of equal lengths /z l N  , equal to amount of 

expansion functions, N  functions, and select 1N   matching points, equal to 

unknown variables, such as / 2, / 2 , ..., / 2 , / 2z l  l z   l z  l      . 
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Figure 18 The segmentation of dipole antenna. 
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  where 1, 2, ...,n    N , 1, 2, ..., 1m    N  , 
2

k



 , 0 377      and 

 22
m mR a z z   . Equation (78) can be rewritten as 
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                        (79) 

 

  It is apparent that Equation (79) has a set of 1N   simultaneous equations, 

which can be cast in matrix form as 
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(80) 

 

  Also, it can be rewritten in compact form as 

 

    G I V                                                         (81) 

 

     1N N m n
G G

  
 . All the elements in this matrix are defined as 
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z m
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e
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
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                                          (82) 

 

  In order to approximate Equation (82), the ,m nG  is evaluated analytically 

rather than numerically. We separate Green’s function to real and imaginary parts 

(Sadiku, 2001). 
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  The real part is implemented as  ,Re m nG , and its value changes rapidly as 

mz z  due to  22
m mR a z z   . Therefore 

 

  

   

 
 

 

 

222 2

,

2 2

22 2

22

2

2 2

2 2

2

coscos1 1
Re

4 4

cos 1

4

ln

cos

n n

n n

n

n

z z
z z

m nm
m n

z zm m
z z

z
z

m n
m

z
z m

m

k a z zkR
G dz dz

R R

k a z z
              d z z

a z z

du
                  u u a C

u a

k a z
              

 



 
 

 
 







 
  

 
  

 

 
    

 

 
 

 





 

    
 

2

22 2

2

22

2
2

2
2

4

ln

cos

4

2 2
ln

2 2

n

n

n

z
z

m m z
z

m n

m n m n

m n m n

z

                  z z z z a

k a z z
              

z z
z z z z a

                  
z z

z z z z a











     

 
 

                    
                  

 

     22

,

cos
Re

4
m n

m n

k a z z
G


 

  

2
2

2
2

2 2
ln

2 2

m n m n

m n m n

z z
z z z z a

z z
z z z z a

                    
                  

                    (84) 
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  On the other hand, the imaginary part is implemented as  ,Im m nG , and it  

as a function of z  is a smooth curve so that 
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  The approximation is accurate as long as 0.05z   . From Equation (84) 

and Equation (85), the ,m nG  is represented as 
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  For instance, the dipole antenna was divided into 512 segments for 

/1024a l  so that we can find its relative current distribution  I  and its phase 

 I  as a function of the ratio of dipole’s length per wavelength  /l  , using Gauss 

eliminate. Also, we can find the input impedance by assume 1sV  . Thus 
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Figure 19 Relative current magnitude of a dipole antenna, 

  , 512 and /1024
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Figure 20 Relative current phase of a dipole antenna, 

                   , 512 and /1024
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Figure 21 Relative current magnitude of a dipole antenna, 

  , 512 and /1024
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Figure 22 Relative current phase of a dipole antenna, 

                   , 512 and /1024
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Figure 23 Relative current magnitude of a dipole antenna, 

  , 512 and /1024l  N   a l   . 
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Figure 24 Relative current phase of a dipole antenna, 

                   , 512 and /1024l  N   a l   . 
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Figure 25 Relative current magnitude of a dipole antenna, 

  
3

, 512 and /1024
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Figure 26 Relative current phase of a dipole antenna, 
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, 512 and /1024
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Figure 27 Relative current magnitude of a dipole antenna, 

  2 , 512 and /1024l  N   a l   . 
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Figure 28 Relative current phase of a dipole antenna, 

2 , 512 and /1024l  N   a l   . 
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Figure 29 The comparison graph of relative current distribution on a dipole antenna, l = 0.25, 0.50, 1.00, 1.50 and 2.00 λ, 

N = 512 and a = l / 1024. 
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Figure 30 The input impedance of a dipole antenna, N = 512 and a = l / 1024. 
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  Exact solution, a = 0.00001 
  MoM, N = 512 Segments, a = L/2048 
  MoM, N = 512 Segments, a = L/1024 
  MoM, N = 512 Segments, a = L/512 
  MoM, N = 512 Segments, a = L/256 

 

 

Figure 31 The comparison graph of the antenna input resistance between the Exact Solution (a = 0.00001 λ) and MoM (N = 512). 
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  Exact solution, a = 0.00001 
  MoM, N = 512 Segments, a = L/2048 
  MoM, N = 512 Segments, a = L/1024 
  MoM, N = 512 Segments, a = L/512 
  MoM, N = 512 Segments, a = L/256 

 

 

Figure 32 The comparison graph of the antenna input reactance between the Exact Solution (a = 0.00001 λ) and MoM (N = 512). 
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  Exact solution, a = 0.00001 
  MoM, N = 128 Segments, a = L/2048 
  MoM, N = 128 Segments, a = L/1024 
  MoM, N = 128 Segments, a = L/512 
  MoM, N = 128 Segments, a = L/256 

 

 

Figure 33 The comparison graph of the antenna input resistance between the Exact Solution (a = 0.00001 λ) and MoM (N = 128). 
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  Exact solution, a = 0.00001 
  MoM, N = 128 Segments, a = L/2048 
  MoM, N = 128 Segments, a = L/1024 
  MoM, N = 128 Segments, a = L/512 
  MoM, N = 128 Segments, a = L/256 

 

 

Figure 34 The comparison graph of the antenna input reactance between the Exact Solution (a = 0.00001 λ) and MoM (N = 128). 
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  Exact solution, a = 0.00001 
  MoM, N = 32 Segments, a = L/2048 
  MoM, N = 32 Segments, a = L/1024 
  MoM, N = 32 Segments, a = L/512 
  MoM, N = 32 Segments, a = L/256 

 

 

Figure 35 The comparison graph of the antenna input resistance between the Exact Solution (a = 0.00001 λ) and MoM (N = 32). 
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  Exact solution, a = 0.00001 
  MoM, N = 32 Segments, a = L/2048 
  MoM, N = 32 Segments, a = L/1024 
  MoM, N = 32 Segments, a = L/512 
  MoM, N = 32 Segments, a = L/256 

 

 

Figure 36 The comparison graph of the antenna input reactance between the Exact Solution (a = 0.00001 λ) and MoM (N = 32). 
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  In this research, we use the Exact Solution of the input impedance of the 

half wavelength dipole antenna as a reference, radius of the dipole   0.00001a   and 

   , Exact , Exact0.5 0.5i  i  R jX   73.129131844670740 + j42.544547283978790     . 

Also, the illustration of the absolute error between the Exact Solution and MoM is 

defined as the following picture 

 

   , Exact , Exact                0.5 0.5  

 73.129131844670740 + j42.544547283978790 
i iR jX  

 

   , MoM , MoM0.5 0.5  i iR jX  

 Error  

 Re 

 Im 

 

 

Figure 37 The illustration of the absolute error between the Exact Solution and MoM. 

 

  The equation of the absolute error and the % of the absolute error are 

defined as the following equations, respectively, 

 

         , Exact , Exact , MoM , MoMError 0.5 0.5 0.5 0.5i  i  i  i    R jX R jX        (88) 

 

   , Exact , Exact

Error
% Error 100

0.5 0.5i  i  

  
 

R jX 
 


                        (89) 

 

  For example, the input impedance, which is computed by MoM 

, 512 and / 2048
2

l N   a l
    

 
, is 83.208982076653610 + j48.501934770617560 . 

Then, the % of the absolute error is about 13.839356971163323 %. 
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Table 1 The % of the absolute error between the Exact Solution and MoM (N = 512). 

 

Antenna Length = 0.5   

Input Impedance | Error | 
MoM 

(Ohms) (%) 

N = 512, a = l / 2048 83.209 + j48.502 13.839 

N = 512, a = l / 1024 85.573 + j49.124 16.638 

N = 512, a = l / 512 90.623 + j49.919 22.44 

N = 512, a = l / 256 120.16 + j36.478 56.044 

 

Table 2 The % of the absolute error between the Exact Solution and MoM (N = 128). 

 

Antenna Length = 0.5   

Input Impedance | Error | 
MoM 

(Ohms) (%) 

N = 128, a = l / 2048 85.419 + j54.388 20.173 

N = 128, a = l / 1024 87.421 + j53.823 21.519 

N = 128, a = l / 512 90.608 + j53.416 24.33 

N = 128, a = l / 256 96.672 + j52.973 30.435 

 

Table 3 The % of the absolute error between the Exact Solution and MoM (N = 32). 

 

Antenna Length = 0.5   

Input Impedance | Error | 
MoM 

(Ohms) (%) 

N = 32, a = l / 2048 95.661 + j82.044 53.749 

N = 32, a = l / 1024 97.681 + j77.708 50.691 

N = 32, a = l / 512 100.61 + j73.268 48.722 

N = 32, a = l / 256 105.25 + j68.504 48.812 
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  Exact solution, a = 0.00001 
  MoM, a = L/2048 , N = 512 Segments

  MoM, a = L/2048 , N = 128 Segments

  MoM, a = L/2048 , N = 32 Segments

 

 

Figure 38 The comparison graph of the antenna input resistance between the Exact Solution (a = 0.00001 λ) and MoM (a = l / 2048 λ). 



 
61 

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
-2000

-1500

-1000

-500

0

500

1000

1500

A
nt

en
na

 in
pu

t r
ea

ct
an

ce
 (

   
 
 )

Antenna length (  )

 

 

  Exact solution, a = 0.00001 
  MoM, a = L/2048 , N = 512 Segments

  MoM, a = L/2048 , N = 128 Segments

  MoM, a = L/2048 , N = 32 Segments

 

 

Figure 39 The comparison graph of the antenna input reactance between the Exact Solution (a = 0.00001 λ) and MoM (a = l / 2048 λ). 
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  Exact solution, a = 0.00001 
  MoM, a = L/1024 , N = 512 Segments

  MoM, a = L/1024 , N = 128 Segments

  MoM, a = L/1024 , N = 32 Segments

 

 

Figure 40 The comparison graph of the antenna input resistance between the Exact Solution (a = 0.00001 λ) and MoM (a = l / 1024 λ). 
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  Exact solution, a = 0.00001 
  MoM, a = L/1024 , N = 512 Segments

  MoM, a = L/1024 , N = 128 Segments

  MoM, a = L/1024 , N = 32 Segments

 

 

Figure 41 The comparison graph of the antenna input reactance between the Exact Solution (a = 0.00001 λ) and MoM (a = l / 1024 λ). 
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  Exact solution, a = 0.00001 
  MoM, a = L/512 , N = 512 Segments

  MoM, a = L/512 , N = 128 Segments

  MoM, a = L/512 , N = 32 Segments

 

 

Figure 42 The comparison graph of the antenna input resistance between the Exact Solution (a = 0.00001 λ) and MoM (a = l / 512 λ). 
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  Exact solution, a = 0.00001 
  MoM, a = L/512 , N = 512 Segments

  MoM, a = L/512 , N = 128 Segments

  MoM, a = L/512 , N = 32 Segments

 

 

Figure 43 The comparison graph of the antenna input reactance between the Exact Solution (a = 0.00001 λ) and MoM (a = l / 512 λ). 
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  Exact solution, a = 0.00001 
  MoM, a = L/256 , N = 512 Segments

  MoM, a = L/256 , N = 128 Segments

  MoM, a = L/256 , N = 32 Segments

 

 

Figure 44 The comparison graph of the antenna input resistance between the Exact Solution (a = 0.00001 λ) and MoM (a = l / 256 λ). 
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  Exact solution, a = 0.00001 
  MoM, a = L/256 , N = 512 Segments

  MoM, a = L/256 , N = 128 Segments

  MoM, a = L/256 , N = 32 Segments

 

 

Figure 45 The comparison graph of the antenna input reactance between the Exact Solution (a = 0.00001 λ) and MoM (a = l / 256 λ). 
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Table 4 The % of the absolute error between the Exact Solution and MoM 

(a = l / 2048). 

 

Antenna Length = 0.5   

Input Impedance | Error | 
MoM 

(Ohms) (%) 

a = l / 2048, N = 512 83.209 + j48.502 13.839 

a = l / 2048, N = 128 85.419 + j54.388 20.173 

a = l / 2048, N = 32 95.661 + j82.044 53.749 

 

Table 5 The % of the absolute error between the Exact Solution and MoM 

(a = l / 1024). 

 

Antenna Length = 0.5   

Input Impedance | Error | 
MoM 

(Ohms) (%) 

a = l / 1024, N = 512 85.573 + j49.124 16.638 

a = l / 1024, N = 128 87.421 + j53.823 21.519 

a = l / 1024, N = 32 97.681 + j77.708 50.691 

 

Table 6 The % of the absolute error between the Exact Solution and MoM 

(a = l / 512). 

 

Antenna Length = 0.5   

Input Impedance | Error | 
MoM 

(Ohms) (%) 

a = l / 512, N = 512 90.623 + j49.919 22.44 

a = l / 512, N = 128 90.608 + j53.416 24.33 

a = l / 512, N = 32 100.61 + j73.268 48.722 
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Table 7 The % of the absolute error between the Exact Solution and MoM 

(a = l / 256). 

 

Antenna Length = 0.5   

Input Impedance | Error | 
MoM 

(Ohms) (%) 

a = l / 256, N = 512 120.16 + j36.478 56.044 

a = l / 256, N = 128 96.672 + j52.973 30.435 

a = l / 256, N = 32 105.25 + j68.504 48.812 

 

  In conclusion, almost the entire % of the absolute errors varies depending 

on the radius of dipole antenna. In addition, Table 1 to Table 2, the small radius gives 

the small error. However, as shown in Table 3, the big radius gives the small error. 

 

  On the other hand, Table 4 to Table 6, all of the % of the absolute errors 

varies inversely with the dipole segmentation. The more segments give the small error. 

However, Table 7, the low segments gives the small error. 

 

2.7 Multigrid methods 

 

  In this section, the essential principle of Multigrid methods for numerical 

computation will be implemented in order to solve for the current distribution on a 

dipole antenna. The advantage of this methodology is to accelerate the rate of 

convergence of a basic iterative method by global correction from time to time, 

accomplished by solving a coarse problem. The main idea is similar to interpolation 

between coarser and finer grids. Moreover, it has the advantage over other methods 

that it often scales linearly with the number of discrete nodes used. The example 

application for Multigrid is in the numerical solution of the current distribution 

(Kuhiran et al., 2004). The introductions to the basic principles of Multigrid methods 

are given by Brandt and Wesseling (Wesseling, 1992). More advanced expositions are 

given by Zhu (Zhu, 2006). 
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  By using Multigrid methods, we don’t want to solve Equation (81) directly 

so that Equation (81), as well as Equation (15), must be rewritten as the following 

aspects 

 

     Fine grid Fine grid Fine grid
G I V                                     (90) 
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  If we define the relation of basis function between coarse grid, ,i jW  u   , 

and fine grid, ,i jW  u , as 
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W W
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  We suggest a recursive scheme in which successively coarser grids are 

used, where the descent to coarser levels continues until the convergence rate of 

relaxation is acceptable. Then Equation (90) is represented in coarse grid as 

 

     Coarse grid Coarse grid Coarse grid
G I V                                     (93) 
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  The iteration of Equation (90) is started in the coarse grid, Equation (93), 

using zero as initial guess. The computation uses Gauss-Seidel method. The Gauss-

Seidel method is a variation of Gauss elimination. The major difference is that when 

an unknown is eliminated in the Gauss-Seidel method, it is eliminated from all other 
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equations rather than just the subsequent ones. In matrix  G , all rows are normalized 

by dividing them by their pivot elements and the elements above the major diagonal 

are eliminated (made zero) as well as the elements below the major diagonal. This 

matrix is transformed to diagonal matrix. In addition, the elimination step results in an 

identity matrix rather than a triangular matrix. Consequently, it is not necessary to 

employ back substitution to obtain the solution (Chapra and Canale, 2002). Suppose 

the Equation (93) has a unique solution and that the percent of the absolute of a Round 

Error (RE) is defined by 

 

, , 1

,

RE 100i t i t
i

i t

I I

I


 
 
                                            (94) 

  REi  = The absolute of a Round Error (RE) of element i , %. 

  t  = Iterations round. 

 

  This error is also a vector and its magnitude may be measured by any of 

the standard vector norms. The most commonly used norms for this purpose are the 

maximum (or infinity) norm and the Euclidean or 2-norm, defined, respectively, by 

(Briggs et al., 2000) 
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  This research uses maximum norm of this error. Unfortunately, this error 

is just as inaccessible as the exact solution itself. The Gauss-Seidel method is repeated 

itself until this error is acceptable. Similarity, the accuracy of this approximate method 

is also measured by a Relative Error (RLE) (Hoffman, 2001). The percent of the 

absolute of a Relative Error is defined as 
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I I
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  RLEi  = The absolute of a Relative Error (RLE) of element i , %. 

  t  = Iterations rounds. 

 

  Correspondingly, this research uses Equation (95), maximum norm of the 

error, in order to finish the Gauss-Seidel method. 

 

1
RLE max RLEi i P  

                                          (97) 

 

  Hence, Multigrid methods are a simple way to approximate the best 

approximation in the subspace. In addition, the approximated best approximation can 

serve as an initial guess if we choose an appropriate subspace—the exact solution of 

Equation (90) almost belongs to the subspace. 

 

  In this case, we use the Gauss-Seidel method as a reference. The dipole 

has N segments (100, 512 and 1,024 segments), 0.00001a   and 1l   . A WHILE 

LOOP is used when a set of errors, REi , has to be executed as long as a condition is 

true, RE


> 0.5 %. The flowchart is as the following figure 

 

RE
 

    G I V

 

 

Figure 46 The flow chart of Gauss-Seidel method using RE
 

. 
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Table 8 The iteration rounds in the Gauss-Seidel method depending on RE
 

. 

 

Dipole segments 

N = 100 N = 512 N = 1,024 

Iteration rounds Iteration rounds Iteration rounds 
Algorithm 

While ||RE|| ∞ > 0.5 % While ||RE|| ∞ > 0.5 % While ||RE|| ∞ > 0.5 % 

Gauss-Seidel method 73 1,039 20 
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Figure 47 RE
 

computed by the Gauss-Seidel method. 

 

  First, if we applied index of Equation (93), i i   and j j  , then 
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Figure 48 The flowchart of Multigrid method using RE
 

. 



 76 

1,1 1,2 1,3 1,4 1 1

2,1 2,2 2,3 2,4 2 2

3,1 3,2 3,3 3,4 3

4,1 4,2 4,3 4,4 4

1 1 1 1 1 1

N

N N N N

G G G G I V

G G G G I V

G G G G V

G G G G I V

A
      

     
     
     
     
     
     
          



 


    

1,1 1,2 1,3 1,4 1

2,1 2,2 2,3 2,4 2

3,1 3,2 3,3 3,4 3

4,1 4,2 4,3 4,4 4

1

2

1 1 1 1 1 1

N

N N N N

G G G G V

G G G G

I

I V

G G G G V

G

A

G IG G V

      

     
     
     
     
     
     
          






  



 

2

l

2

N

2 2

N N
 1

2

N


 

 

Figure 49 The cover area of using basis in the Multigrid method. 

 

Table 9 The comparison of iteration rounds between the Gauss-Seidel method and 

the Multigrid method depending on RE
 

. 

 

Dipole segments 

N = 100 N = 512 N = 1,024 

Iteration rounds Iteration rounds Iteration rounds 

Coarse grid Fine grid Coarse grid Fine grid Coarse grid Fine grid 

While While While While While While 

||RE|| ∞ ||RE|| ∞ ||RE|| ∞ ||RE|| ∞ ||RE|| ∞ ||RE|| ∞ 

Algorithm 

> 10 % > 0.5 % > 10 % > 0.5 % > 10 % > 0.5 % 

1. Gauss-Seidel 

    method 
- 73 - 1,039 - 20 

2. Multigrid 

    method 
7 69 15 942 29 19 
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Figure 50 RE
 

computed by the Multigrid method, N = 100. 
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Figure 51 RE
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computed by the Multigrid method, N = 512. 
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Figure 52 RE
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computed by the Multigrid method, N = 1,024. 

 

  It should be noted that the transformation of the best approximation in 

subspace to fine grid must be obeyed this rule, the reversion of Equation (93), 
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  Second, we will modify index of Equation (93), 1 2i i   and 1 2j j  , 

so that this index can be represented almost all the elements in matrix  G  and  V . 

For example 
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Figure 53 The cover area of using basis in the Multigrid method with an expandable 

basis. 
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Table 10 The comparison of iteration rounds between the Gauss-Seidel method and 

the Multigrid method with an expandable basis depending on RE
 

. 

 

Dipole segments 

N = 100 N = 512 N = 1,024 

Iteration rounds Iteration rounds Iteration rounds 

Coarse grid Fine grid Coarse grid Fine grid Coarse grid Fine grid 

While While While While While While 

||RE|| ∞ ||RE|| ∞ ||RE|| ∞ ||RE|| ∞ ||RE|| ∞ ||RE|| ∞ 

Algorithm 

> 10 % > 0.5 % > 10 % > 0.5 % > 10 % > 0.5 % 

1. Gauss-Seidel 

    method 
- 73 - 1,039 - 20 

2. Multigrid 

    method 
7 69 15 942 29 19 

3. Multigrid 

    method with an 

    expandable basis 

4 72 5 1,038 6 78 
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Figure 54 RE
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computed by the Multigrid method with an expandable basis,  

N = 100. 
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Figure 55 RE
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computed by the Multigrid method with an expandable basis,  

N = 512. 
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Figure 56 RE
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computed by the Multigrid method with an expandable basis,  

N = 1,024. 
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  It is apparent that the transformation of the best approximation in subspace 

to fine grid must be obeyed this rule, the reversion of Equation (93), 
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  Finally, we observed that Equation (93) couldn’t totally represent the 

matrix  G . Then we expand the size of matrix   1 1N N
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to   2 2N N
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in order that 

the basis of Equation (93) can represent the unknown A  in Equation (80). The simple 

algorithm is as the following example 
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 . We still use index of Equation (93), 1 2i i   and 

1 2j j  . In particular, the transformation of the best approximation in subspace to 

fine grid must be obeyed this rule, the reversion of Equation (93), 
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Figure 57 The cover area of using basis in Multigrid method with a compensatory 

basis. 
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Table 11 The comparison of iteration rounds between the Gauss-Seidel method and 

the Multigrid method with a compensatory basis depending on RE
 

. 

 

Dipole segments 

N = 100 N = 512 N = 1,024 

Iteration rounds Iteration rounds Iteration rounds 

Coarse Fine Coarse Fine Coarse Fine 

grid grid grid grid grid grid 

While While While While While While 

||RE|| ∞ ||RE|| ∞ ||RE|| ∞ ||RE|| ∞ ||RE|| ∞ ||RE|| ∞ 

Algorithm 

> 10 % > 0.5 % > 10 % > 0.5 % > 10 % > 0.5 % 

1. Gauss-Seidel 

    method 
- 73 - 1,039 - 20 

2. Multigrid 

    method 
7 69 15 942 29 19 

3. Multigrid 

    method with an 

    expandable basis 

4 72 5 1,038 6 78 

4. Multigrid 

    method with a 

    compensatory basis 

5 56 8 59 10 79 
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Figure 58 RE
 

computed by the Multigrid method with a compensatory basis,  

N = 100. 
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Figure 59 RE
 

computed by the Multigrid method with a compensatory basis,  

N = 512. 
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Figure 60 RE
 

computed by the Multigrid method with a compensatory basis,  

N = 1,024. 

 

  The definition of RLE
 

is slightly different from RE
 

. Clearly, 

RLE is computed by the exact solution resulted from Gauss Eliminate, standard 

algorithm in MATLAB iteration methods. A reference model is set as well as  

Figure 46, replacing RE
 

 with RLE
 

. The results are as follow 

 

Table 12 The iteration rounds in the Gauss-Seidel method depending on RLE
 

. 

 

Dipole segments 

N = 100 N = 512 N = 1,024 

Iteration rounds Iteration rounds Iteration rounds 

While While While 

Algorithm 

||RLE|| ∞ > 0.5 % ||RLE|| ∞ > 0.5 % ||RLE|| ∞ > 0.5 % 

Gauss-Seidel method 92 2,877 15,915 
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Figure 61 RLE
 

computed by the Gauss-Seidel method. 

 

  In the simulation, it is important to be aware that computed solutions are 

not exact mathematical solutions. By Figure 61, observe that as N is greater than 100 

the RLE
 

gives higher value and more fluctuation. The rate of convergence of the 

numerical solution can be diminished in both Multigrid method and the modified 

Multigrid methods. Understanding this result can often guide a programmer in the 

proper implementation and development of electromagnetic numerical algorithms. The 

Multigrid methods computed by the constrain of RLE
 

 has its algorithm as the 

following flowchart 
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Figure 62 The flowchart of Multigrid method using RLE
 

. 
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Table 13 The comparison of iteration rounds between the Gauss-Seidel method and 

the Multigrid methods depending on RLE
 

. 

 

Dipole segments 

N = 100 N = 512 N = 1,024 

Iteration rounds Iteration rounds Iteration rounds 

Coarse Fine Coarse Fine Coarse Fine 

grid grid grid grid grid grid 

While While While While While While 

||RE|| ∞ ||RLE|| ∞ ||RE|| ∞ ||RLE|| ∞ ||RE|| ∞ ||RLE|| ∞ 

Algorithm 

> 10 % > 0.5 % > 10 % > 0.5 % > 10 % > 0.5 % 

1. Gauss-Seidel 

    method 
- 92 - 2,877 - 15,915 

2. Multigrid 

    method 
7 91 15 2,819 29 15,615 

3. Multigrid 

    method with an 

    expandable basis 

4 91 5 2,856 6 15,793 

4. Multigrid 

    method with a 

    compensatory basis 

5 73 8 2,548 10 14,419 
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Figure 63 RLE
 

computed by the Gauss-Seidel method and  

the Multigrid methods, N = 100. 
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Figure 64 RLE
 

computed by the Gauss-Seidel method and  

the Multigrid methods, N = 512. 
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Figure 65 RLE
 

computed by the Gauss-Seidel method and  

the Multigrid methods, N = 1,024. 

 

  In this simulation, the author uses the V-Shape algorithm of the Multigrid 

methods. In brief, the V-Shape algorithm can illustrate as the following figure 

 

 

 

Figure 66 The V-Shape algorithm of the Multigrid methods. 
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3. The Finite Difference Time Domain (FDTD) 

 

3.1 Introduction to the Finite Difference Time Domain (FDTD) 

 

  Especially in today’s world, the Finite Difference Time Domain (FDTD), 

which was introduced by K.S. Yee in 1966 (Yee, 1966), is a powerful solution tool for 

solving the Maxwell’s equations. FDTD is becoming more and more widely used and 

thousands of paper are published each year in this scheme. Generally, it is a time 

domain method so that its solution can cover a wide frequency range with a single 

simulation run. In addition, it well suited to analyzing transient response which is hard 

to deal with by frequency domain methods, MoM. For example, MoM is inadequate 

for both pulsed excitations and various transient phenomena. These problems require 

data to be computed over a range of frequencies and all of the required frequency 

range can be generated from time domain method via Fourier transformation 

(Stutzman and Thiele, 1998). Furthermore, FDTD is capable of computing 

electromagnetic problems with complex geometric structures which are difficult to 

analyze by MoM.  

 

  The FDTD algorithm is involves direct discretizations of the time 

dependent Maxwell’s equations by writing the spatial and time derivatives in a central 

finite difference form. It requires the electric and magnetic fields to be updated at 

staggered half-time steps from one another in space, leap-frogging algorithm. The 

update procedure is explicit; the update values of electromagnetic field components 

depend only on these values at previous time and half-time steps. In conclusion, the 

FDTD algorithm gives a complete full-wave electromagnetic solution simply in a 

single simulation run. 

 

3.2 The generalized time domain Maxwell’s equations 

 

  James Clark Maxwell (1831-1879), who was a British physicist, collected 

all of the electromagnetic laws and rules from Faraday’s law, Michael Faraday (1791-

1867), and Ampere’s law, Andre Marie Ampere (1775-1836), together with his 
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famous Maxwell’s displacement current rule (Pozar, 1998) to create a group of 

Maxwell’s equations. The Maxwell’s equations in differential form were expressed in 

Equation (26) to Equation (29). Now, these equations are substituted with four 

medium-dependent equations 0 0, , er rD E   B H   J E      
     

 and 0mJ 


. The 

results are as the following two equations 

 

0 r

H
E

t
  

  



                                               (98) 

0 r

E
H E

t
  

  


 
                                          (99) 

 

  In the Cartesian coordinate 

 

ˆ ˆ ˆx y z

x y z

a a a

A
x y z

A A A

  
 

  


 

 

ˆ ˆ ˆ( ) ( ) ( )y yx xz z
x y z

A AA AA A
A a a a

y z z x x y

   
      

     


          (100) 

 

  Then Equation (98) and Equation (99) can be rewritten in matrix form as  

 

0

   0     0

0        0 .

0      0     

yz x

xx
yx z

yy

zz
y zx

EE H
y z t

HE E

z x t
E HE

tx y


 



             
                                

                        (101) 
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0

   0      0    0       0

0         0 . 0          0

0      0     0       0     

yz x

xx exx
yx z

yy eyy

zz ezz
y zx

HH E
y z t

EH H

z x t
H EH

tx y

 
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 

              
                                  

.
x

y

z

E

E

E

 
  
  
   

    (102) 

 

  7 12
0 04 10 / , 8.845 10 /H m F m             

 

  From Equation (101) and (102), we applied the central difference scheme 

to Maxwell’s equations in differential form. For simplicity, consider a function  f x  

as shown in the following figure 
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Figure 67 The central difference scheme. 

 

  There are three types of finite difference approximations which can be 

used to estimate the derivative of  0f x : the forward finite difference, the backward 

finite difference and the central finite difference. Since the central difference yields a 

more accurate approximation, it is considered in this research. By the extension of 

Taylor series 
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           2 3
1 ...

2! 3! !

n
i i i n

i i i n

f x f x f x
f x f x f x h h h h R

n

 
              (103) 

 

  By expanding both 0 2

x
f x

  
 

 and 0 2

x
f x

  
 

 into a Taylor series 

 

       2 3
0 0

0 0 0 ...
2 2 2! 2 3! 2

f x f xx x x x
f x f x f x

                       
       

      (104) 
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0 0

0 0 0 ...
2 2 2! 2 3! 2

f x f xx x x x
f x f x f x

                       
       

      (105) 

 

  Subtracting Equation (104) by Equation (105) and neglecting all higher 

order terms over  3
x  the expression becomes 

 

 0 0 02 2

x x
f x f x f x x

            
   

 

 

  As a result, the central difference in distance and the central difference in 

time are shown as the following two equations, respectively 

 

 
0 0

0

2 2
x x

f x f x
f x

x

         
    


                                (106) 

 

     1
0 0

0

n nf x f x
f x

t

 
 


                                      (107) 
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3.2.1. Yee’s cell model 

 

   The Yee’s cell model has been used in this research so as to be the 

smallest unit (Yee, 1966). It is apparent that the symmetrical of this structure is 

corresponding to the FDTD scheme. 
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Figure 68 The Yee’s cell model. 
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Figure 69 The physical Yee’s cell model. 
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   It should be noted that all of the electric field components lie 

tangentially on the lattice edges of Yee’s cell model and are located half cell apart 

from the reference point  , ,i j k . On the other hand, all of the magnetic field 

components lie normally on the surfaces of Yee’s cell model and are located half cell 

apart from the electric fields defined in the cell 

 

   Because the algorithm for solve all of the six scalar equations in 

both Equation (101) and Equation (102) is exactly the same, herein simply one 

component from electric and magnetic fields is about to be derived. We choose 

Equation (102) only in z-axis, then 

 

0
y x z

zz zz z

H H E
E

x y t
  

  
  

  
                                      (108) 

 

   By referring the Yee’s cell model, we substitute both Equation 

(106) and Equation (107) into Equation (108), then 

 

1 1 1 1
1 1 1 1 1 1 1 12 2 2 2
2 2 2 2 2 2 2 2
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                   (109) 

 

   According to the pattern of discretization system, the value of  

1
12
2

( , , )
n

zE i j k


  is approximated by an average of 11
2

( , , )n
zE i j k   and 1

2
( , , )n

zE i j k  . 
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   When back substituting to Equation (109) gives. 
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   Finally, we have one of the six equations of the Maxwell’s 

equations in time domain. 
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(110) 

 

   This equation spells that 11
, ,

2
( )n

zE i j k   can be calculated with 

values of E  and H at previous instants of time at adjacent spatial positions as located 

by Yee’ cell model. Apparently, we need the basis for a method that can move a field 

behavior forward in space and time through the use of difference equations as updated 

equations 

 

   By analogy, the other equations can be solved based on Yee’s cell 

model. Therefore, the six Maxwell’s equations in time domain are presented as. 
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   It is very critical to appropriate select the spatial grids ,x  y   and 

z and the time step t  so as to control the accuracy and the stability of the 

computations. Also, it was called Courant-Friedrichs-Lewy Stability Criterion 
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3.2.2. Perfectly Matched Layer (PML) 

 

   Whenever we solve the Maxwell’s equations numerically by a 

volume discretization, the interested domain must be truncated in someway without 

introducing significant artifacts into itself. If we set the incorrect boundary layer, for 

example, the electromagnetic field outside the computational domain all equal to zero, 

then the electromagnetic wave will be reflected back to the system. The results were as 

the following figure (Jariyanorawiss, 2004; Jariyanorawiss and Homsup, 2005a) 

 

 

 

Figure 70 The model of the incorrect boundary layer. 

 

Ez (t) in Plane XY,  = 0.005 m, Domain = 100x100x100
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Figure 71 Cross-section of the applied incorrect boundary layer (Timestep = 50). 
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Ez (t) in Plane XY,  = 0.005 m, Domain = 100x100x100
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Figure 72 Cross-section of the applied incorrect boundary layer (Timestep = 100). 

 

Ez (t) in Plane XY,  = 0.005 m, Domain = 100x100x100
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Figure 73 Cross-section of the applied incorrect boundary layer (Timestep = 300). 

 

   As a result, the simulated electromagnetic fields were reflected to 

the computational domain and made the system chaotically. On the other hand, 

Taflove tried to truncate computational domain on a discrete grid by boundary 

conditions, a rule to set the value at the edge of the grid (Taflove, 1995). It turns out 
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that, a boundary condition is possible to do perfectly in only one dimension. In 1994, 

however, Berenger proposed the advanced idea by changing the question (Berenger, 

1994). He found an absorbing boundary layer instead of finding an absorbing 

boundary condition. Then, he introduced the highly effective, Perfectly Matched Layer 

(PML) for two-dimensional FDTD grids, which was extended to three dimensions by 

Katz (Katz et al., 1994). In addition, this technique is based on the use of a specified 

layer designed to absorb the electromagnetic waves without reflection from the 

vacuum-layer interfaces. In 1996, once again, the theory of the PML was generalized 

to three dimensions by Berenger (Berenger, 1996). As can be expected, in the PML 

medium, each component of the electromagnetic fields was split into two parts. In 

Cartesian coordinate, the six components yield 12 subcomponents presented as 

,  ,  ,  ,  , ,  ,  ,  ,  ,  xy xz yz yx zx zy xy xz yz yx zxE E E E E E H H H H H  and zyH . In conclusion, the 

Maxwell’s equations were represented as the following 12 equations 
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   Recently, it has been two contemporary PML: the stretching 

coordinate PML and the lossy uniaxial medium. First, the stretching coordinate PML 

is based on complex coordinates stretching (Chew et al., 1994) 

 

0Z 

Z Z 

 

 

Figure 74 Illustration of complex coordinates stretching. 

 

   In this case, we have some region of interest near the origin 0z   

and we need to truncate half-space, which is lying outside interested region, in such a 

way so as to absorb radiating electromagnetic waves (Johnson, 2010). Then, we define 

the complex coordinate stretching as  z z jf z   ; the first component is the real 

coordinate normal to the layer surface and the other is a tuned lossy uniaxial. We now 

have 
 

1
f z

z j z
z

 
     
. If we try to terminate the electromagnetic wave in z-axis 
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   Second, the anisotropic PML is based on complex material. Such a 

medium was originally suggested by Sacks et al. (Sacks et al., 1995). It is a layer of 

diagonally anisotropic material tensor to absorb outgoing waves from the interested 

domain. An anisotropic material is a material in which the electric polarization vector 

is not in the same direction as the electric field. The value of ,     and   are depend 

on the field direction. In addition, the isotropic material is a material whose properties 

are not dependent on the direction along which they are measured. Isotropic material is 

uniformity in all directions. 
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Figure 75 Illustration of anisotropic material and isotropic material. 
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   It is apparent that the material properties must be chosen such that 

the interface between the absorbing material and Free-Space is reflection less for all 

frequencies, polarizations, and angles of incidence. To put it more simply, Gedney 

proposed the relative permittivity and permeability tensors for the case of an 

electromagnetic waves incident on a single boundary layer z-axis, as the following 

equation (Gedney, 1996a) 
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   In brief, the stretching coordinate PML can be made equivalent to 

anisotropic medium by Zhao and Candgellaris (Zhao and Candgellaris, 1996a). 

 

   The generalized PML formulation was proposed by Gedney 

(Gedney, 1996a)—Berenger’s equations using the modified Ampere-Maxwell’s law 

can be expressed in the frequency, then Equation (119) to Equation (124) become 
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   Gedney assumed that the interface between the PML medium and 

the isotropic space is a constant z-plane. Subsequently, let 0,  1x y r      and 

using the relationship ,  x xy xz y yx yzE E E E E E     and z zx zyE E E  , then 
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   By this algorithm, it is similarly for the magnetic field intensities 

leads to (Gedney, 1996a) 
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   Using Rappaport’s mapping (Rappaport, 1995), the real coordinate 

z-axis is mapped into the complex coordinate stretching with complex spatial variable 
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   Equation (144) implies that there is a scaling of the normal electric 

and magnetic fields intensities where (Gedney, 1996a) 
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   By applied the scaling of the normal electric and magnetic field 

intensities, Equation (138) to Equation (143) become (Gedney, 1996a) 
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   Alternatively, if assume that ,x y   and z  is valued in complex 

coordinates stretching, then Equation (138) become 0
yz

r x

HH
j E

y z
 


 

 
. By using 

Equation (144) and Equation (145) then (constant z-plane) 
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  
      

 

 

   Equation (139) to Equation (143) can be derived in this manner. In 

conclusion, the compact form of these equations is as the following equation 
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         (152) 

 

   Equation (152) is similar to the Ampere-Maxwell’s law represented 

in the uniaxial medium, which was described in Equation (131). 
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         (153) 
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   Gedney stated that a mathematical relationship between the two 

methods is not obvious (Gedney, 1996a). However, this research has verifing the 

mathematical relationship between two methods. 

 

   It is apparent that Berenger’s formulation can be derived from two 

contemporary PMLs via a mapping and scaling of the normal field intensities. The 

advantage of this formulation over Berenger’s PML method are this formulation is 

based on Maxwell’s equations, rather than a modified set of equations. In brief, the 

implementation to FDTD method is more numerically efficient and it can be extended 

to non orthogonal an unstructured grid technique (Gedney, 1996a). 

 

   Gedney also proposed the PML formulation in the corner regions 

where there is more than one boundary layer. Alternatively, Zhao and Candgellaris 

(Zhao and Candgellaris, 1996b) presented their PML very attractively in view of its 

systematic of the Generalized Theory of Perfectly Matched Layer (GT-PMLs). 

However, GT-PMLs required three different types of PML related to the faces, edges 

and corners of the PML region. Therefore, this research uses the New Generalized 

Perfectly Matched Layer (NGPML), which was proposed by Ling et al. (Ling et al., 

2002). They had generalized Gedney’s formulation in three dimensional axes. 

Especially, only one type of simple formulation is needed to resolve the above three 

types of PMLs (GT-PMLs). Also, NGPML is presented for general lossy and 

dispersive medium. In addition, dispersive medium is presented as the value of ,     

and   are depend on frequency. In conclusion, the computational domain is divided to 

two sub-domains, the simulated physical domain and the simulated artificial absorbing 

layer, however, Maxwell’s curl equations can be written in one formulation by the 

following (Ling et al., 2002) 

 

 0 rH j E    
 

                                           (154) 

 

 0 rE j H     
 

                                       (155) 
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   where  r  and  r   are relative permittivity and relative 

permeability in the whole computational domain (isotropic medium), respectively, and 
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, 1r
r r r 

j

 
     


   

                               (156) 

 

   For a lossy uniaxial medium, the relative permittivity and 

permeability tensors are 
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          (157) 

 

   Berenger found that if ,  , , axis,i i x y z    is constant via PML 

region, significant reflections are encountered at the interface of the PML (Berenger, 

1994). It is due to the discrete approximation of the fields and the material parameters 

between two mediums: space and lossy anisotropic medium. To reduce the effect of 

surface condition changing rapidly in PML region, this research using a spatially 

varying conductivity of PML in three axes as 

 

max , , , axis

m

i

d
 i x y z

d
 

  
   

 
                              (158) 

 

   For applied PML to any computer programming, we had set spatial 

conductivity to i-axis ( , ,i x y z ), side by side. For example, if electromagnetic wave 

travels in PML along the x-axis, then y  and z  are equal to zero, however, only x  

is effected in Equation (158). Currently, we are showing how to set the spatial 

conductivity of PML in x,y,z-axis, respectively (Jariyanorawiss, 2004) 
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Figure 76 The spatial conductivity of PML in x-axis. 
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Figure 77 The spatial conductivity of PML in y-axis. 
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Figure 78 The spatial conductivity of PML in z-axis. 
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   From Figure 80 shown that the spatial conductivity in Free-Space 

domains, values of ,x y   and z  all equal to zero will effect both Equation (154) and 

Equation (155) changed to Maxwell’s equations in Free-Space automatically, from 

Equation (111) to Equation (116). For example, 

 

 0

1 0 0

0 1 0

0 0 1
rH j E  

 
    
  

 
 

 0

1 0 0

0 1 0

0 0 1
rE j H  

 
     
  

 
 

 

   These results associated with generalized Maxwell’s equations. In 

other words, the Maxwell’s equations in Free-Space domain can be derived from 

Equation (154) and Equation (155) as 

 

 0 rH j E   
 

                                           (159) 

 0 rE j H    
 

                                        (160) 

 

   Consequently, Gedney suggested that by properly choosing the 

constitutive parameters of the uniaxial media both propagating and evanescent waves 

can be highly attenuated within anisotropic medium. Also, it resolves the concern that 

the original Berenger's formulation for a PML medium does not attenuate evanescent 

waves. In brief, the real term k  in 
0

,   , , axisi
ia k i x y z

j




     amplifies the 

attenuation of highly attenuative modes and  attenuates the propagating modes 

(Gedney, 1996b). 

 

   Corresponding to Figure 71, the simulation was computed once 

again by applied absorbing boundary layer with NGPML. The results are as follow 

(Jariyanorawiss, 2004) 
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Ez (t) in Plane XY,  = 0.005 m, Domain = 100x100x100
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Figure 81 Cross-section of the applied absorbing boundary layer (PML) to  

the computational domain (Timestep = 50). 
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Figure 82 Cross-section of the applied absorbing boundary layer (PML) to  

the computational domain (Timestep = 100). 
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Ez (t) in Plane XY,  = 0.005 m, Domain = 100x100x100
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Figure 83 Cross-section of the applied absorbing boundary layer (PML) to  

the computational domain (Timestep = 300). 
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Figure 84 Cross-section of the applied absorbing boundary layer (PML) to  

the computational domain (Timestep = 1000). 
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   The result shows that none of the electromagnetic wave was 

reflected back to the system, even how long the time spent on the simulation. It is the 

same principle of secret intelligence air-plane, Stealth Aircraft. Especially, this 

explains why Stealth Aircraft is totally invisible from radar. 
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Ez (t) in Plane XY,  = 0.005 m, Domain = 100x100x100
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Figure 85 Comparison cross-section of the applied incorrect boundary layer and  

the applied absorbing boundary layer (PML) at timestep = 300. 
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3.2.3. The analysis of generalized Maxwell’s equations 

 

   In 2003, Professor Dr. Wiroj Homsup and Associated Professor Dr. 

Nuttaka Homsup introduced the author the smart algorithm to generalize Maxwell’s 

equations. The author has been applied this smart algorithm to analyze all the 

electromagnetic simulation problems. Consider the following equations 
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   First, we set the matrix D


 as 
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   Also, we set both matrix R


 and G


 as 
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   Then, the 
1

2
n

R


 can be computed from 
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   and the 
1

2
n

H


 is computed from Equation (164). Then, the 
1

2
n

G


 is 

computed from 
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   and the 
1

2
n

D


 is computed from (165). Finally, 
1

2
n

E


 is computed 

from (163). This smart algorithm repeats itself until the end of simulation time. 
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3.2.4. Global error 

 

   In order to evaluate the performance of absorbing boundary layer, it 

is appropriate to compute from zE  which is travelling in a computational gird. In 

general, there are two types of a computational grids, an infinite grid  Inf  and a 

finite grid  PML . A point source is generating zE  in both Inf and PML  as the same 

time. It is apparent that Inf  has an infinite length , ,i j k  and a computation 

should be done by a time limit. However, on the contrary, PML has a finite length but 

the computational time is unlimited. Finally, it should be globally measured as the sum 

of the squares of the error at each grid point in the domain covered by size of 

Inf   PML  (Ling et al., 2002; Homsup et al., 2004; Jariyanorawiss, 2004). 

 

      Inf PML PML
2

Global error , , , ,z zt n t
i j k

E i j k E i j k


    


         (168) 

 

PMLInf   PML

 

 

Figure 86 Global error illustration. 

 

Source: Jariyanorawiss (2004) 
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Figure 87 Comparison between Global error and PML layers. 

 

Source: Jariyanorawiss (2004) 
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Figure 88 Comparison between Global error and maximum conductivity. 

 

Source: Jariyanorawiss (2004) 
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3.3 The verification of the FDTD programming 

 

  There are three methods to verify the FDTD programming with PML. 

First, it is usually done by visualization as well as the Figure 85. This method is very 

simple and easy to implement with any computer programming. Second, Global error 

is an explicit solution, which is numerical solution. However, these two verifications 

were derived from one equation, a generalized Maxwell’s equations, but it was 

presented in a difference grid. Third, the FDTD simulation of a dipole, both the input 

impedance and the return loss at the center-fed are the results to compare with the 

reference method, MoM. Additionally, MoM usually simulates the dipole antenna by 

either Hallen’s Equation or Pocklington’s Equation. Apparently, this verification 

method is the comparison between time domain and frequency domain. In conclusion, 

these three methods can use to verify the FDTD programming. 

 

3.3.1. An improved FDTD model for the feeding gap of a Thin-Wire 

antenna 

 

   In general, a radiating efficiency of antennas is usually expressed in 

terms of radiation impedance. The radiation impedance, which is determined by the 

geometry of the antennas, is obtained from the radiation reaction of conduction 

electrons in the dipole. In theory, the radiation impedance or the input impedance is 

referred to either the ratio of the voltage to current at a pair of terminals or the ratio of 

the appropriate components of the electric fields to magnetic fields at a point. The 

input impedance consists of two components, the real and the imaginary. It should be 

note that the input impedance is more practical than the radiation resistance. In 

conclusion the input impedance was derived by both an explicit solution (The Exact 

Solution) and the implicit solution (MoM and FDTD). 

 

   Watanabe and Taki (Watanabe and Taki, 1998) showed that the 

one-cell gap model for a thin-wire antenna can cause error in calculated antenna input 

impedance and this error is strongly dependent on the FDTD cell grid. The dipole was 

assumed to a slender dipole. In time domain simulation, they use FDTD. Also, they 
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used 2nd approximations of Mur’s absorbing boundary condition and applied subcell 

method (Kunz and Luebbers, 1993) to model a compensated one-cell gap dipole. In 

frequency domain simulation, they use MoM calculation by applied the Galerkin’s 

method with piecewise sinusoidal functions (Stutzman and Thiele, 1998). 
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Figure 89 The quaternary H - field around the narrow feeding gap. 
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Figure 90 The one-cell gap model of a thin-wire dipole antenna. 
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   By the conventional FDTD formula, for example, the H-fields  

(y-axis) around the one-cell gap model are given by 

 

   
       

1 1

2 2, , , ,

, , 1 , , 1, , , ,

n n

y y

n n n n
x x z z

H i j k H i j k

E i j k E i j k E i j k E i j kt

z x

 


        
                  

   (169) 

 

   Also, the    
1 1

2 21, , ,  , ,
n n

y xH i j k H i j k
 

  and  
1

2 , 1,
n

xH i j k


  

components must be computed using the conventional FDTD formula. The feeding 

source is given by the E-field in the air gap corresponding to one-space interval of 

Yee’s lattice as the following equation 

 
2 2

0 0
2 2
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2 2
max max( )

( , , )
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n s
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E i j k

z z
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 

     
 

                   (170) 

 

   Additionally, the input impedance was computed by the FDTD 

simulation using the current  sI  surrounding the one-cell gap. By applying Ampere’s 

law plus Maxwell’s displacement current on the narrow gap (Kouveliotis et al., 2002) 

 

sI H dl 
 
                                                 (171) 

 

   The discretization of Equation (171) depends on FDTD scheme. If 

x y z       , then the result is as the following equation 

 

1 1 1 1

2 2 2 2( ) ( , 1, ) ( , , ) ( , , ) ( 1, , )
n n n n

s x x y yI t H i j k H i j k H i j k H i j k
    

        
 

   (172) 

 

   ,  x yH H  are components of the magnetic field in the x, y-axis, 

respectively. ,i j  and k  represent the indexes for each spatial segment corresponding 
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to the ,x y  and z direction respectively. Also, n  stands for the time-step index. It 

shoud be noted that Equation (172) derives, considering a z-directed infinitesimal 

dipole and a Yee’s cell is sizeable   equal in the three directions. When result of 

distribution of the voltage and current on the dipole’s narrow gap are obtained by 

FDTD simulation, then the input impedance can easily be computed. The simple 

method is done by calculating the values of voltage  sV f  and current  sI f  in the 

frequency domain using Discrete Fourier Transform (DFT) (Haykin, 2001). 

 

   
 

s
in

s

V f
Z f

I f
                                                 (173) 

Load Source

Load Source

Z Z

Z Z


 


                                              (174) 

 

   The antenna input impedance of a thin-wire dipole antenna in Free-

Space calculated using the one-cell gap model were compared with MoM (Stutzman 

and Thiele, 1998), which assumes an infinitesimal gap. As a simulation result, error of 

calculation of input impedance can be happened if the size of Yee’s cell is different 

(Watanabe and Taki, 1998). 

 

   By subcell method (Kunz and Luebbers, 1993), the computational 

cost of the FDTD technique scales directly with the number of cells. Reducing the cell 

size throughout the FDTD computational space is one method for dealing with this 

situation, but it is computationally expensive and this method may not even be 

programmed if the computer resources are inadequate. Applied subcell method to the 

conventional FDTD formula, the H-fields (y-axis) around the one-cell gap become 
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 (175) 
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   The other three components, the    
1 1

2 21, , ,  , ,
n n

y xH i j k H i j k
 

  and 

 
1

2 , 1,
n

xH i j k


  can be computed in the same manner. Finally, Watanabe and Taki 

(Watanabe and Taki, 1998) showed that the improved feeding gap model for a narrow 

gap made the FDTD calculation agree well with MoM calculation assuming an 

infinitesimal gap. Especially, they were barely affected by the cell size. 

 

  In brief, the comparison between the FDTD and the MoM presented by 

input impedance can be verified the FDTD programming. 

 

 To summaries, there are three computer programming for simulate dipole: the 

Exact Solution, MoM and FDTD. The most interesting computer programming is the 

FDTD because the FDTD gives a complete full-wave electromagnetic solution simply 

in a single simulation run and also the FDTD is capable of computing electromagnetic 

problems with complex geometric structures which are difficult to analyze by MoM.  

 

The Reference Model 

 

 The FDTD computer programming has been widely using during the past two 

decades. There is Open-source, Freeware and commercial software. The Open-source 

is JFDTD, WOLFSIM, Meep, (Geo-) Radar FDTD, bigboy, toyFDTD, FDTD codes in 

C++, FDTD code in Fortran 90 and FDTD code in C for 2D EM Wave simulation. The 

Freeware but closed source is GprMax. The commercial software is exist more than 

twenty names, for instance, CST Microwave Studio and XFDTD. All of them are 

electromagnetic simulation software. 

 

 It is application of FDTD, including antenna design, microwave circuits, radar 

tracing, wireless simulation, Electromagnetic Compatibility (EMC), Electromagnetic 

Interference (EMI), photonics and Bio/EM effects. This research is compatible with all 

application as describe above but the interaction between a mobile phone and the 

human head is the main proposed on this paper. The simulated model is shown in the 

following figure 
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Figure 91 Geometry for the reference model. 

 

 The reference model is consisted of two domains: the physical domain and the 

absorbing boundary layer, (Appendix Figure A2). The simulated physical domain 

contains a dipole antenna and a human head model. metal   and  tissue 1    are the 

conductivity of dipole antenna and human head model, respectively. Also, metal   and   

are  tissue 1   are the permittivity of dipole antenna and a human head model, 

respectively. Additionally, the   is presented as the dispersive medium, which is the 

value of ,     and   are depend on frequency. The infinitesimal dipole represents a 

mobile phone and an antenna is operated at 900 MHz and 1.8 GHz. It is located at the 

1 cm from a human head model. In this case, the PML acts as an electromagnetics 

fields absorbing boundary layer and is backed by a perfect electric conductor. 

 

 Sir Peter Mansfield is a British physicist who was awarded the 2003 Nobel 

Prize in Physiology or Medicine for his discoveries concerning Magnetic Resonance 

Imaging (MRI). The Nobel Prize was shared with Paul Lauterbur who also contributed 

to the development of MRI. By using electromagnetic machine, the scanning technique 

can detect the medical diagnosis in human body like Pancreas and Bile Duct. Now, 

almost all the scanning methods have been replaced by MRI.  It is very useful for 

medical diagnosis, especially unusual function of human brain and Spinal Cord, for 
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example. The principle of MRI scanner can offer more accurate of liquid solution 

classification. In addition, it can offer 1 % in different. 

 

 In brief, the principle method of MRI is when protons constituting in human 

head associate with in the magnetic field, it can absorb and generate electromagnetic 

wave. Amount of generating energy will be varied depend on amount of proton in each 

cell. However, the signal intensity generated depends on the cell properties. This 

research will be shown by the figure of MRI to create the human head model. By using 

a Gray scale method, we can classify the different cells as the following picture  

 

 

 

Figure 92 MRI Images of PD, T1 and T2 at layer 26th. 

 

Source: Keith and Becker (2010) 
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Figure 93 MRI machine. 

 

 There are three types of MRI images: PD, T1 and T2. First, PD images 

represent for Skull, Muscle and Skin. Second, T1 images represent for Brain and Fat. 

Third, T2 images represent for Blood and Eye. This research uses Gray scale from  

0-255 in order to extract each type of cells from PD, T1 and T2 images—PD = Skull, 

Muscle and Skin, T1 = Brain and Fat, T2 = Blood and Eye, (Yahya, 2010). 

 

Table 14 The relation between Gray scale and types of cell in human head. 

 

Material Gray Level 

Air 0 - 59 

Skin 60 - 89 

Bone 90 - 109 

Muscle 110 - 129 

Fat 130 - 159 

Brain 160 - 199 

Eye 200 - 219 

Blood 220 - 255 

 

Source: Yahya (2010) 
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 This research uses total amount of MRI 159 images from 3 sets of PD, T1 and 

T2 for 53 images each to model the human head with 53 layers in different. For 

example in layer 30th, these can find out the cells of Skull, Muscle and Skin in figure 

PD images, in the same layer, it can find out the cells of Brain and Fat from T1 

images, and the cells of Blood and Eye from T2 images. After all the cells are located, 

these specified positions can be created a layer 30th of a model. The sum of 53 layers 

will produce the complete model as a human head. If the cell’s dimension is given for 

0.005 cm, then the size of human head will be 21x22x26.5 cm3 in approximate. 
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Figure 94 Artificial human head cross-section at layer 26th created by computer. 

 

 

 

Figure 95 Artificial human head side view created by computer. 
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 Value of electromagnetic parameter in human head will vary with the operating 

center frequency. Equation (170), the Gaussian’s signal in time domain must have the 

large width so that it can generate the narrow bandwidth around the center frequency 

 cf . Consequently, this will lead to the acceptable constant values of relative 

permittivity  r  and conductivity of each tissue in human head  tissue . These can be 

applied to the generalized Maxwell’s equations. Also, the simulation time for this 

computational model should be greater enough in order to reach the steady state. 

 

Table 15 Electromagnetic parameter values in human head for 900 MHz  cf . 

 

    
Material r  

3( / )kg m  ( / )S m  

Air 1 1 0 

Skin 35 1100 0.60 

Bone 8 1850 0.11 

Muscle 58 1040 1.21 

Fat 9.99 920 0.17 

Brain 49 1030 1.10 

Eye 73 1010 1.97 

Blood 64 1060 1.24 

 

Source: Gandhi (1996) 

 

 The following formula for find mass of each cell used in the simulation 

 

3V,  V  m x y z m                                          (176) 
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Table 16 Electromagnetic parameter values in human head for 1.8 GHz  cf . 

 

    
Material r  

3( / )kg m  ( / )S m  

Air 1 1 0 

Skin 35 1100 0.60 

Bone 8 1850 0.11 

Muscle 58 1040 1.21 

Fat 9.99 920 0.17 

Brain 49 1030 1.10 

Eye 73 1010 1.97 

Blood 64 1060 1.24 

 

Source: Gandhi (1996) 

 

 Previously, it is assumed that the medium within primary grid is homogeneous. 

However, we shall now consider the inhomogeneous medium case. Boundary 

condition for the concatenate cell of dielectric is necessary for the continuity of the 

tangential E


 and H


 fields in the direction of dielectric surface (dielectric-dielectric 

interface). This research assumes the model is non-magnetic   0, ,x y z   since the 

element of electromagnetic field is always in the horizontal direction. In addition, the 

primary edge passing through the centroid of the face is tangential to the interface of a 

boundary layer shared by the four dielectirc materials:     tissue,1 tissue,1, ,     

         tissue,2 tissue,2 tissue,3 tissue,3, , ,         and     tissue,4 tissue,4,    . The 

generalized Maxwell’s equations should be slightly updated. For example, xE  is 

surrounded by four adjacent cells with different permittivity and conductivity. The 

face is defined as the surface S  bound by the contour C . 
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Figure 96 Cell surface with in inhomogeneous medium. 

 

 Ampere’s law must be valid over this surface. However, as stated, the 

conductivity and permittivity of the face are ambiguous as referenced to the electric 

field passing through its centroid. Subsequently, this surface is decomposed into four 

distinct surfaces. Therefore, Ampere’s law plus Maxwell’s displacement current is 

expressed as (Taflove, 1995; Lee, 2003) 
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 Using central difference algorithm as well as Equation (106) and Equation 

(107), this equation can be approximated as 
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 When rearranging the terms, the generalized Maxwell’s equations for xE  is 
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1 2 3 4 1 2 3 4,  
4 4

                                          (179) 

 

 By taking the permittivity and the conductivity as the average of four adjacent 

cubes surrounding the E field component, it automatically guarantees the continuity of 

the tangential xE  field component. Similarly, this procedure is applied to yE  and zE . 
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Figure 97 ,x yE E  and zE field components. 

 

 Engineering research on the subject of wireless phones and radio frequency 

(RF) energy has been conducted worldwide for many years. The Federal 

Communications Commission (FCC) established RF exposure safety guidelines for 

wireless phones (Federal Communications Commission [FCC], 1998). Before a 

wireless phone model is available for sale to the public, it must be tested by the 

manufacturer and certified by the FCC that it does not exceed limits established by the 

FCC. One of these limits is expressed as a Specific Absorption Rate (SAR). In 1996, 

the FCC adopted updated guidelines for evaluating human exposure to radio frequency 

fields from fixed transmitting antennas such as those used for a mobile phone. Also, 
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the new guidelines for a mobile phone are identical to those recommended by the 

National Council on Radiation Protection and Measurements (NCRP). Furthermore, 

these guidelines are also similar to the 1992 guidelines recommended by the American 

National Standards Institute/Institute of Electrical and Electronics Engineers 

(ANSI/IEEE). In general, IEEE standard required that the SAR 1-g of handheld 

wireless phones not exceed 1.6 watts/kg, averaged over 1-g mass of tissues (The 

Institute of Electrical and Electronics Engineers [IEEE], 2003). Although the SAR 1-g 

is determined at the highest power level, the actual SAR 1-g value while operating 

depends on factors such as the proximity of the antenna to the human head while in 

use. 

 

 IEEE (IEEE, 2002) provides the definition of SAR as the time derivative (rate) 

of the incremental energy  dW  absorbed by (dissipated in) an incremental mass  dm  

contained in a volume element  Vd  of a given density  d . 

 

SAR ( ) ( )
d dW d dW

dt dm dt dV
                                         (180) 

 

 SAR is expressed in units of watts per kilogram  /W kg . Also, SAR can be 

related to the electric field at a point by 

 

 
2

SAR
E

t 


                                                  (181) 

    = Conductivity of the tissue  /S m . 

    = Mass density of the tissue  3/kg m . 

   E = Root Mean Square (RMS) electric field strength  /V m . 

 

 Also, IEEE (IEEE, 2002) provides the definition of the spatial-average SAR as 

the maximum local SAR averaged over a specified volume or mass, e.g., any 1-g or 

10-g mass of tissue in the shape of a cube. SARavg or SAR is expressed in units of 

watts per kilogram  /W kg  
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 Value of SAR 1-g can be obtained from Equation (181), averaged over the 

period  2 1T t t  , with condition that concatenate cells must be 1 g in cumulative 

weight and value should be obtained from several cells. This research proposed the 

method to compute 1 g mass of tissues by the following figure 

 

 

 

Figure 98 Sample figure of the spatial-average SAR 1-g, located at the position  

closed to dipole feeding gap. 
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 Also, value of SAR 10-g can be obtained from Equation (181), averaged over 

the period  2 1T t t  , with condition that concatenate cells must be 10 g in 

cumulative weight and value should be obtained from several cells. This research 

proposed the method to compute 10 g mass of tissues by the following figure 

 

 

 

Figure 99 Sample figure of the spatial-average SAR 10-g, located at the position 

closed to dipole feeding gap. 

 

 This research compared the total energy absorbed by human head between 

using a mobile phone operated at 900 MHz and 1.8 GHz. Additionally, total energy 

absorbed into the model of human head is expressed in units of watts  W . It can be 

calculated from the following equation 

 

  2

V

P t E dV                                                  (182) 

    = Conductivity of the tissue  /S m . 

   E = Root Mean Square (RMS) of electric field strength  /V m . 
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 The average power absorbed by any material  avgP  can be expressed as 

 

 
2

1

avg 2 1

1
P P ,

t

t

t dt T t t
T

 
    

 
                                       (183) 

 

 Subsequently, the next SAR: SARCell-1 1-g, SARCell-2 1-g and so on, were 

calculated as well as the SAR 1-g in Equation (181), however, only the specific 

positions in human head is changed from one side to the other side: (m,n,o), (m,n+1,o), 

(m,n+2,o), …, (m,j,o). 

 

Cell-1

Cell-2

Cell-3 Cell-j

 

 

Figure 100 Sample figure of the spatial-average SARCell-1 1-g, SARCell-2 1-g, and so  

on located by the incremental n. 
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 By the reference model, this research had simulated the SARCell-1 1-g to 

SARCell-j 1-g between a mobile phone operated at 900 MHz and 1.8 GHz. It was 

computed from a position deepened in human head from the surface, a skin. 

Additionally, the dipole is fixed at 1 cm from the human surface. The results were 

normalized by SARCell-1 1-g at center frequency. 
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Figure 101 The comparison graph of the normalized spatial-average SARCell n 1-g at 

various distances in a human head between the method of using averaged 

dielectric constant in a human head and the simple method. 

 

Source: Jariyanorawiss (2004); Jariyanorawiss and Homsup (2005a) 

 

 From Figure 101, the result of experiment shows that the normalized spatial-

average SARCell n 1-g with the method of using averaged dielectric constant in a human 

head give the value lower than the simple method for n = 1 to 12 at both frequencies 

(Jariyanorawiss, 2004). 
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Table 17 The comparison table of the spatial-average SARCell-1 1-g, SARCell-2 1-g and 

SARCell-3 1-g in the reference model. 

 

The spatial-average SAR 1-g (W/kg) 
Cell (n) 

900 MHz 1.8 GHz 

1 1.44307 1.28455 

2 1.12532 0.92336 

3 0.84079 1.15199 

 

Source: Jariyanorawiss (2004) 
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Figure 102 The comparison bar of the spatial-average SARCell-1 1-g, SARCell-2 1-g 

and SARCell-3 1-g in the reference model. 

 

Source: Jariyanorawiss (2004) 
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Table 18 The comparison table of the spatial-average SARCell-1 1-g, SARCell-1 10-g, 

and the average power absorbed by a human head in the reference model. 

 

The spatial-average The spatial-average The average power 

 SAR 1-g in cell 1  SAR 10-g in cell 1 absorbed by a human Frequency 

(W/kg) (W/kg) head (Watts) 

900 MHz 1.44307 1.30634 0.21486 

1.8 GHz 1.28455 1.17044 0.11773 

 

Source: Jariyanorawiss (2004) 
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Figure 103 The comparison bar of the spatial-average SARCell-1 1-g and  

SARCell-1 10-g between 900 MHz and 1.8 GHz in the reference model. 

 

 From Table 18, the simulation result shows that the mobile phone operated at 

900 MHz give the three values: SAR 1-g, SAR 10-g and Pavg, higher than the mobile 

phone operated at 1.8 GHz. However, SAR 1-g is lower than the standard from IEEE 

(IEEE, 2003): 1.6 W/kg, at both frequencies. In addition, SAR 1-g calculated from 

weight of 1 g and SAR 10-g calculated from weight of 10.088 g (Jariyanorawiss, 

2004). 
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Table 19 The comparison table of the average power absorbed by any material in a 

human head between 900 MHz and 1.8 GHz in the reference model. 

 

The average power absorbed by any material 

in a human head (Watts)   Material 

900 MHz 1.8 GHz 

Skin 0.10554 0.05307 

Bone 0.01128 0.00638 

Muscle 0.03020 0.02013 

Fat 0.02236 0.01317 

Eyes 0.0000375 0.0000059 

Brain 0.02541 0.01252 

Blood 0.02189 0.01267 

Total 0.21486 0.11773 

 

Source: Jariyanorawiss (2004) 
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Figure 104 The comparison bar of the average power absorbed by any material in a 

human head between 900 MHz and 1.8 GHz in the reference model. 
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 From Table 19, the simulation results show that the mobile phone operated at 

900 MHz (0.6 W) gives the averaged power absorbed by seven materials in a human 

head: Skin, Bone, Muscle, Fat, Eyes, Brain and Blood, higher than the mobile phone 

operated at 1.8 GHz (0.6 W). It should be interesting noted that the skin is the best 

absorber. It can absorb 106 mW and 53 mW for operating frequency 900 MHz and 1.8 

GHz, respectively. Apparently, the human brain can absorb power about 10 % at two 

frequencies, 900 MHz

0.025
100%

0.215
f    and 1.8 G Hz

0.013
100%

0.118
f   . In conclusion, the 

total average power absorbed by a human head is about 215 mW (900 MHz) and 118 

mW (1.8 GHz) (Jariyanorawiss, 2004). 
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Figure 105 The simulation of a mobile phone located at 1 cm from a human head  

and a mobile phone operated at 900 MHz (the reference model). 

The simulation start from 0 and end with 1000 t . 

 

Source: Jariyanorawiss (2004) 

Front-view 
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Figure 106 The simulation of a mobile phone located at 1 cm from a human head  

and a mobile phone operated at 1.8 GHz (the reference model). 

The simulation start from 0 and end with 1000 t . 

 

Source: Jariyanorawiss (2004) 

Front-view 
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 Both Figure 105 and Figure 106 show (ETotal), total electric field intensity, plot 

for a mobile phone located at 1 cm from a human head and a mobile phone operated at 

900 MHz and 1.8 GHz, respectively. In general, the total electric field intensity (ETotal) 

can be computed from the following equation (Homsup et al., 2009a) 

 

2 2 2( ) ( , , , ) ( , , , ) ( , , , )t x y zE t E i j k t E i j k t E i j k t                                (184) 

 ( )tE t  = ETotal, The instantaneous electromagnetic field intensity  /V m . 

 

 In addition, the update method of the dipole feeding gap using in this research 

is the hard source assigning a desired time function to specific electric of magnetic 

field components in the FDTD grid. On the other hand, the soft source allows a new 

value of the electric field at the source location to equal the update value plus the value 

of an impressed electric field described by the time function (Stutzman and Thiele, 

1998). 
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MATERIALS AND METHODS 
 

Materials 

 

1. Personal computer with an operating system. 

2. Computer programming, for example, MATLAB, Scilab, C, C++ or Java. 

 

Methods 

 

1. How to Verify the Electromagnetic Simulation Software in Time Domain 

 

 This research proposes the new methodology for applied subcell method to the 

generalized Maxwell’s equations in the feeding gap models of a dipole antenna 

(Appendix Figure A3). Also, its results can verify the FDTD programming. 

 

1.1 The one-cell gap model 
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Figure 107 The quaternary H - field around the one-cell gap model. 
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1.2 The electromagnetic field along z-axis 
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Figure 109 Field locations and geometry for thin wire. 

 

Source: Kunz and Luebbers (1993) 
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1.3 The improved one-cell gap model 
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Figure 110 Field locations of the improved one-cell gap model. 
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Figure 111 Field locations of the infinitesimal gap model. 
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  It is apparent that this equation is similar to the equation of improved one-

cell gap and Equation (175). The illustration is as follow 
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Figure 112 The improved one-cell gap model is the infinitesimal gap model. 
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Figure 113 The summary of the improved one-cell gap model or the infinitesimal gap model. 
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1.4 The finite gap model 

 

  In this section, the author proposes the new idea to generalize the finite 

gap model formulas. By nature of FDTD and the function of for-loop, all updating 

equation must be centered at the cell  , ,i j k . When the timestep is increasing, the 

center cell is moving to the concatenate cell, for example, the cell  1, ,i j k . 

Additionally, in the next timestep, that concatenate cell will become the center cell 

 , ,i j k , automatically. As a result, the author derives the four equations corresponding 

to the center cell  , ,i j k  so that these can make a general form (Homsup et al., 2010). 

 

  The author assumes the center cell (i,j,k) locating at cell (m-1,n,o) while 

the finite feeding gap is positioned at cell (m,n,o).  It should be noted that the H - field 

component no.1,  
1

2 , ,
n

yH i j k


, is located at the left-side of the finite feeding gap, 

Figure 114, and its direction is lied along y-axis. 
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Figure 114 The H - field component no.1. 

 

  With the above assumption, the author defines    
, , s
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V t
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z
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
 as the 

exciting field and the author approximates the spatial field as the following figure 
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Figure 115 Spatial field locations for H - field component no.1. 
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Figure 116 The summary of the finite gap model no.1. 
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Figure 117 Spatial field locations for H - field component no.2. 
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Figure 118 The summary of the finite gap model no.2. 
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Figure 119 Spatial field locations for H - field component no.3. 
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Figure 120 The summary of the finite gap model no.3. 
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Figure 121 Spatial field locations for H - field component no.4. 
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Figure 122 The summary of the finite gap model no.4. 
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  Typically, the simplest situation is a voltage source. In this case 
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  As describe above, from Equation (186) to Equation (189), these can be 

rewritten into two general forms, which suitable for programming, like the following 

equations 
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  From Equation (190) to Equation (191), the author assigns value for 

( , , )GF i j k in the computer programming as the following (Homsup et al., 2010) 
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  It is apparent that if Equation (193) and Equation (194) are located in 

Free-Space then these equations are similar to Equation (112) and Equation (111), 

respectively. The author assigns zE - field along the dipole equal to zero, except the 

feeding gap as the following figure 
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Figure 123 Spatial zE - field locations surround the dipole. 
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  From Equation (193) to Equation (194) and the previous figure, the author 

assigns value for ( , , )xGF i j k and ( , , )yGF i j k in the FDTD programming as 
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Figure 124 The two general forms of the dipole feeding gap. 
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  Equation (193) and Equation (194) are the generalization of feeding gap 

models for dipole antenna. In addition, the one-cell gap model, the infinitesimal gap 

model and the finite gap model are generalized. It is apparent that if 0 1
z

z





 then these 

equations are equal to the equations of infinitesimal gap model. Especially, it is easy to 

implement to the smart algorithm, Equation (161) to Equation (167). 

 

1.5 The Electromagnetic Cycle (EM-Cycle) 

 

  The smart algorithm, from Equation (161) to Equation (167), is the best 

algorithm to analyze the electromagnetic problems. However, it is hard to understand. 

To put it more simply, the author proposed the Electromagnetic Cycle (EM-Cycle) 

corresponding to the smart algorithm. The Electromagnetic Cycle is as the following 

figure 

 

0

0 0

0 0

0 0

z

x

y

a

a

a

E j R
 
     
  

 

0 0

0 0

0 0

y

x

z

y

x

z

R H

a

a

a

a

a

a

 
 
 
 

  
 
 
 
  

 

0 0

0 0

0 0

z

x

y

a

a

a

H j G
 
    
  

 

0 0

0 0

0 0

y

x

z

y

x

z

a

a

a

a

a

D

a

G

 
 
 
 

  
 
 
 
  

 

     
0

0

( )r

r
r r

D E

j

  

 
   





 

 



 

 

Figure 125 The Electromagnetic Cycle (EM-Cycle). 
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1.6 The simulated dipole feeding gap model 

 

  This research uses the Gaussian pulse to excite the one-cell gap, the 

infinitesimal gap and the finite gap. Its results, input impedance and return loss, will be 

compared to MoM. Geometry for this model is drawn as the following figure 

 

 dipole dipole,    

 0, 1  

 

 

Figure 126 Geometry for the simulated dipole feeding gap. 

 

2. The Reduced Domain 

 

 Sometime, we need to truncate the model. Then, this research proposes the 

reduced domain which is the computational domain truncated by 40 %. The results 

will be compared to the reference model, Figure 91. 

 

    tissue 1 tissue 1,      

 0, 1  

 dipole dipole,    

 

 

Figure 127 Geometry for the reduced domain. 
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3. The FDTD Simulation of a Mobile Phone Operating near a Metal Wall 

 

 This research proposes the model of the FDTD simulation of a mobile phone 

operating near a Metal Wall (Appendix Figure A4). Also, geometry for this model is 

drawn as the following figure 

 

d
d

    tissue 1 tissue 1,      

 metal metal,    

l

 0, 1  

 dipole metal dipole metal,    

 

 

Figure 128 Geometry for the FDTD simulation of a mobile phone operating near  

a Metal Wall. 

 

Source: Homsup and Jariyanorawiss (2006); Homsup et al. (2008b, 2009a);  

              Jariyanorawiss and Homsup (2006); Jariyanorawiss et al. (2009) 

 

 The simulated physical domain is containing a dipole antenna, an artificial 

human head and a Metal Wall. A Metal Wall which can reflect waves has a thickness 

of about 1 cm. Also, a Metal Wall is located at a various distances, l , (0-20 cm) 

away from a dipole. In addition, the dipole is fixed at 1 cm away from the artificial 

human head. In brief, the results of this model (SAR 1-g, SAR 10-g and Pavg) will be 

compared to the results from the reference model, Figure 91. 
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RESULTS AND DISCUSSION 
 

Results 

 

 In this research, the simulations were computed in the Research Center of 

Applied Electromagnetic (RECAPE) laboratory and were divided into three parts 

which consisted of the verification of FDTD programming, the simulation of a reduced 

computational domain and the simulation of a mobile phone operating near a Metal 

Wall. In conclusion, the readers please follow the diagram in Appendix Figure A5. 

 

1. The Verification of the FDTD Programming 

 

1.1 The excitation for comparison of the electromagnetic field (ETotal) 

simulated by the FDTD programming 

 

  The feeding signal is the Gaussian excitation as well as Equation (170). 

 

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

tstart = 0, t0 = 20,  = 5, tstep = 1000, Grid Size = L/21 

V
 (

 t
 )

, 
V

ol
t

Timestep
0 0.5 1 1.5 2 2.5 3

x 10
9

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

| V
 (

 f
 )

 |

Frequency (Hz)

0 0.5 1 1.5 2 2.5 3
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

| V
 (

 f
 )

 |,
 d

B

L / 
0 0.5 1 1.5 2 2.5 3

x 10
9

-200

-150

-100

-50

0

50

100

150

200

P
ha

se
 (

D
eg

re
e)

Frequency (Hz)

Illustrated by Mr.Terapass Jariyanorawiss, Terapass@hotmail.com

Illustrated by Mr.Terapass Jariyanorawiss, Terapass@hotmail.com

Illustrated by Mr.Terapass Jariyanorawiss, Terapass@hotmail.com

Illustrated by Mr.Terapass Jariyanorawiss, Terapass@hotmail.com

 

 

Figure 129 Sample of the feeding signal for the one-cell gap model, the infinitesimal 

gap model and the finite gap model, 21
l



. 
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1.2 Comparison of the electromagnetic field (ETotal, dB) simulated by the 

FDTD programming between xy-plane and xz-plane 

 

ETotal, XY-Plane (dB), r0 = L/256 , Grid Size = L/21 , One-Cell Gap
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Figure 130 Comparison of the electromagnetic field (ETotal, dB) simulated by  

the one-cell gap model, the infinitesimal gap model and  

the finite gap model 0 0.85
z

z





, respectively, at timestep = 100. 
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ETotal, XY-Plane (dB), r0 = L/256 , Grid Size = L/21 , One-Cell Gap
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Gaussian, Variance = 25, t0 = 50, Timestep = 200

ETotal, XY-Plane (dB), r0 = L/256 , Grid Size = L/21 , Infinitesimal Gap
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Figure 131 Comparison of the electromagnetic field (ETotal, dB) simulated by  

the one-cell gap model, the infinitesimal gap model and  

the finite gap model 0 0.85
z

z





, respectively, at timestep = 200. 

 

 

 



 183 

1.3 The excitation for comparison of the input impedance simulated by the 

FDTD programming 

 

  The feeding signal is the Gaussian excitation as well as Equation (170). 
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Figure 132 Sample of the feeding signal for the one-cell gap model, the infinitesimal 

gap model and the finite gap model, 41
l



, Timestep = 4096. 

 

  The feeding signal is the Gaussian excitation as well as Equation (170). 

There are slightly different, 

 

  21
l



, Timestep = 2048, Domain = 70x70x70 

  41
l



, Timestep = 4096, Domain = 100x100x100 

  61
l



, Timestep = 4096, Domain = 150x150x150 

 

  Sample of the other parameters are as the following table 
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Table 20 Sample of parameters for simulate feeding-gap of the dipole antenna, 

41
l



. 

 

Parameters Value Unit 

Velocity (c) 3.00E+08 m/s 

Frequency (f) 1.00E+09 Hertz 

Wavelength (λ) 0.30000 m 

Dipole Length (l) / Wavelength (λ) 1.00 - 

Dipole Length (l) 0.30 m 

Dipole Segment (n) 41 - 

Dipole Length (l) / Dipole Segment (n) 0.00732 m 

Vmax 1 Volts 

∆t ≤ 1.40817E-11 s 

Timestep 4096 - 

t0 10 - 

σ-Gaussian 0.5 - 

Domain 100x100x100 - 

Grid Size (∆) 0.00732 m 

Feeding-Gap Address 50,50,50 - 

PML, Layer 10 - 

PML, Degree (m) 3 - 

PML, σ-max 30 - 
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1.4 The input impedance simulated by the commercial software, XFDTD, and 

the FDTD programming 

 

 

 

Figure 133 The input impedance simulated by the commercial software, XFDTD. 
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 MoM, N = 128 Segments, (Input Resistance)
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Figure 134 The input impedance simulated by MoM and the FDTD programming. 



 186 

1.5 The input impedance and the return loss simulated by MoM and  

the FDTD programming 
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Figure 135 Comparison the input impedance simulated by MoM, N = 128, and  

the one-cell gap model, 0/ 256l r  . 
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Figure 136 Comparison the return loss simulated by MoM, N = 128, and  

the one-cell gap model, 0/ 256l r  , ZS = 50 Ω. 
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Figure 137 Comparison the return loss simulated by MoM, N = 128, and  

the one-cell gap model, 0/ 256l r  , ZS = 75 Ω. 
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The comparison graph of antenna return loss between MoM and FDTD, r0 = L/256 , ZS = 73 + 42.5j 
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Figure 138 Comparison the return loss simulated by MoM, N = 128, and  

the one-cell gap model, 0/ 256l r  , ZS = 73 + j42.5 Ω. 
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Figure 139 Comparison the input impedance simulated by MoM, N = 128, and  

the infinitesimal gap model, 0/ 256l r  . 
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Figure 140 Comparison the return loss simulated by MoM, N = 128, and  

the infinitesimal gap model, 0/ 256l r  , ZS = 50 Ω. 
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Figure 141 Comparison the return loss simulated by MoM, N = 128, and  

the infinitesimal gap model, 0/ 256l r  , ZS = 75 Ω. 
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Figure 142 Comparison the return loss simulated by MoM, N = 128, and  

the infinitesimal gap model, 0/ 256l r  , ZS = 73 + j42.5 Ω. 

 

 

 



 190 

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
-1000

-500

0

500

1000

1500

A
nt

en
na

 in
pu

t i
m

pe
da

nc
e 

( 
   

 )

Antenna length (  )

The comparison of antenna input impedance between MoM and FDTD, r0 = L/256 , Domain = 70x70x70, FDTD grid size = L/21 

 

 
  MoM, N = 128 segments, (Input resistance)

  MoM, N = 128 segments, (Input reactance)

  FDTD, Infinitesimal gap, (Input resistance)

  FDTD, Infinitesimal gap, (Input reactance)

  FDTD, Z
0
/Z = 0.95, (Input resistance)

  FDTD, Z
0
/Z = 0.95, (Input reactance)

  FDTD, Z
0
/Z = 0.90, (Input resistance)

  FDTD, Z
0
/Z = 0.90, (Input reactance)

  FDTD, Z
0
/Z = 0.85, (Input resistance)

  FDTD, Z
0
/Z = 0.85, (Input reactance)

Illustrated by Mr.Terapass Jariyanorawiss, Terapass@hotmail.com

 

 

Figure 143 Comparison the input impedance simulated by MoM, N = 128,  

the infinitesimal gap and the finite gap model, 0/ 256l r  . 
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The comparison graph of antenna return loss between MoM and FDTD, r0 = L/256 , Domain = 70x70x70, FDTD grid size = L/21 , ZS = 50 

 

 

  MoM, N =  128 segments
  FDTD, Infinitesimal gap

  FDTD, Z0/Z = 0.95

  FDTD, Z0/Z = 0.90

  FDTD, Z0/Z = 0.85

Illustrated by Mr.Terapass Jariyanorawiss, Terapass@hotmail.com

 

 

Figure 144 Comparison the return loss simulated by MoM, N = 128,  

the infinitesimal gap and the finite gap model, 0/ 256l r  , ZS = 50 Ω. 
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  MoM, N =  128 segments
  FDTD, Infinitesimal gap

  FDTD, Z0/Z = 0.95

  FDTD, Z0/Z = 0.90

  FDTD, Z0/Z = 0.85

Illustrated by Mr.Terapass Jariyanorawiss, Terapass@hotmail.com

 

 

Figure 145 Comparison the return loss simulated by MoM, N = 128,  

the infinitesimal gap and the finite gap model, 0/ 256l r  , ZS = 75 Ω. 
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  MoM, N =  128 segments
  FDTD, Infinitesimal gap

  FDTD, Z0/Z = 0.95

  FDTD, Z0/Z = 0.90

  FDTD, Z0/Z = 0.85

Illustrated by Mr.Terapass Jariyanorawiss, Terapass@hotmail.com

 

 

Figure 146 Comparison the return loss simulated by MoM, N = 128, the infinitesimal 

gap and the finite gap model, 0/ 256l r  , ZS = 73 + j42.5 Ω. 
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2. The Reduced Domain 

 

 

 

Figure 147 The simulation of a mobile phone located at 1 cm from a human head 

with a truncated domain and a mobile phone operated at 900 MHz.  

The simulation start from 0 and end with 1000 t . 

 

Source: Jariyanorawiss and Homsup (2005b) 

 

Table 21 Comparison of SAR between reference model and compact model  

at 900 MHz. 

 

SAR 1-g 

( W/kg ) 
SAR 10-g Max SAR 

Freq = 900 MHz 

Cell 1 Cell 2 Cell 3 (W/kg) (W/kg) 

Reference domain 1.44307 1.12532 0.84079 1.30634 3.9732 

40 % Reduced domain 1.44861 1.13991 0.85311 1.31526 3.9934 

% |Error| 0.3839 1.29652 1.46529 0.68282 0.50841 

 

Source: Homsup et al. (2009a) 
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Figure 148 The simulation of a mobile phone located at 1 cm from a human head 

with a truncated domain and a mobile phone operated at 1.8 GHz.  

The simulation start from 0 and end with 1000 t . 

 

Source: Jariyanorawiss and Homsup (2005b) 

 

Table 22 Comparison of SAR between reference model and compact model  

at 1.8 GHz. 

 

SAR 1 g 

( W/kg ) 
SAR 10 g Max SAR 

Freq = 1.8 GHz 

Cell 1 Cell 2 Cell 3 (W/kg) (W/kg) 

Reference domain 1.28455 0.92336 1.15199 1.17044 6.9036 

40 % Reduced domain 1.28438 0.92363 1.15197 1.17042 6.9015 

% |Error| 0.01323 0.02924 0.00174 0.00171 0.03042 

 

Source: Homsup et al. (2009a) 
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3. The Simulation of a Mobile Phone Operating near a Metal Wall 
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Figure 149 Top view of tE  in the simulated physical domain  

(Operating frequency = 900 MHz and l = 1 cm). 
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Figure 150 Top view of tE  in the simulated physical domain  

(Operating frequency = 900 MHz and l = 5 cm). 
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Figure 151 Top view of tE  in the simulated physical domain  

(Operating frequency = 900 MHz and l = 10 cm). 
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Figure 152 Top view of tE  in the simulated physical domain  

(Operating frequency = 900 MHz and l = 15 cm). 
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Figure 153 Top view of tE  in the simulated physical domain  

(Operating frequency = 900 MHz and l = 20 cm). 
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Table 23 The comparison table of SAR 1-g, SAR 10-g and the average power 

absorbed (Pavg) by a human head respecting to l , frequency = 900 MHz. 

 

Operating Frequency = 900 MHz 

∆ l SAR 1-g SAR 10-g Pavg 

(cm) (W/kg) (W/kg) (Watts) 

0 0.61379 0.40430 0.02219 

1 1.00024 0.87751 0.12693 

2 1.27426 1.12381 0.15684 

3 1.35583 1.20720 0.17440 

4 1.39680 1.25170 0.18601 

5 1.41969 1.27754 0.19440 

6 1.43345 1.29431 0.20102 

7 1.44151 1.30465 0.20668 

8 1.44639 1.31209 0.21190 

9 1.44840 1.31631 0.21699 

10 1.44866 1.31897 0.22221 

11 1.44791 1.32053 0.22772 

12 1.44671 1.32141 0.23340 

13 1.44631 1.32221 0.23872 

14 1.44784 1.32325 0.24227 

15 1.45177 1.32394 0.24199 

16 1.45654 1.32305 - 

17 1.45884 1.31903 - 

18 1.45761 1.31287 - 

19 1.45393 1.30691 - 

20 1.44850 1.30131 - 

 

Note  1. Reduced domain at l =16-20 cm. 

          2. SAR 1-g, IEEE Standard, = 1.6 W/kg 

          3. SAR 1-g, Reference model, = 1.44307 W/kg 

          4. SAR 10-g, Reference model, = 1.30634 W/kg 

          5. Pavg, Reference model, = 0.21486 Watts 
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Figure 154 Top view of tE  in the simulated physical domain  

(Operating frequency = 1.8 GHz and l = 1 cm). 
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Figure 155 Top view of tE  in the simulated physical domain  

(Operating frequency = 1.8 GHz and l = 5 cm). 
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Figure 156 Top view of tE  in the simulated physical domain  

(Operating frequency = 1.8 GHz and l = 10 cm). 
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Figure 157 Top view of tE  in the simulated physical domain  

(Operating frequency = 1.8 GHz and l = 15 cm). 
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Figure 158 Top view of tE  in the simulated physical domain  

(Operating frequency = 1.8 GHz and l = 20 cm). 
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Table 24 The comparison table of SAR 1-g, SAR 10-g and the average power 

absorbed (Pavg) by a human head respecting to l , frequency = 1.8 GHz. 

 

Operating Frequency = 1.8 GHz 

∆ l SAR 1-g SAR 10-g Pavg 

(cm) (W/kg) (W/kg) (Watts) 

0 0.52972 0.36830 0.02891 

1 0.95286 0.84421 0.07804 

2 1.19120 1.06668 0.09767 

3 1.25438 1.14256 0.10954 

4 1.27078 1.17600 0.12071 

5 1.26223 1.18656 0.13519 

6 1.24755 1.18397 0.15436 

7 1.25964 1.17822 0.16393 

8 1.28890 1.16948 0.14840 

9 1.30374 1.16299 0.12696 

10 1.30449 1.16327 0.11538 

11 1.29937 1.16838 0.11287 

12 1.29120 1.17403 0.11594 

13 1.28025 1.17790 0.12300 

14 1.26859 1.17782 0.13282 

15 1.26832 1.17594 0.14006 

16 1.28560 1.17708 - 

17 1.30023 1.17841 - 

18 1.30320 1.17733 - 

19 1.29841 1.17459 - 

20 1.28912 1.17211 - 

 

Note  1. Reduced domain at l =16-20 cm. 

          2. SAR 1-g, IEEE Standard, = 1.6 W/kg 

          3. SAR 1-g, Reference model, = 1.28455 W/kg 

          4. SAR 10-g, Reference model, = 1.17044 W/kg 

          5. Pavg, Reference model, = 0.11773 Watts 
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Figure 159 Spatial- average SAR 1-g respecting to the distance between  

the Metal Wall and the antenna, l . 
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Figure 160 Spatial- average SAR 10-g respecting to the distance between  

the Metal Wall and the antenna, l . 
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Table 25 The comparison table of the average power absorbed (Pavg) by materials in 

the human head respecting to l , frequency = 900 MHz. 

 

Average Power Absorbed (Watts) at 900 MHz ( from timestep 900 - 1000 ) 

Materials 
Distance 

Human 

( cm ) Head 
Skin Bone Muscle Fat Eye Brain Blood 

0 0.02219 0.01135 0.00118 0.00328 0.00203 1.8E-05 0.00242 0.00221 

1 0.12693 0.06850 0.00720 0.01769 0.01165 3.5E-05 0.01268 0.01059 

2 0.15684 0.08338 0.00864 0.02127 0.01491 3.8E-05 0.01654 0.01383 

3 0.17440 0.09069 0.00939 0.02357 0.01721 3.6E-05 0.01938 0.01613 

4 0.18601 0.09531 0.00988 0.02511 0.01877 3.4E-05 0.02132 0.01775 

5 0.19440 0.09854 0.01023 0.02626 0.01990 3.2E-05 0.02273 0.01896 

6 0.20102 0.10102 0.01052 0.02720 0.02078 3.2E-05 0.02384 0.01995 

7 0.20668 0.10309 0.01077 0.02804 0.02152 3.3E-05 0.02477 0.02081 

8 0.21190 0.10496 0.01101 0.02886 0.02218 3.6E-05 0.02560 0.02162 

9 0.21699 0.10678 0.01125 0.02970 0.02281 4.1E-05 0.02637 0.02240 

10 0.22221 0.10866 0.01151 0.03063 0.02342 5.0E-05 0.02710 0.02318 

11 0.22772 0.11069 0.01181 0.03166 0.02404 6.2E-05 0.02780 0.02395 

12 0.23340 0.11286 0.01213 0.03281 0.02463 8.1E-05 0.02841 0.02467 

13 0.23872 0.11501 0.01246 0.03401 0.02514 1.0E-04 0.02883 0.02523 

14 0.24227 0.11661 0.01274 0.03503 0.02538 1.3E-04 0.02887 0.02540 

15 0.24199 0.11680 0.01283 0.03546 0.02516 1.5E-04 0.02833 0.02497 

 

 



 204 

Table 26 The comparison table of the average power absorbed (Pavg) by materials in 

the human head respecting to l , frequency = 1.8 GHz. 

 

Average Power Absorbed (Watts) at 1.8 GHz ( from timestep 900 - 1000 ) 

Materials 
Distance 

Human 

( cm ) Head 
Skin Bone Muscle Fat Eye Brain Blood 

0 0.02891 0.01346 0.00176 0.00499 0.00266 3.6E-06 0.00265 0.00340 

1 0.07804 0.03617 0.00430 0.01296 0.00863 5.1E-06 0.00828 0.00794 

2 0.09767 0.04487 0.00527 0.01621 0.01087 4.3E-06 0.01055 0.01016 

3 0.10954 0.04964 0.00582 0.01838 0.01224 3.9E-06 0.01206 0.01167 

4 0.12071 0.05392 0.00639 0.02067 0.01347 5.8E-06 0.01338 0.01316 

5 0.13519 0.05942 0.00723 0.02393 0.01493 2.1E-05 0.01483 0.01507 

6 0.15436 0.06699 0.00853 0.02866 0.01669 7.7E-05 0.01628 0.01731 

7 0.16393 0.07126 0.00944 0.03171 0.01730 1.6E-04 0.01622 0.01797 

8 0.14840 0.06558 0.00870 0.02862 0.01559 1.5E-04 0.01414 0.01574 

9 0.12696 0.05718 0.00736 0.02350 0.01353 1.0E-04 0.01224 0.01317 

10 0.11538 0.05244 0.00652 0.02045 0.01253 6.0E-05 0.01158 0.01196 

11 0.11287 0.05127 0.00623 0.01952 0.01241 3.6E-05 0.01177 0.01184 

12 0.11594 0.05232 0.00629 0.01996 0.01282 2.2E-05 0.01240 0.01236 

13 0.12300 0.05497 0.00664 0.02143 0.01359 1.5E-05 0.01326 0.01332 

14 0.13282 0.05877 0.00723 0.02371 0.01457 2.0E-05 0.01415 0.01455 

15 0.14006 0.06171 0.00779 0.02564 0.01520 4.4E-05 0.01446 0.01536 
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Figure 161 Total average power absorbed in human head  

respecting to the distance between the Metal Wall and the antenna, l . 
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Figure 162 The average power absorbed (Pavg) in Skin  

respecting to the distance between the Metal Wall and the antenna, l . 
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Figure 163 The average power absorbed (Pavg) in Bone  

respecting to the distance between the Metal Wall and the antenna, l . 
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Figure 164 The average power absorbed (Pavg) in Muscle  

respecting to the distance between the Metal Wall and the antenna, l . 
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Figure 165 The average power absorbed (Pavg) in Fat  

respecting to the distance between the Metal Wall and the antenna, l . 
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Figure 166 The average power absorbed (Pavg) in Eye  

respecting to the distance between the Metal Wall and the antenna, l . 
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Figure 167 The average power absorbed (Pavg) in Brain  

respecting to the distance between the Metal Wall and the antenna, l . 
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Figure 168 The average power absorbed (Pavg) in Blood 

respecting to the distance between the Metal Wall and the antenna, l . 
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Discussion 

 

 In this research, the electromagnetic simulation system was implemented using 

the FDTD scheme. Simulation results were comparable with result from MoM. With 

high confident, this FDTD programming could be used to simulate other interaction 

problems between electromagnetic fields and various materials. 

 

 For the simulation of a mobile phone operating near a Metal Wall, we need to 

truncate the human head at l  = 16 - 20 cm because of the limitation of memory, 32-

bits CPU. However, we can compute the average power absorbed by the human head 

in range of l  = 0 - 15 cm. 

 

 With a distance ( l ) 0 - 5 cm, the values of both SAR decrease dramatically at 

both frequencies as distance gets smaller. Results from Table 23 and Table 24 show 

the reduction of the peak spatial-average SAR 1-g and SAR 10-g because of the rule of 

the reflection, the wave will cancel itself automatically. Also, it shows that the 

variation of the average SAR at a distance ( l ) longer than 5 cm is comparable to the 

reference model. Interestingly, the simulations which were operated at 1.8 GHz give 

both SAR values lower than those operated at 900 MHz. 

 

 Correspondingly, the instantaneous power absorbed (Pavg) is related to the 

conductivity (  i  ) of different tissues in human head and determined by integrating 

the absorbed power density over the volume (V ) of the human head model. Also, the 

instantaneous power absorbed can be related to the RMS of the Electric Field Strength 

at a point by Equation (182). 

 

 As the simulation results, the average power absorbed in the human head will 

suggest that using a mobile phone which was operated at 1.8 GHz give the average 

power absorbed lower than those operated at 900 MHz except for the average power 

absorbed in muscle (6 < l  < 8 cm) and eye (6 < l  < 10 cm). 
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CONCLUSION AND RECOMENDATIONS 
 

Conclusion 

 

 The FDTD simulations had been applied to the situation where a mobile phone 

operated close to a Metal Wall at 900 MHz and 1.8 GHz. Results show that maximum 

value of ETotal was observed at the head model surface. In side the head model, the 

electromagnetic field decays monotonically. Also, SAR 1-g and SAR 10-g ( l  < 20 

cm) do not exceed the ANSI/IEEE standard. Moreover, the average power absorbed in 

all tissue models with a mobile phone operated at 1.8 GHz has an average power lower 

than those operated at 900 MHz except for the average power absorbed in muscle (6 < 

l  < 8 cm) and eye (6 < l  < 10 cm). In conclusion, using a mobile phone operating 

near a Metal Wall in some cases can reduce the SAR value. 

 

Recommendations 

 

 1.  Simulation results show that SAR 1-g and SAR 10-g values could be 

changed when a mobile phone operating near a metal wall. These results should be 

studied further to find ways to reduce the SAR occurred in a human head. 

 

 2.  The FDTD programming with the finite gap is agree well with the practical 

dipole as the following figure 
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Figure 169 The practical dipole. 
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  The dipole is an omnidirectional antenna which radiates power uniformly 

in one plane with a directive pattern shape (Donut shaped) in a perpendicular plane, 

Figure 130 and Figure 131. In brief, the omnidirectional antenna is generally 

implemented with unmanned systems: Bomb Disposal Robot and Quadrotor (Homsup 

and Jariyanorawiss, 2007; Homsup et al., 2008a; Homsup et al., 2009b). 

 

 3.  The FDTD programming was written as the EM-Cycle. Apparently, this 

smart algorithm is flexible to handle efficiently with any type of materials. In 

conclusion, The EM-Cycle can be applied to any materials at state 5 in the following 

figure 
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Figure 170 How to insert interested material to the EM-Cycle. 
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Appendix A 

The diagram of the electromagnetic simulation software 
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Appendix Figure A1 The diagram of how to verify the electromagnetic simulation software. 
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Appendix Figure A2 The diagram of the reference model. 
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Appendix Figure A3 The diagram of the dipole feeding gap model. 
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Appendix Figure A4 The diagram of the proposed model. 
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Appendix Figure A5 The diagram of the electromagnetic simulation software. 
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