TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF TABLES	iv
LIST OF FIGURES	vii
INTRODUCTION	1
Rationale	1
Objectives	2
Outcomes	3
LITERATURE REVIEWS	4
Land use evolution and water resource situation in the Tropics	4
Land use evolution	4
Water resource situation	7
Watershed management concept	10
Watershed Definitions	10
Watershed management approach	11
Impacts of land use changes upon streamflow and it's timing	12
Defining streamflow	12
Rainfall-runoff relationship	13
Flow timing indicators	15
Land use change impact upon streamflow and it's timing	17
Impact of land use changes upon soil erosion and sedimentation	21
Soil erosion process	21
Factors affecting soil erosion and sedimentation	23
Sediment yield predictions	27
Relationship between land use changes, streamflow and suspended	
sediment	30
PROFILE OF THE STUDY AREA	32
Location and Extent	32
Climate and Meteorological Characteristics	36
Geology	38

TABLE OF CONTENTS (Continued)

	Page
Soil	39
Topography	41
River system	41
Forest resources	44
Agricultural area	46
Water resources	46
Population	47
MATERIALS AND METHODS	48
Materials	48
Data collection	48
Methods	48
Data processing and analysis	48
Land use data	48
Land use change impact model formulation	53
Conceptual model	53
Mathematical model of land use change	54
Rainfall and runoff data	59
Determining streamflow characteristics in	
concurrence of land use changes	59
Streamflow timing investigation	62
Sediment data	63
Determining factors contributing to stream-	
flow and sedimentation	65
RESULTS AND DISCUSSIONS	66
Land use evolution in the study area	66
The land use change between 1980 and 2000	66
The land use change between 2000 and 2004	69
Trend of landuse change in Pasak Basin from 1980 to 2004	73
Streamflow characteristics in concurrence of land use change	74

TABLE OF CONTENTS (Continued)

Water yield	74
Runoff-rainfall relationship	75
Monthly distribution of runoff	79
Seasonal variation of flow	80
Relationship between runoff and land use factors	82
Streamflow timing investigation	88
High flow intervals	88
Low flow intervals	90
Flow dates	91
Flow timing pattern	91
Flow intervals trend	91
Flow dates trend	92
Sediment yield in relation to land use changes	100
Sediment yield	100
Relationship between land use change, discharge and	
sedimentation	101
Selection of equations for runoff discharge and sediment	
transportation prediction in Pasak Basin	104
CONCLUSION AND RECOMMENDATIONS	105
Conclusion	105
Recommendations	110
LITERATURE CITED	112
APPENDIX	123
Appendix A Location of rainfall and discharge stations	124
Appendix B Basin average of annual rainfall	127
Appendix C Monthly runoff	131
Appendix D Historical runoff and sediment in relation to rainfall	
and land use change	135
Appendix E Regression analysis	139
Appendix F Streamflow timing	152

LIST OF TABLES

Table		Page
1	Estimated changes in land use in the Asia-pacific region, 1994–2010	6
2	Land cover changes in Northern Thailand	7
3	Water resources in some tropical countries	9
4	List of provinces and districts belonging to Pasak Basin	32
5	Size and location of study area	36
6	Monthly rainfall observed at Lom Sak climatic station during	
	1980–2003	37
7	Charateristics and areal distribution of soil group in Pasak Basin	39
8	Population of whole Pasak watershed during 1993 - 2005	47
9	Types and sources of data employed in this study	48
10	Area of land use type of Pasak watershed in 1980, 2000 and 2004	49
11	Matrix of co-efficient of land use change between time t0 to t1	57
12	Observed (mean monthly) precipitations of various stations	
	within and around Pasak river basin	61
13	Suspended sediment transportation (in tons) of upper Pasak at	
	Mueang, Muang Phetchabun, Phetchabun (S4B)	64
14	Suspended sediment transportation (in tons) of middle Pasak at	
	Ban Tha Yiam, Chaibadan, Lopburi (S13)	64
15	Suspended sediment transportation (in tons) of Lower Pasak at	
	Kaeng Khoi, Saraburi (S9)	65
16	Coincident matrix of areal land use change (in ha) between 1980	
	and 2000, Pasak watershed	67
17	Probability coincident matrix of land use change between 1980	
	and 2000, Pasak watershed	67
18	The change of area of land use types between 1980 and 2000,	
	Pasak watershed	69
19	Coincident matrix of areal land use change (in ha) between 2000	
	and 2004, Pasak watershed	70

LIST OF TABLES (Continued)

Table		Page
20	Probability coincident matrix of land use change between 2000	
	and 2004, Pasak watershed	71
21	The change of area of land use types between 2000 and 2004,	
	Pasak watershed	72
22	Transformed area of different land use types in Pasak watershed	
	(1980-2004) determined by Markov Chain Model	73
23	The average annual rainfall and runoff in Pasak Basin (S9)	76
24	The average annual rainfall and runoff in middle part of Pasak at	
	S13 gaging station	77
25	The average annual rainfall and runoff in upper part of Pasak at	
	S4B gaging station	77
26	Mean monthly streamflow of Pasak Basin	79
27	Correlation between land use change factors and runoff discharge	
	in upper Pasak (S4B) during 1980 - 2003	83
28	Correlation between land use change factors and runoff discharge	
	in middle Pasak (S13) during 1980 - 2003	83
29	Correlation between land use change factors and runoff discharge	
	in lower Pasak (S9) during 1980 - 2003	84
30	Linear regression equations for streamflow prediction in Pasak	
	watershed by step-wise regression method	86
31	Non-linear regression equations for streamflow prediction in	
	Pasak watershed by step-wise regression method	87
32	Streamflow timing parameters indicated by flow dates and flow	
	intervals in water year basis (1969-2001) for Pasak watershed at	
	Mueang, Muang Phechabun (S4B)	88
33	Streamflow timing parameters indicated by flow dates and flow	
	intervals in water year basis (1979-2002) for Pasak watershed at	
	Ban tha Yiam, Chaibadan, lopburi (S13)	89

LIST OF TABLES (Continued)

Table		Page
34	Streamflow timing parameters indicated by flow dates and flow	
	intervals in water year basis (1974-2002) for Pasak watershed at	
	Ban Pa, Kaeng khoi, Sarburi (S4B)	90
35	Annual suspended sediment and sediment yield from available	
	data of 3 sub-watersheds of Pasak basin	100
36	Linear and non-linear regression equations for sedimenatation in	
	Pasak watershed forecasting by step-wise regression method	103
37	Summerized suitable equations for runoff and sediment	
	transportation forecasting by step-wise regression method	104
38	Suggested models for predicting streamflow and sedimentations	
	in Pasak Basin	109

LIST OF FIGURES

Figure		Page
1	Trends in land use in the Asia-pacific region, 1961 – 1964	5
2	Population growth during 1979 – 1997 (A) and change in forest	
	area (B) and change in farm land area (C) during 1981 – 1995 in	
	Mae Klong river basin	8
3	Hypothetical curve of cumulative flow volume for deriving	
	streamflow timing	17
4	Schematic representation of the process of particle detachment	
	and transport in relation to slope inter-rill areas	22
5	Location map of Pasak watershed	33
6	Study area of Pasak watershed showing three drainage areas	35
7	Geology map of Pasak watershed	38
8	Soil map of Pasak watershed	42
9	River system of Pasaak watershed	43
10	Land use map of Pasak watershed, 2000	45
11	Province wise population growth pattern of Pasak watershed	47
12	Land use map of Pasak watershed, 1980	50
13	Land use map of Pasak watershed, 2000	51
14	Land use map of Pasak watershed, 2004	52
15	Conceptual model of causes and effects of land use changes on	53
	streamflow and suspended sediments in Pasak watershed	
16	General form of model for land use change prediction	54
17	Location of Rainfall station within and around Pasak Basin	60
18	Land use change pattern between 1980 and 2000 in Pasak	
	watershed	68
19	Comparison of land use change between1980 and 2000 in	
	Pasak watershed	69
20	Land use change pattern between 2000 and 2004 in Pasak Basin	71
21	Comparison of land use change between 2000 and 2004 in	
	Pasak watershed	72

LIST OF FIGURES (Continued)

Figure		Page
22	Land use evolution of Pasak watershed (1980 - 2004) determined	
	by Markov chain model	74
23	Trend of runoff potential (A. in lower part of Pasak before dam	
	construction at S9, B. in middle part of Pasak at S13 and S9 in	
	upper part of Pasak basin at S4B gaging station)	78
24	Hydrograph of Pasak Basin (A. lower, middle and upper Pasak B.	
	Before and after dam construction)	80
25	Seasonal variation of streamflow (A. in the lower part of Pasak	
	before dam construction B. middle part and C. upper part of Pasak	
	basin)	81
26	Linear relationship between runoff, annual rainfall, rainfall during	
	wet period (Rwet), rainfall during dry period (Rdry) and forest	85
27	Streamflow timing patterns indicated by flow intervals in water	
	year basis (1969-2001) for upper part of Pasak watershed at	
	Mueang, Muang Phechabun (S4B) using moving average of	
	annual, 5 and 10 years time series data	94
28	Streamflow timing patterns indicated by flow intervals in water	
	year basis (1979-2002) for middle part of Pasak watershed at Ban	
	Tha Yiam, Lom Sonthi, Lopburi using moving average of annual,	
	5 and 10 years time series data	95
29	Streamflow timing patterns indicated by flow intervals in water	
	year basis (1974-2002) for lower part of Pasak watershed at Ban	
	Pa, Kaeng khoi, Saraburi using moving average of annual, 5, 10	
	and 15 years time series data	96
30	Streamflow timing patterns indicated by flow dates in water year	
	basis (1969-2001) for upper part of Pasak watershed at Mueang,	
	Muang Phechabun (S4B) using moving average of annual, 5, 10	
	and 15 years time series data	97

LIST OF FIGURES (Continued)

Figure		Page
31	Streamflow timing patterns indicated by flow dates in water year	
	basis (1976-2002) for middle part of Pasak watershed at Ban Tha	
	Yiam, Chaibadan, Lopburi(S13) using moving average of annual,	
	5 and 10 years time series data	98
32	Streamflow timing patterns indicated by flow dates in water year	
	basis (1974-2002) for lower part of Pasak watershed at Ban Pa,	
	Kaeng khoi, Saraburi(S9) using moving average of annual, 5, 10	
	and 15 years time series data	99
33	Linear relationship between suspended sediments (SS), discharge	
	(Qtotal, Qwet), rainfall and land use factors	102

ix