บทที่ 3 การวิเคราะห์คุณสมบัติของฟิล์มบางอินเดียมออกไซด์

3.1 โครงสร้างของอินเดียมออกไซด์

อินเดียมออกไซด์ (Indium Oxide) สูตรโมเลกุลคือ In₂O₃ เป็นสารกึ่งตัวนำในกลุ่ม III-VI ที่ สามารถเตรียมให้มีชนิดการนำไฟฟ้าเป็นแบบชนิดเอ็น (N-type) อยู่ในกลุ่มที่มีช่องว่างของ แถบพลังงาน (Eg) ประมาณ 3.7 อิเล็กตรอนโวลต์ (eV), มีโครงสร้างผลึกแบบโพลีคริสตอล, ลักษณะแลตทิชเป็นลูกบาศก์แบบบอดีเซ็นเตอร์ (body-centered cubic: bcc), ค่าดัชนีหักเหแสง ประมาณ 1.75, ค่าคงที่ผลึก (a) = 10.118 อังสตรอม, เลขมวลโมเลกุล (Mol. Weight) = 277.64, และ ลักษณะสีเป็นสีเหลืองโปร่งแสง

รูปที่ 3.1 โครงสร้างผลึกของอินเดียมออกไซด์

การวิเคราะห์คุณสมบัติของฟิล์มบางอินเคียมออกไซด์ (In₂O₃) เพื่อทำการวิเคราะห์ โครงสร้าง และองค์ประกอบต่างๆ ของฟิล์มบางอินเดียมออกไซด์ ในวิทยานิพนธ์ฉบับนี้ได้ นำเสนอตัวอย่างเทคนิค รวมทั้งเครื่องมือต่างๆ ที่ใช้ในการวัด และวิเคราะห์คุณสมบัติต่างๆ ของ ฟิล์ม ซึ่งประกอบด้วย

- 1. เทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ (X-Ray Diffraction: XRD)
- 2. กล้องจุลทรรศน์อิเล็กตรอนแบบเลื่อนกราด (Scanning Electron Microscopy: SEM)
- 3. การวิเคราะห์ด้วยเครื่อง Energy Dispersive X-ray Analysis (EDX)
- 4. เครื่องวัดความหนาฟิล์มบางอิลลิปโซมิเตอร์ (Ellipsometer)
- 5. ปรากฏการณ์ฮอลล์ (Hall Effect)

ซึ่งกล่าวในรายละเอียดหัวข้อถัดไป ตามลำดับ

3.2 การศึกษาโครงสร้างผลึกจากการเลี้ยวเบนของรังสีเอ็กซ์

รังสีเอ็กซ์เป็นคลื่นแม่เหล็กไฟฟ้าที่มีพลังงานสูง รังสีเอ็กซ์เกิดจากการเคลื่อนที่ของ อิเล็กตรอนที่ถูกเร่งในสนามไฟฟ้าให้มีพลังงานสูงแล้ววิ่งชนเป้าซึ่งทำด้วยโลหะหนัก ผลของการ ชนก่อให้เกิดรังสีเอ็กซ์ 2 ชนิดคือ รังสีเอ็กซ์ต่อเนื่อง (Continuous X-Ray) กับรังสีเอ็กซ์เฉพาะตัว (Characteristic X-Ray) รังสีเอ็กซ์จะเกิดการเลี้ยวเบน (Diffraction) เมื่อผ่านช่องว่างระหว่างอะตอม ในผลึก เมื่อคลื่นผ่านโครงสร้างผลึกออกมาจะเกิดการแทรกสอด (Interference) ทั้งแบบเสริมและ หักล้างกัน วิลเลียม เฮนรี แบรกก์ (William Henry Bragg) นักฟิสิกส์ชาวอังกฤษได้ตั้งกฎการ เลี้ยวเบนของรังสีเอ็กซ์ในโครงสร้างผลึกไว้ว่า รังสีเอ็กซ์จะแทรกสอดกันแบบเสริมมากที่สุดเมื่อมี การกระเจิงออกจากแต่ละระนาบด้วยความแตกต่างของทางเดินคลื่น (Path different) เป็นจำนวน เท่าของความยาวคลื่นของรังสีเอ็กซ์ เรียกกฎนี้ว่า กฎของแบรกก์ (Bragg's law) ซึ่งเป็นไปตาม สมการที่ 3.1

รูปที่ 3.2 การตกกระทบและการสะท้อนของรังสีเอ็กซ์ตามกฎของแบรกก์

$$N\lambda = 2d_{hkl} \sin\theta \tag{3.1}$$

- λ คือ ความยาวคลื่นของรังสีเอ็กซ์
- *d*_{*hkl*} คือ ระยะห่างระหว่างระนาบ
- hetaคือ มุมสะท้อนจากระนาบแบรกก์ของรังสีเอ็กซ์ซึ่งจะเท่ากับมุมตกกระทบ

ระนาบต่างๆของผลึกไม่ได้ก่อให้เกิดการเลี้ยวเบนเสมอไป ระนาบใดที่รังสีเอ็กซ์ตกกระ ทบแล้วกระเจิงออกมาอย่างสอดคล้องกับกฎของแบรกก์เรียกว่า ระนาบแบรกก์ (Bragg plane) แสดงดังรูปที่ 3.2 และมุมที่รังสีสะท้อนทำกับระนาบที่ขนานกับรังสีตกกระทบเรียกว่า มุมเลี้ยวเบน (Diffraction angle) ซึ่งมีค่าเป็นสองเท่าของมุมสะท้อน ความเข้ม (Intensity) ของรังสีเอ็กซ์ที่ เลี้ยวเบนและมุมเลี้ยวเบนต่างๆ จะถูกตรวจหาด้วย X-Ray Diffractometer ดังแสดงดังรูปที่ 3.3 และ รูปที่ 3.4 นำค่าทั้งสองที่บันทึกไว้ไปวิเคราะห์โครงสร้างผลึก

ร**ูปที่ 3.3** เครื่อง X-ray Diffractometer (XRD) (ศูนย์บริการเครื่องมือทางวิทยาศาสตร์)

รูปที่ 3.4 ตัวตรวจวัดของ X-ray Diffractometer

กราฟความสัมพันธ์ระหว่างความเข้มและมุมเลี้ยวเบนที่ได้เรียกว่า รูปแบบการเลี้ยวเบน (Diffraction pattern) ซึ่งจะมีลักษณะเฉพาะตัวสำหรับธาตุหรือสารประกอบต่างชนิดกัน จากการ เลี้ยวเบนแล้วแทรกสอดกันแบบเสริม ความเข้มของรังสีเอ็กซ์ก็จะมีค่ามากซึ่งจะสังเกตได้จากยอด (Peak) ใน รูปแบบการเลี้ยวเบน และยอดเหล่านี้จะปรากฏที่มุมเลี้ยวเบนเดิมเสมอสำหรับธาตุหรือ สารประกอบชนิดเดียวกัน

การศึกษาการเลี้ยวเบนของรังสีเอ็กซ์จะสามารถหาค่าตัวแปรซึ่งแสดงถึงสมบัติความเป็น ผลึกของฟิล์มบางได้ดังนี้

ค่าคงที่แลตทิช (Lattice constant) จากกฎการเลี้ยวเบนของแบรกก์แอมปลิจูดของการ เลี้ยวเบนของคลื่นคือ F เวกเตอร์คลื่นของระนาบคลื่นที่ตกกระทบคือ k เวกเตอร์คลื่นของคลื่น สะท้อนคือ k ' ดังนั้น

$$F = \int_{\vec{r}} n_{G} e^{\left[i\left(\vec{G} + \vec{k} - \vec{k'}\right) \cdot \vec{r}\right]}$$

(3.2)

โดยที่ n_G คือ แอมปลิจูดของการเลี้ยวเบน

G คือ แลตทิชส่วนกลับ (Reciprocal lattice)

สามารถหาค่าแลตทิชส่วนกลับได้จากสมการ

$$\vec{G} = \vec{k'} - \vec{k} \tag{3.3}$$

ເນື່ອ

$$\left|\vec{k'}\right| = \left|\vec{k}\right| = \frac{2\pi}{\lambda} \tag{3.4}$$

จะได้

$$\left|G\right|^{2} = \vec{G}.\vec{G} = (\vec{k'} - \vec{k}).(\vec{k'} - k')$$
(3.5)

$$|G|^{2} = 2|k|^{2} - 2\bar{k'}.\bar{k}$$
(3.6)

$$\left|G\right|^{2} = 4\left(\frac{2\pi}{\lambda}\right)^{2} (1 - \cos 2\theta)$$
(3.7)

เมื่อ 2heta คือมุมระหว่าง $ar{k}$ และ $ar{k'}$ แก้สมการหาค่า λ จะได้ว่า

$$\lambda = \frac{4\pi}{\left|\bar{G}\right|} \sin\theta \tag{3.8}$$

และจากสมการการหาค่าของ $\left|G
ight|^2$

$$\left|G\right|^{2} = \left(\frac{2\pi}{a}\right)^{2} (h^{2} + k^{2} + l^{2})$$
(3.9)

จะได้สมการของค่าคงที่แลตทิชเป็น

$$a = \frac{\lambda}{2\sin\theta} \sqrt{h^2 + k^2 + l^2}$$
(3.10)

โดยที่ *a* คือ ค่าคงที่แลตทิช

- λ_x คือ ค่าความยาวคลื่นของรังสีเอกซ์
- heta คือ มุมของการเลี้ยวเบน

รูปที่ 3.5 ค่าคงที่แลตทิชของสารกึ่งตัวนำชนิดต่างๆ

ขนาดของเม็ดผลึก (Grain size) จากสมการ Sherrer's equation สามารถหาค่าขนาดของ เม็ดผลึกได้ดังนี้

$$D = \frac{\kappa \lambda_X}{\beta_2 \theta^{\cos \theta}}$$
(3.11)

- K คือ ค่าคงที่ซึ่งขึ้นกับขนาดและรูปร่างของเม็ดผลึก ($0.89 \le K \le 0.94$)
- heta คือ มุมของการเลี้ยวเบน
- $eta_{2 heta}$ คือ ค่าครึ่งหนึ่งของความกว้างสูงสุดของยอดการเลี้ยวเบน (Full width at half-

Maximum of the diffraction peak : FWHM)

 $\lambda_{\scriptscriptstyle X}$ คือ ค่าความยาวคลื่นของรังสีเอกซ์

3.3 การวิเคราะห์พื้นผิวด้วยเครื่อง Scanning Electron Microscope (SEM)

กล้องจุลทรรศน์อิเล็กตรอนแบบเลื่อนกราด (Scanning Electron Microscope: SEM) ใช้ใน การส่องดูลักษณะพื้นผิวของตัวอย่างชิ้นงาน ได้จากการบังคับลำอิเล็กตรอนให้กวาดไปบนพื้นผิว แล้วแสดงผลบนจอ Cathode Ray Tube (CRT) มีลักษณะของภาพเป็นภาพขาวดำ มีกำลังขยาย 10 ถึง 300,000 เท่า ขึ้นอยู่กับชนิดของตัวอย่าง หลักการทำงาน คือ เมื่ออิเล็กตรอนกระทบชิ้นงานทำให้ เกิดอิเล็กตรอนทุติยภูมิ (Secondary electron: SE) และจับสัญญาณโดยตัวตรวจจับสัญญาณแล้วนำ สัญญาณที่ได้ไปขยายและสร้างภาพบนจอ CRT

หลักการทำงานของเครื่อง Scanning Electron Microscope (SEM) ประกอบด้วย แหล่งกำเนิดอิเล็กตรอนที่เรียกว่า แคโทค (Cathode) เนื่องจากเป็นขั้วลบ ทำหน้าที่ผลิตอิเล็กตรอน จากนั้นกลุ่มอิเล็กตรอนจะถูกเร่งด้วยสนามไฟฟ้าในช่วง 1 ถึง 40 กิโลอิเล็กตรอนโวลต์ (keV) พร้อมทั้งมีกลุ่มอิเล็กตรอนให้เป็นลำอิเล็กตรอนโดยระบบของเลนส์อิเล็กตรอน (Electron lens) ซึ่ง มี 2 ชนิด คือ เลนส์คอนเดนเซอร์ (Condenser lens) และเลนส์วัตถุ (Objective lens) ทำหน้าที่ไฟกัส ภาพ ขณะเดียวกันลำอิเล็กตรอนจะกราคไปบนผิวตัวอย่างโดยขดลวดสนามแม่เหล็ก (Scanning coil) บนระนาบ x y สิ่งสำคัญของการทำงานของเครื่อง SEM คือการเลือกสัญญาณอิเล็กตรอนกับ อะตอมของชิ้นงานมาสร้างเป็นภาพ ความต่างจากผลของปฏิกิริยาอิเล็กตรอนต่อชนิดของชิ้นงาน ขึ้นอยู่กับองค์ประกอบของธาตุในเนื้อชิ้นงานตัวอย่าง และกระบวนการวัดสัญญาณด้วยตัวตรวจจับ สัญญาณแบบต่างๆ

สัญญาณอิเล็กตรอนทุติยภูมิมีความสำคัญมากในการศึกษาลักษณะพื้นผิวของตัวอย่าง เนื่องจากสัญญาณอิเล็กตรอนทุติยภูมิที่หลุดออกมาส่วนมากจะมาจากบริเวณผิวของตัวอย่าง สัญญาณอิเล็กตรอนทุติยภูมิเกิดจากอิเล็กตรอนปฐมภูมิ (Primary electron: PE) ถ่ายโอนพลังงาน ให้แก่อะตอมของตัวอย่าง บริเวณชั้นอิเล็กตรอนหรืออิเล็กตรอนของตัวอย่างได้รับพลังงานสูงขึ้น กว่าพลังงานยึดเหนี่ยวของอะตอม อิเล็กตรอนก็จะหลุดออกจากอะตอมกลายเป็นอิเล็กตรอนทุติย ภูมิ อีกทั้งสัญญาณอิเล็กตรอนทุติยภูมิมีพลังงานต่ำ ดังนั้นเมื่ออิเล็กตรอนปฐมภูมิลงไปกระตุ้น อะตอมของตัวอย่างในบริเวณลึกจากผิวตัวอย่าง โอกาสที่สัญญาณอิเล็กตรอนทุติยภูมิ จะหลุด ออกมาจากชั้นความลึกนั้นมีน้อยเพราะสัญญาณอิเล็กตรอนทุติยภูมิจะถูกดูดกลืนโดยอะตอมบนผิว ก่อนที่จะเล็ดลอดออกมา

รูปที่ 3.6 ส่วนประกอบภายในเครื่อง Scanning Electron Microscope (SEM)

ร**ูปที่ 3.7** เครื่อง Scanning Electron Microscope (SEM) (ศูนย์เทค โน โลยีไม โครอิเล็กทรอนิกส์)

้สัญญาณอิเล็กตรอนทุติยภูมินี้จะถูกคึงเข้าสู่ตัวตรวจจับสัญญาณ ซึ่งทำหน้าที่แปลง ้สัญญาณอิเล็กตรอนทติยภูมิเป็นสัญญาณอิเล็กทรอนิกส์ เนื่องจากบริเวณที่เกิดอันตรกิริยาระหว่าง ้อิเล็กตรอนกับผิวของตัวอย่างจะมีสัญญาณหลายชนิด ดังนั้นต้องเลือกสัญญาณเฉพาะที่ต้องการ ใน กรณีของสัญญาณอิเล็กตรอนทุติยภูมิจะถูกดึงโดยสนามไฟฟ้าจากตัวตรวจจับสัญญาณ สัญญาณ ้อิเล็กตรอนทุติยภูมิซึ่งมีพลังงานต่ำจะเคลื่อนที่อยู่ในบริเวณผิวของตัวอย่างหลังจากสัญญาณ ้อิเล็กตรอนทุติยภูมิถูกดึงโดยสนามไฟฟ้าที่ถูกไบแอสไว้ สัญญาณอิเล็กตรอนทุติยภูมิจะเคลื่อนเข้าสู่ บริเวณ scintillator ซึ่งทำมาจาก CaF, และฉาบผิวด้วยอลูมิเนียมบางทำหน้าที่เป็น collector ป้อน แรงคันใบแอสที่ 12 kV ซึ่งสนามใบแอสนี้จะเร่งให้สัญญาณอิเล็กตรอนทุติยภูมิเคลื่อนเข้าชน scintillator ทำให้เกิดสัญญาณแสง และจะถูกส่งไปตามท่อนำแสง เพื่อเปลี่ยนจากสัญญาณแสงไป เป็นสัญญาณไฟฟ้าแล้วจึงทำการขยายสัญญาณ เพื่อส่งต่อให้ระบบสร้างภาพบนจอ CRT กล่าวคือ เมื่ออิเล็กตรอนถูกบีบเป็นลำอิเล็กตรอนและ โฟกัสด้วยเลนส์แม่เหล็กลงบนผิวของตัวอย่าง ลำ ้อิเล็กตรอนจะถูกควบคุมโคยชุด scanning coils ซึ่งเป็นขคลวดที่สร้างสนามแม่เหล็กควบคุมการ ้กราดของลำอิเล็กตรอนไปบนผิวของตัวอย่าง ซึ่งการกราดบนผิวของตัวอย่างนี้จะทำให้ได้สัญญาณ ้ต่างๆ สัญญาณควบคุมการกราคบนพื้นผิวนี้จะทำงานเข้าจังหวะกับชุดควบคุมการสแกนของ ้งอภาพ CRT งุดต่องุดและเส้นต่อเส้น ในขณะเดียวกันสัญญาณอิเล็กตรอนจะถูกนำไปควบคุม ้ปริมาณความมืดสว่างบนจอ CRT เกิดเป็นภาพขึ้นตามระนาบการกราดของถำอิเล็กตรอนในกล้อง ้จุลทรรศน์แบบ SEM เนื่องจากพื้นที่แสดงจอภาพ CRT โตกว่าพื้นที่การกราดบนผิวของตัวอย่าง ้โดยลำอิเล็กตรอนในกล้องจุลทรรศน์ ดังนั้นจึงเกิดความสัมพันธ์ของกำลังขยายของภาพขึ้นดังนี้

กำลังขยาย = พื้นที่บน CRT/ พื้นที่ของการกวาคบนชิ้นงานของลำอิเล็กตรอน (3.12)

ชุดของ Scanning coils นี้เป็นตัวควบคุมพื้นที่ของการกราคบนตัวอย่างของลำอิเล็กตรอน และนอกจากควบคุมพื้นที่ในการกราดแล้วยังควบคุมความเร็วในการกราดอีกด้วย ซึ่งลักษณะ ความเร็วในการกราคนี้จะทำให้ภาพที่ออกมามีความละเอียดแตกต่างกัน ถ้าเราใช้ความเร็วในการ กราดมีความเร็วสูงเราจะได้ภาพที่มีความละเอียดต่ำกว่าการใช้ความเร็วต่ำในการกราด

3.4 การวิเคราะห์ด้วยเครื่อง Energy Dispersive X-ray Analysis (EDX)

การวิเคราะห์ด้วยเครื่อง Energy Dispersive X-ray Analysis (EDX) เป็นการวิเคราะห์ชนิด ของธาตุ และปริมาณธาตุต่าง ๆ ที่เป็นส่วนประกอบรวมอยู่ในชิ้นงานที่ต้องการตรวจสอบ โดย อาศัยแหล่งกำเนิดรังสีเอ็กซ์ เมื่ออิเล็กตรอน (Primary electron) ที่มีพลังงานค่าหนึ่งถูกส่งผ่านไปยัง ชิ้นงาน หรือวัสดุตัวอย่าง อะตอมของชิ้นงานได้รับการไอออไนซ์ (Ionize) จากการยิงอิเล็กตรอน และเกิดการเคลื่อนที่ของอิเล็กตรอนลำดับที่สอง (Secondary electron) จากนั้นทำการตรวจจับ พลังงานของอิเล็กตรอนลำดับที่สอง ด้วยอุปกรณ์ตรวจจับที่เรียกว่า Secondary electron detector

รูปที่ 3.8 ส่วนประกอบภายในของเครื่อง Energy Dispersive X-ray Analysis (EDX)

ร**ูปที่ 3.9** เครื่อง Energy Dispersive X-ray Analysis (EDX) (ศูนย์เทคโนโลยีไมโครอิเล็กทรอนิกส์)

โดยพลังงานของอิเล็กตรอนที่ตรวจจับได้ จะมาจากอิเล็กตรอนที่เคลื่อนที่ในวงโคจรใดๆ เช่น ชั้น K, L, M, และ N รอบนิวเคลียส (Nucleus) ซึ่งอะตอมของธาตุแต่ละชนิดจะมีค่าพลังงานที่ แตกต่างกันออกไป ตัวอย่างเช่น ซิลิคอน (Si), ออกซิเจน (O), อินเดียม (In), แพลทินัม (Pt), พลาเดียม (Pd), อลูมิเนียม (Al), และเหล็ก (Fe) จะมีพลังงานของอิเล็กตรอน เค-เชลล์ (K- shell electron) เท่ากับ 1.740, 0.525, 24.21, 66.83, 21.18, 1.487, และ 6.404 กิโลอิเล็กตรอนโวลต์ (keV) ตามลำดับ สามารถแสดงลักษณะการตรวจจับพลังงาน ดังรูป 3.10 โดยแบ่งเป็นสามช่วงได้ดังนี้

รูปที่ 3.10 ลักษณะการตรวจจับพลังงานของอิเล็กตรอนชุคที่สอง

ช่วงที่ 1. เมื่ออิเล็กตรอนชุดที่หนึ่งพุ่งชนอิเล็กตรอนชั้นเค (K-shell electron) ทำให้ อิเล็กตรอนหลุดออกจากวงโคจรตามรูป 3.10 (1)

ช่วงที่ 2. อิเล็กตรอนจากชั้นแอล (L-shell electron) ขาดเสถียรภาพ แล้วทำการเคลื่อนที่ไป ยังชั้นเค ตามรูป 3.10 (2) และถูกเรียกว่าอิเล็กตรอนชุดที่สอง

ช่วงที่ 3. อิเล็กตรอนชุดที่สองเกิดการคายพลังงาน พลังงานนี้เองที่ถูกนำไปตรวจจับเพื่อวัด ชนิดและปริมาณของธาตุต่อไป ตามรูป 3.10 (3)

3.5 การวิเคราะห์คุณสมบัติฟิล์มบางด้วยเครื่อง Ellipsometer

การวิเคราะห์คุณสมบัติฟิล์มบางด้วยเครื่องอิลลิปโซมิเตอร์ (Ellipsometer) เป็นการ วิเคราะห์ผลของการสะท้อน (Reflection) ด้วยหลักการโพลาไรเซชัน (Polarization) ของแสง เลเซอร์ตกกระทบผิวของวัสดุ ใช้ประโยชน์เพื่อการวิเคราะห์ และพัฒนาคุณภาพของฟิล์ม ประกอบด้วยตัวแปรของค่าคงที่ทางแสง (Optical constants) ถ้าผิวของวัสดุถูกปกคลุมด้วยฟิล์ม ลักษณะโปร่งแสง ข้อมูลที่ได้จะเกี่ยวข้องกับความหนาและค่าคงที่ทางแสงของฟิล์ม เช่น ค่าดัชนี หักเหแสง (Reflection of Index) และค่าสัมประสิทธิ์การดูดกลืนแสง (Absorption coefficient) ใน ด้านกระบวนการผลิตสามารถใช้หาค่าเปอร์เซ็นต์ความสม่ำเสมอของฟิล์ม (Thickness uniformity %) เพื่อใช้ในการพัฒนากระบวนการสร้างชั้นฟิล์มต่างๆ

รูปที่ 3.11 ส่วนประกอบภายในของเครื่อง Ellipsometer

เกรื่องอิลลิปโซมิเตอร์แบบช่วงความยาวคลื่นเดียว (Single wave Lange) จะใช้แหล่งจ่าย พลังงานแสงเลเซอร์กำลังค่ำในย่าน Class II เป็นแหล่งกำเนิดเลเซอร์ชนิดฮีเลียม-นีออน (HeNe Laser) ที่มีความยาวคลื่นแสงเท่ากับ 633 นาโนเมตร และสำหรับเครื่องอิลลิปโซมิเตอร์แบบช่วง ความยาวคลื่นคู่ (Dual wave Lange) จะประกอบด้วยแหล่งกำเนิดแสง 2 ชนิด จากฮีเลียม-นีออน (HeNe Laser) ที่ความยาวคลื่นแสง 633 นาโนเมตร และเลเซอร์ไดโอด (Laser diode) ที่ความยาว คลื่นแสง 780 นาโนเมตร โดยทั่วไปจะมีขนาดสำแสง (Spot Size) ประมาณ 12 × 22 ไมโครเมตร แสงเลเซอร์เหล่านี้จะถูกส่งผ่านตามแนวเส้นทางแสง (Optical axis) โดยผ่านปริซึมโพลาไรเซอร์ (Polarizer prism) เพื่อเปลี่ยนลำแสงจากจากวงกลมเป็นเชิงเส้น (Linearly polarized light) ลำแสงจะ มีความเข้มคงที่ และถูกเปลี่ยนกลับเป็นวงกลมโพลาไรซ์ จากอุปกรณ์ที่เรียกว่า ควอเตอร์เวฟ คอม เฟนเซเตอร์ (Quarter wave Compensator) ที่ถูกแทรกเข้าไปในแนวเส้นทางเดินของแสง (หรือยังกง เป็นเส้นตรง เมื่อคอมเพนเซเตอร์ถูกดึงออกจากแนวเส้นทางเดินของแสง) การแทรกเข้าไป หรือการ ดึงออกไปของ +90° คอมเพนเซเตอร์จะเป็นโดยอัตโนมัติภายใต้การควบคุมด้วยโปรแกรมของ คอมพิวเตอร์ แล้วแสงที่ได้ (ด้วยการแทรกเข้าไป หรือดึงออกมาของ +90° คอมเพนเซเตอร์ใน แนวทางเดินของแสง) จะถูกฉายลงบนผิวของแผ่นชิ้นงาน และสะท้อนไปยังอุปกรณ์ตัวตรวจจับ ทางแสง (Photo detector)

ร**ูปที่ 3.12** เครื่อง Ellipsometer (สูนย์วิจัยอิเล็กทรอนิกส์)

แสงที่สะท้อนจะผ่านปริซึมอนาไลเซอร์ และตรวจวัดด้วยตัวตรวจจับทางแสงเป็นอุปกรณ์ เปลี่ยนพลังงานแสงเป็นกระแสไฟฟ้า และแปรโดยตรงกับความเข้ม (Intensity) ของแสงที่สะท้อน ผ่านตัวอนาไลเซอร์ โดยมีตัวกรอง (Filter) ทำหน้าที่ป้องกันแสงอื่นๆ ที่อาจแทรกสอดระหว่าง ปริซึมอนาไลเซอร์กับตัวตรวจจับแสง ผลการวัดค่าความหนาฟิล์ม, ค่าดัชนีหักเหแสง, และค่า สัมประสิทธิ์การดูดกลืนแสง ถูกยืนยันด้วยค่า Fit error ซึ่งเป็นการคำนวณทางสถิติ โดยค่า Fit error ที่ยอมรับต้องมีค่าไม่เกิน 1.00 หรือมากกว่าตามชนิดของฟิล์มที่ทำการตรวจสอบ

3.6 การวัดปรากฏการณ์ฮอลล์ Hall Effect

การวัดปรากฏการณ์ฮอลล์ (Hall Effect) หมายถึงการจ่ายกระแสไฟฟ้า (I) ใหลผ่านสารกึ่ง ตัวนำในทิศทางหนึ่ง แล้วให้สนามแม่เหล็กไฟฟ้า (B) ตัดผ่านในทิศทางตั้งฉากกับทิศทางของ กระแสไฟฟ้า จะเกิดการเหนี่ยวนำสนามไฟฟ้าขึ้น โดยมีทิศทางตั้งฉากกับกระแสไฟฟ้าและทิศทาง ของสนามแม่เหล็กไฟฟ้า ปรากฏการณ์ดังกล่าวนี้เรียกว่า "ปรากฏการณ์ฮอลล์" จากการทดลองเรื่อง ปรากฏการณ์ฮอลล์ทำให้ทราบว่าในสารกึ่งตัวนำจะมีประจุพาหะอยู่สองชนิดที่ไม่เหมือนกัน คือ อิเล็กตรอน และโฮล การวัดค่าสัมประสิทธิ์ของฮอลล์ (Hall coefficient) ไม่เพียงทราบชนิดของ พาหะเท่านั้น แต่ยังสามารถบอกค่าความหนาแน่นของพาหะนั้นได้ด้วย และนอกจากนี้ทำให้ สามารถคำนวณหาก่าพารามิเตอร์ต่างๆ ที่สำคัญได้ด้วย

การวัดปรากฏการณ์ฮอลล์ของฟิล์มบางอินเดียมออกไซด์ (In₂O₃) นั้น ได้อาศัยเทคนิคของ แวนเดอร์พาว (van der Pauw Hall) สามารถทำการวัดค่าสภาพความด้านทานไฟฟ้าได้โดยไม่ จำเป็นต้องทราบลักษณะรูปแบบการกระจายของเส้นทางเดินกระแสที่ไหลผ่านภายในเนื้อสาร โดย ความถูกต้องแม่นยำในการวัดจะขึ้นอยู่กับเงื่อนไขต่างๆ คือ ขั้วสัมผัสจะต้องวางอยู่ที่ขอบของ ชิ้นสาร, สารตัวอย่างต้องมีความหนาแน่นเท่ากันตลอด, เนื้อสารตัวอย่างต้องไม่มีรูหรือรอยแยกใดๆ , และขนาดของขั้วสัมผัสต้องมีขนาดเล็กมากเมื่อเทียบกับเส้นรอบรูปของชิ้นสาร

พิจารณาชิ้นสารรูปร่างแบบแผ่นแบนใดๆ ดังรูป 3.13 ที่มีขั้วสัมผัสเล็กๆ 1, 2, 3, และ 4 ที่ กระจายอยู่ที่ขอบของแผ่น ซึ่งสอดคล้องกับเงื่อนไขข้างต้น ในการวัดความหนาแน่นของพาหะและ สภาพคล่องตัว สามารถกระทำได้โดยอาศัยปรากฏการณ์ฮอลล์

ร**ูปที่ 3.13** สารตัวอย่างแผ่นแบบรูปทรงใดๆ

รูปที่ 3.14 ลักษณะของชิ้นงานและวงจรที่ใช้หาค่าสภาพความต้านทาน

รูปที่ 3.15 ลักษณะของชิ้นงานและวงจรที่ใช้หาค่าความหนาแน่นประจุพาหะและค่าความคล่องตัว

จากนั้นนำฟิล์มบางอินเดียมออกไซด์มาทำการวัดเพื่อคำนวณหาค่าสภาพต้านทานไฟฟ้า ดัง รูปที่ 3.14 แล้วนำฟิล์มบางอินเดียมออกไซด์มาทำการวัดปรากฏการณ์ฮอลล์ โดยฟิล์มบางมีความ หนา 2,000 อังสตรอม โดยใช้สนามไฟฟ้า 5,000 เกาส์ และจ่ายกระแสคงที่ 1 มิลลิแอมแปร์ ดังแสดง ในรูปที่ 3.15 จะได้ก่าฮอลล์ (V_H) เพื่อใช้หาก่าตัวแปรทางไฟฟ้าต่างๆ โดยมีสมการที่ต้องใช้ ดังต่อไปนี้

้ค่าสภาพด้านทานผิวของฟิล์มบางอินเดียมออกไซด์หาได้จากสมการ (3.13)

$$\rho = \frac{\pi . t}{I} \cdot \frac{V_R}{In2} \qquad (\Omega.cm) \tag{3.13}$$

เนื่องจากความเข้มสนามแม่เหล็ก (B) มีหน่วยเป็น Teslas (T) หรือ Gauss (G) โดยที่ 1T = 1 $\frac{Weber}{m^2} = 1 \frac{V.s}{m^2}$ และ $1(T) = 10^4$ (G) สามารถหาค่า Hall coefficient จากสมการ (3.14)

$$R_{H} = \frac{10^{8} . t. V_{H}}{BI} \qquad (\text{cm}^{3}/\text{C}) \tag{3.14}$$

ค่าความหนาแน่นประจุพาหะหาได้จากสมการ (3.15)

$$n_H = \frac{1}{qR_H}$$
 (cm⁻³) (3.15)

และค่าความคล่องตัวของประจุพาหะจากสมการ (3.16)

$$\mu_{H} = \frac{|R_{H}|}{\rho} \qquad (\text{cm}^{2} \text{V}^{-1} \text{s}^{-1})$$
(3.16)

ร**ูปที่ 3.16** เครื่องกำเนิคสนามแม่เหล็กไฟฟ้า (ศูนย์วิจัยอิเล็กทรอนิกส์)